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Abstract 

Background  PSMA-PET is increasingly used for staging prostate cancer (PCA) patients. However, it is not clear 
if quantitative imaging parameters of positron emission tomography (PET) have an impact on disease progression 
and are thus important for the prognosis of localized PCA.

Methods  This is a monocenter retrospective analysis of 86 consecutive patients with localized intermediate or high-
risk PCA and PSMA-PET before treatment The quantitative PET parameters maximum standardized uptake value 
(SUVmax), tumor asphericity (ASP), PSMA tumor volume (PSMA-TV), and PSMA total lesion uptake (PSMA-TLU = PSMA-
TV × SUVmean) were assessed for their prognostic significance in patients with radiotherapy or surgery. Cox regression 
analyses were performed for biochemical recurrence-free survival, overall survival (OS), local control, and loco-regional 
control (LRC).

Results  67% of patients had high-risk disease, 51 patients were treated with radiotherapy, and 35 with surgery. 
Analysis of metric PET parameters in the whole cohort revealed a significant association of PSMA-TV (p = 0.003), PSMA-
TLU (p = 0.004), and ASP (p < 0.001) with OS. Upon binarization of PET parameters, several other parameters showed 
a significant association with clinical outcome. When analyzing high-risk patients according to the primary treat-
ment approach, a previously published cut-off for SUVmax (8.6) showed a significant association with LRC in surgically 
treated (p = 0.048), but not in primary irradiated (p = 0.34) patients. In addition, PSMA-TLU (p = 0.016) seemed to be 
a very promising biomarker to stratify surgical patients.

Conclusion  Our data confirm one previous publication on the prognostic impact of SUVmax in surgically treated 
patients with high-risk PCA. Our exploratory analysis indicates that PSMA-TLU might be even better suited. The miss-
ing association with primary irradiated patients needs prospective validation with a larger sample size to conclude 
a predictive potential.

Trial registration Due to the retrospective nature of this research, no registration was carried out.
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Background
Prostate cancer (PCA) accounted for 7.1% of all cancer 
cases in 2018, being the second most common cancer 
in men worldwide [1]. Therapeutic options for local-
ized PCA include radical prostatectomy, radiotherapy, 
and active surveillance. The D’Amico classification is 
routinely used for clinical risk stratification [2]. While 
PCA-specific ten-year mortality is negligible for low-risk 
patients regardless of the chosen therapeutic approach 
[3], cancer-specific mortality is considerably higher in 
high-risk patients despite treatment intensification, 
i.e. concomitant androgen deprivation therapy (ADT), 
dose-escalated radiotherapy or extended pelvic lymph 
node dissection [3–6]. Even in intermediate-risk patients 
around 15% present tumor progression within 5  years 
after treatment, even with high-dose radiotherapy [7]. 
Current primary treatment approaches for unfavora-
ble intermediate-risk or high-risk PCA with disease 
limited to the prostate is either surgery or radiotherapy 
combined with ADT. While both treatment approaches 
show a similar oncological outcome, treatment-related 
side effects differ considerably between both treatment 
approaches [8]. Additionally, surgical patients usually 
receive adjuvant or salvage radiotherapy to the prostate 
fossa in case of biochemical recurrence, leading to a com-
bination of surgical and radiation-induced side effects 
[9]. Therefore, biomarkers for better treatment personali-
zations are urgently needed.

Positron emission tomography (PET)/Computer 
tomography (CT) with prostate-specific membrane anti-
gen (PSMA) is increasingly used for staging high-risk 
patients due to its high sensitivity and specificity regard-
ing the detection of lymph nodes or distant metastases 
[10, 11]. The diagnostic accuracy of PSMA-PET/CT for 
staging therapy-naïve patients [12, 13] and the greater 
efficacy in detecting early recurrences, small lymph node 
metastases, and bone metastases [14] has been shown to 
be superior to bone scintigraphy and CT.

In addition to improved staging of patients, quantita-
tive PET parameters can potentially be used as imag-
ing biomarkers. This holds true for the most frequently 
investigated parameter SUVmax (maximum standard-
ized uptake value, normalized to body weight) which 
delivers additional prognostic information in various 
diseases and for various PET tracers [15–17]. Due to 
the novelty of PSMA-PET imaging, data on the prog-
nostic value of quantitative imaging parameters for this 

specific tracer is sparse and mostly limited to advanced 
stages of disease. So far, most data have been published 
on metastatic patients treated with PSMA radioligand 
therapy [18, 19]. Two recent publications showed that 
quantitative PSMA-PET parameters are associated with 
biochemical recurrence-free survival in PCA patients 
treated with primary surgery [20, 21].

This study aimed to investigate the prognostic value 
of various quantitative PSMA-PET parameters, includ-
ing previously published cutoff values [21], in a cohort 
of intermediate/high-risk patients. In contrast to exist-
ing publications, these analyses were restricted to 
PET-staged localized PCA treated with curative intent 
(either surgery or radiotherapy ± ADT), i.e., patients 
without nodal or distant metastatic disease after 
PSMA-PET staging.

Patients and methods
Patient cohort
For this retrospective analysis, all patients who under-
went PSMA-PET at Charité – Universitätsmedizin 
Berlin, Campus Virchow-Klinikum between January 
2015 and December 2018 were reviewed and checked 
for inclusion and exclusion criteria. Results of imaging 
and implications for staging of patients included up to 
March 2018, have been published [22]. For this analy-
sis, we re-evaluated the existing patient cohort and 
added patients with pre-treatment PSMA-PET until to 
December 2018, as recently published [23].

This allowed identification of all treatment-naïve 
patients with biopsy-proven PCA who underwent 
PSMA-PET/CT for initial staging. Patients were eligi-
ble for this analysis if they presented with intermedi-
ate/high-risk disease and underwent active therapy, 
i.e., radiotherapy with/without ADT or surgery, and 
if at least one follow-up visit was available. Exclusion 
criteria were patients with detectable lymph nodes or 
distant metastases by PET imaging. This resulted in a 
cohort of eighty-six patients. From this cohort, thirty-
five patients underwent radical prostatectomy (RP), 
and fifty-one patients underwent radiotherapy (RT).

Referral for PSMA-PET was at the discretion of the 
treating urologists and radiation oncologists, particu-
larly because PSMA-PET has not been established for 
routine staging. The study was approved by the local 
ethics committee (EA4/168/16).

Keywords  PSMA, Positron emission tomography, Prostate cancer, Prostate-specific membrane antigen, Quantitative 
PET parameters, Prognostic value
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Clinical parameters
Clinical data including prostate-specific antigen (PSA), 
clinical T-stage, and Gleason score assessed at biopsy 
before imaging were available from electronic data-
bases, as well as from patient records. For the subgroup 
of patients who underwent surgery, the surgical Gleason 
scores were recorded. The Gleason scores were classified 
according to the recommendations of the consensus con-
ference of the International Society of Urological Pathol-
ogy (ISUP) of 2014 on Gleason grading of PCA [24]. 
Additionally, ADT usage at the time of PSMA-PET/CT, 
during active therapy (RT, RP) and during follow-up was 
assessed.

Based on the clinical parameters, a three-tiered clas-
sification was made into low, intermediate, or high-risk 
patients according to D’Amico scoring. During follow-up, 
patients usually underwent repeated PSA examinations 
every three months. In case of biochemical recurrence 
(BCR), further diagnostic examination was left at the dis-
cretion of the treating urologist/radiation oncologist. The 
endpoints of the study were local tumor control (LC), 
loco-regional tumor control (LRC), biochemical recur-
rence-free survival (BRFS), and overall survival (OS). 
LC and LRC were defined as local/loco-regional recur-
rence detected by magnetic resonance imaging (MRI) or 
PSMA-PET. Since surgically treated patients underwent 
salvage radiotherapy to the prostate fossa usually at low 
PSA values and therefore did not present macroscopic 
local recurrence, we used the following approach: A 
local recurrence after surgery was considered if patients 
presented a biochemical recurrence with complete bio-
chemical remission after salvage radiotherapy to the 
prostate fossa. Patients who received additional radio-
therapy to the lymphatic drainage had to be excluded in 
this analysis regarding the endpoint local recurrence as 
the complete remission after irradiation could also have 
been due to microscopic regional recurrences. Biochemi-
cal recurrence was defined as follows: In patients treated 
with primary radiotherapy, BCR was defined according 
to the Radiation Therapy Oncology Group- American 
Society for Therapeutic Radiology and Oncology (RTOG-
ASTRO)-Phoenix consensus recommendation [25] as an 
increase of 2 ng/ml or more above the lowest PSA level 
achieved (PSA nadir). After radical prostatectomy, the 
American Urological Association (AUA) expert panel 
recommends defining biochemical recurrence as a first 
serum prostate specific antigen of > or = 0.2 ng/ml, with a 
second confirmatory PSA value of > 0.2 ng/ml [26].

Imaging
Imaging was previously described [22], briefly, PSMA-
PET/CT was performed with the radiotracer [68Ga]

Ga-PSMA-HBED-CC on a dedicated PET/CT scanner 
(Gemini TF 16; Philips, The Netherlands) with Philips 
Astonish TF technology. Injection of [68Ga]Ga-PSMA-
HBED-CC was given intravenously (median activity 
153  MBq; range: 71–227  MBq), Median activity per kg 
body weight: 1.6 MBq/kg (range: 0.8–2.6 MBq/kg). PET 
imaging was conducted at a Median of 98  min after 
injection (range: 39–188  min). Patients were positioned 
supine and scanned from the head to the proximal thighs 
(emission, 90–180  s per bed position; 3D acquisition 
mode; bed overlap, 53.3%). Attenuation correction was 
based on non-enhanced low-dose CT (automatic tube 
current modulation; maximum tube current–time prod-
uct, 50  mA; tube voltage, 120  kV; gantry rotation time, 
0.5 s) reconstructed with a slice thickness of 5 mm (con-
volution kernel, B08). Raw PET data were reconstructed 
using iterative reconstruction with TOF analysis (Philips 
Astonish TF technology; BLOB-OS-TF; iterations, 3; 
subsets, 33). Projection data were reconstructed with 
matrix size 144 × 144 and voxel size 4 × 4 × 4 mm3 [22].

Image evaluation
All 3D region of interest (ROI) definitions and image 
analyses were performed using ROVER software, version 
3.0.41 (ABX, Radeberg, Germany). Initially, a large spher-
ical mask was placed around the prostate and the base of 
the seminal vessels to delineate the metabolically active 
part of the primary tumor based on a threshold of 41% 
SUVmax, as suggested in a recent analysis [20].

The resulting ROIs were visually analyzed by an expe-
rienced observer (SZ) to manually exclude tracer uptake 
of surrounding normal tissue (bladder and/or rectum). 
An example of delineation is shown in Supplementary 
Fig.  1. In patients with low diffuse tracer accumulation 
in the prostate, the most intense single voxel was manu-
ally delineated for calculation of Maximum standardized 
uptake value (SUVmax). SUVmax, average standardized 
uptake value (SUVmean), the delineated tumor volume 
according to PSMA uptake (PSMA-TV) and the PSMA 
total lesion uptake (PSMA-TLU = PSMA-TV × SUVmean) 
were calculated. In addition, the novel quantitative PET 
parameter tumor asphericity (ASP) was calculated. ASP 
calculation was described in detail before. ASP is defined 
as

where S und V are surface and volume of the lesion and 
it measures the fractional increase of the surface area of 
a lesion compared to the surface area of spherical lesion 
with the same volume (which would have a value of zero). 
More details can be found in [23, 27, 28].

ASP = 100 ∗
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Statistical analyses
Differences between groups (surgery vs. radiotherapy) 
were analyzed by Mann–Whitney U test. The associa-
tion of BRFS, OS, LRC and LC, measured from start of 
therapy to death and/or event, with clinically relevant 
parameters as well as quantitative PET parameters was 
analyzed using univariable Cox proportional hazards 
regression in which the PET parameters were included as 
metric parameters. In a second step, the PET parameters 
were binarized and again analyzed in univariable Cox 
regression. For SUVmax the previously published value 
of 8.6 was used for this purpose. The cutoff values for all 
other parameters were calculated by performing a uni-
variable Cox regression for each measured value. In each 
variable, the value leading to the hazard ratio (HR) with 
the highest significance was used as cutoff. Cutoff values 
for the clinical parameters age and iPSA were computed 
accordingly. The cutoff values were separately computed 
for each endpoint. The probability of survival was com-
puted and rendered as Kaplan–Meier curves. Statistical 
significance was assumed at a p value of 0.05 or lower. 
Statistical analysis was performed with the R language 

and environment for statistical computing version 4.2.3 
[29].

Results
Patient cohort
During the study period, 136 patients underwent PSMA-
PET/CT staging for treatment naïve localized PCA. 
After excluding all patients that did not meet the speci-
fied inclusion criteria, eighty-six patients were evalu-
able for further analyses. Exclusion was most frequently 
due to low-risk tumors, refusal of any therapy by the 
patient or missing data on treatment or follow-up infor-
mation. Figure  1 shows a flowchart of all patients that 
have been screened for this study. Median follow up 
time in analyzed patients was 42  months. In the whole 
cohort thirteen patients had a biochemical relapse and 
seven patients died during follow-up. In the intermedi-
ate risk biochemical relapse/death occurred in three/one 
patients, in the high-risk group there were ten/six event.

Table  1 summarizes the patient and clinical tumor 
characteristics for all patients (D’Amico intermediate and 
high risk groups).

Fig. 1  Flow Diagram of all patients with PSMA-PET imaging for primary prostate cancer during the study period and patients that have been 
analyzed
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Association of quantitative PET parameters with clinical 
outcome in the whole cohort
Analysis of metric PET parameters revealed a signifi-
cant association of PSMA-TV (p = 0.003), PSMA-TLU 
(p = 0.004) and ASP (p < 0.001) with OS as shown in 
Table 2.

Upon binarization of PET parameters, ASP, PSMA-TV 
and PSMA-TLU showed a significant association or a sta-
tistical trend for OS. In addition, an association with sev-
eral other investigated endpoints was observed, as shown 
in Table 3.

Quantitative PET parameters in high‑risk patients
Since most data are available for high-risk patients and 
this group is of greatest interest for treatment person-
alization, high-risk patients were evaluated seperately. 
Results for binarized PET parameters were similar. 
Details are shown in Supplementary Table 1. Supplemen-
tary Table  2 summarizes the patient and clinical tumor 
characteristics for the high-risk patients according to 
the primary treatment approach, radiotherapy vs. radi-
cal prostatectomy, and shows results of statistical group 
comparison. Fifty-nine men met high-risk criteria, of 
whom 26 underwent RP and 33 received RT. Baseline 
characteristics were similar in the two groups except for 
age. Patients in the radiotherapy group were significantly 
older (p = 0.04).

Table 1  Patient characteristics of all Patients (D’Amico 2 and 3, 
n = 86)

Mean age (range) 75.5 (61–87)

Mean PSA (range) 11.6 (2.55–130.5)

Gleason Score (biopsy)

 ≤ 6 9 (10.47%)

 7a 9 (10.47%)

 7b 17 (19.77%)

 8 36 (41.86%)

 9 14 (16.28%)

 10 1 (1.16%)

Clinical T stage

 n/a 16 (18.60%)

 1 42 (48.84%)

 2 19 (22.09%)

 3 8 (9.30%)

 4 1 (1.16%)

D’Amico risk group

 Intermediate risk 27 (31.40%)

 High risk 59 (68.60%)

Gleason Score (surgery)

 n/a 52 (60.47%)

 ≤ 6 0 (0%)

 7a 7 (8.14%)

 7b 16 (18.60%)

 8 2 (2.33%)

 9 9 (10.47%)

 10 0 (0%)

Table 2  Univariable Cox regression for all patients (intermediate and high-risk)

PET parameters were included as metric parameters. Bold p values indicate significance (p < 0.05)

Parameter HR 95% CI p value HR 95% CI p value

BCR OS

Age > 74 y 0.29 0.09–1 0.049 5.97 1–35.75 0.051

iPSA > 11 1.57 0.67–3.69 0.3 3.87 0.64–23.28 0.14

Gleason score > 8 1.35 0.5–3.68 0.55 2.7 0.3–24.17 0.37

D Amico Score > 2 1.46 0.53–3.97 0.46 1.38 0.15–12.41 0.77

PSMA-TV 0.96 0.89–1.04 0.31 1.16 1.05–1.28 0.003
PSMA-TLU 0.998 0.992–1.004 0.45 1.005 1.002–1.009 0.004
SUVmax 1 0.98–1.019 0.97 0.97 0.89–1.06 0.48

ASP 0.99 0.96–1.02 0.52 1.05 1.02–1.07 < 0.001
LRC LC

Age > 74 y 0.36 0.08–1.6 0.18 3.23 0.4–26.41 0.27

iPSA > 11 3.62 0.99–13.17 0.051 7.58 0.93–61.67 0.058

Gleason score > 8 1.62 0.5–5.28 0.42 1.62 0.32–8.04 0.56

D Amico Score > 2 1.36 0.37–5.02 0.65 1.39 0.28–6.96 0.69

PSMA-TV 0.98 0.9–1.07 0.64 0.98 0.88–1.09 0.73

PSMA-TLU 0.999 0.993–1.005 0.75 0.993 0.977–1.009 0.39

SUVmax 1.004 0.981–1.028 0.72 0.97 0.91–1.04 0.41

ASP 0.995 0.959–1.032 0.79 0.991 0.942–1.043 0.73
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Quantitative PET parameters in patients according 
to primary treatment approach
Finally, all quantitative PET parameters were analyzed 
according to primary treatment approach. While cut-offs 
for PSMA-TV and PSMA-TLU were optimized for each 
clinical endpoint, for SUVmax a previously published cut-
off was chosen for each endpoint. Figure 2 shows results 
for these three PET parameters in surgically treated high-
risk patients.

PSMA-TV significantly stratified patients at high ver-
sus low-risk for biochemical recurrence (p = 0.05), and 
PSMA-TLU showed a significant discrimination for 
patients at high versus low-risk for loco-regional tumor 
recurrence (p = 0.016). The previously published cut-off 
value SUVmax = 8.6 which was established in surgically 
treated patients, showed a significant discrimination 
between patients at high versus low risk for loco-regional 
recurrence after surgical treatment (p = 0.048). The same 
analyses in patients treated with primary radiotherapy 
did not reveal a significant association with outcome, 
including SUVmax = 8.6 with the endpoint LRC (p = 0.34), 
there were also no significant associations of quantita-
tive PET metrics with BCR (see Supplementary Fig.  2). 
Results for surgical patients remained comparable when 
including intermediate and high-risk patients, as shown 

Table 3  Univariable Cox regression for all patients (intermediate 
and high-risk)

PET parameters were included as binarized parameters

Parameter Risk HR 95% CI p value

BCR

PSMA-TV > 7.8 ml 0.17 0.02–1.26 0.083

PSMA-TLU > 33.6 ml 0.48 0.19–1.17 0.1

SUVmax > 8.6 1.63 0.64–4.17 0.31

ASP > 7.22% 0.42 0.18–0.98 0.046
OS

PSMA-TV > 14.9 ml 34 3.7–312.7 0.002
PSMA-TLU > 76 ml 9.58 1.07–85.74 0.043
SUVmax > 8.6 1.91 0.21–17.14 0.56

ASP > 31.9% 19.9 2.22–178.41 0.0075
LRC

PSMA-TV > 1.48 ml 4.84 0.62–37.58 0.13

PSMA-TLU > 112 ml 2.85 0.87–9.29 0.083

SUVmax > 8.6 3.26 0.72–14.74 0.12

ASP > 7.22% 0.45 0.15–1.34 0.15

LC

PSMA-TV > 4 ml 0.21 0.03–1.7 0.14

PSMA-TLU > 30.3 ml 0.13 0.02–1.04 0.054

SUVmax > 8.6 1.66 0.33–8.22 0.54

ASP > 6.89% 0.29 0.07–1.2 0.088

Fig. 2  Quantitative PET parameters PSMA-TV (A, D), PSMA-TLU (B, E) and SUVmax (C, F) in surgically treated high-risk patients. Kaplan–Meier plots 
for the investigated endpoints biochemical recurrence-free survival (A–C): and loco-regional control (D–F)
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in Supplementary Fig.  3. As PSMA-TLU 97.8 showed 
the highest potential for risk stratification in surgical 
patients, this parameter was further analyzed. PSMA-
TLU > 97.8 does not seem to be associated with risk for 
biochemical recurrence in irradiated patients as irradi-
ated patients with higher values presented no case of bio-
chemical recurrence as shown in Fig. 3.

Discussion
Here, we report the most comprehensive analysis of 
quantitative PSMA PET parameters and patient out-
come for localized PCA treated with curative intent. To 
our best knowledge, this is the first evaluation of patients 
treated with primary radiotherapy, as two recent publica-
tions only evaluated surgically treated patients [20, 30]. 
While it was possible to validate a previously published 
cut-off for SUVmax in surgically treated patients [21, 
30], it was not possible to validate this cutoff in patients 
treated with primary radiotherapy.

Recent ex  vivo analyses for radiosensitivity seem to 
encourage the potential of PSMA-PET as a predictive 
biomarker for radiotherapy. Marinescu and colleagues 
used an assay with residual γH2AX foci after ex  vivo 
radiotherapy and reported a positive correlation between 
radiation-induced γH2AX foci, i.e. a surrogate of irradi-
ation-induced DNA double-strand breaks, and PSMA 
uptake, measured by SUVmax [31]. These analyses would 
suggest an association between radiosensitivity and 
higher uptake of PSMA.

Our results suggest that quantitative PET parameters 
have prognostic potential in terms of disease progression 
and outcome in high-risk patients with surgically treated 
PCA, which may allow better stratification of patients. 
This could mean that these patients should preferentially 

be treated by primary radiotherapy and ADT or, if sur-
gery has to be performed, these high-risk patients could 
for example receive neoadjuvant ADT before surgery 
with the aim to reduce the risk for local recurrence by 
downsizing. While it was possible to validate a recently 
published cut-off value for SUVmax [21], other quantita-
tive parameters have not been investigated in this setting 
before. Our preliminary analyses suggest that PSMA-
TV and PSMA-TLU might be even better quantitative 
parameters regarding risk stratification. The missing 
association of the quantitative parameters with primary 
irradiated patients could indicate a potential predic-
tive value that might be used for treatment guidance in 
adjunct to other key factors, i.e. side effects of the chosen 
therapeutic approach and individual patient preference.

Several recent studies investigated the prognostic value 
of quantitative PSMA-PET parameters. Most of these 
studies analyzed advanced stage disease. For example, 
PSMA uptake has been associated with prognosis and 
outcome in advanced metastatic disease. Calderoni and 
colleagues reported an association between SUVmax and 
treatment response in 160 metastatic castration-resistant 
PCA patients undergoing various systemic treatments 
[32]. Due to extensive PET imaging, most data is avail-
able for patients undergoing PSMA radioligand therapy. 
In a small cohort of 40 patients with advanced PCA and 
radioligand therapy, Seifert and colleagues reported that 
semiautomatically quantified pre-treatment tumor vol-
ume (PSMATV50) was significantly associated with OS 
and independent from other important prognostic fac-
tors like alkaline phosphatase (ALP) and PSA [33]. In 
another study with 38 patients who underwent [177Lu]Lu-
PSMA-617 radioligand therapy (RLT), the change in total 
tumor volume before and after RLT was significantly 

Fig. 3  Risk for biochemical recurrence according to primary treatment approach (surgery vs. no surgery, i.e., radiotherapy or ADT plus radiotherapy). 
Patients are stratified according to TLU 97.8 and treatment approach: Patients with TLU below 97.8 (A) and above 97.8 (B). Outcome of the whole 
cohort is shown on C 
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associated with PSA response and overall survival after a 
median follow-up of 17 months [19]. A recent retrospec-
tive multicenter analysis of 237 men treated with RLT 
established the tumor-to-salivary gland ratio as a prog-
nostic factor, as the authors were able to show an associa-
tion with PSA response and OS [34].

Given the available data in metastatic disease, deter-
mining quantitative imaging parameters as an indicator 
of disease progression is also of interest in less advanced 
tumor stages. So far, only few studies investigated 
patients with localized PCA. It is important to note that 
in these stages OS is usually not reported due to the short 
follow-up period and often particularly good prognosis in 
low- and intermediate-risk patients. Therefore, surrogate 
parameters are frequently used, for example, biochemi-
cal recurrence, measured by serum PSA. However, these 
surrogate markers are controversial since the association 
with important clinical outcome parameters like OS is 
only weak [35, 36]. This limitation also holds true for our 
study, as there were only few deaths during the follow-
up period. Additionally, it is not clear if these events were 
caused by tumor aggressiveness or due to comorbidities 
in an old patient population. Regarding BCR, its defini-
tion is subject to different criteria and depends on the 
type of local therapy: Prostatectomy or radiotherapy [25, 
26]. Differences in the definition of PSA relapse thus have 
an additional impact on comparability. Due to the known 
limitations of BCR [37, 38], we included local control and 
loco-regional control as additional, clinical more relevant 
endpoints. So far only data on the association of quanti-
tative PSMA PET parameters and BCR after surgery has 
been published.

Xuefeng et al. reported good efficacy in predicting bio-
chemical recurrence (BCR) using PET-CT before pros-
tatectomy. They found a significant association between 
SUVmax and BCR (p < 0.01) [39]. Another large retrospec-
tive cohort study with 848 men also supports the associa-
tion between quantitative PSMA parameters and patient 
outcome: Roberts and colleagues reported that PSMA 
intensity measured by SUVmax is a novel independent 
prognostic factor for biochemical recurrence-free sur-
vival (BRFS) after radical prostatectomy. PSMA inten-
sity was significantly associated with a shorter time to 
biochemical recurrence [30]. This corroborates previous 
reports by Wang and colleagues who found an associa-
tion of SUVmax and SUVmean with BCR in 186 surgically 
treated patients [40]. Interestingly, this is one of the few 
studies, that investigated other quantitative PET param-
eters like tumor volume and total lesion uptake. Contrary 
to our findings, these other parameters did not perform 
better than SUV, which might indicate an accidental find-
ing due to the small numbers of patients in our study. 
In another study, SUVmax of the primary tumor was 

associated with pre-and postoperative variables as it was 
highly associated with known conventional prognostic 
factors such as the International Society of Urological 
Pathology (ISUP) pathological score and lymph node sta-
tus [41].

In our study, we successfully confirmed previous evi-
dence on the prognostic value of quantitative PET param-
eters in surgically treated patients with high-risk PCA 
by applying a published cut-off for SUVmax [21, 30]. Our 
study has several strengths: it includes extensive imag-
ing evaluation of different quantitative PET parameters 
and is restricted to patients without evidence of metasta-
ses by all imaging techniques, including PSMA-PET. We 
think the latter is particularly important because other-
wise the prognostic accuracy of PET parameters might 
be heavily confounded by the better diagnostic accuracy 
to detect lymph nodes or distant metastases (both factors 
have a known strong detrimental effect on patient out-
come [20]). In addition, the same PSMA tracer and PET 
device were used in all patients, facilitating comparability 
of PET parameters between individual patients. Never-
theless, our data must be interpreted as preliminary and 
hypothesis-generating because our study also has sev-
eral important limitations. First, this was a retrospective 
evaluation with a population of a single center. Second, 
the quantitative values were collected retrospectively and 
without standardization (e.g., in terms of recording time), 
so they may be subject to measurement and reader vari-
ation but also reflect a real-world application environ-
ment. A major limitation is the high variability of injected 
dose per kg. We think this can partially be explained by 
the long follow-up of analyzed patients. One must bear in 
mind that these patients have been scanned immediately 
after the introduction of PSMA-PET. Therefore, stand-
ardized protocols were not available at that time for this 
specific tracer. As an additional limitation, the PET scan-
ner is therefore not the most recent one and has a lower 
resolution compared to the newest generation scanners. 
In modern PET scanners, voxel sizes are usually smaller 
than in the scanner that was used for the current analysis, 
owing to the improved intrinsic spatial resolution and/
or system sensitivity of these scanners. In small target 
lesions, a larger voxel size could result in an underestima-
tion of the SUVmax compared to a scanner or reconstruc-
tion with a smaller voxel size. This effect would have to be 
considered when attempting to harmonize SUV values, 
for example, through the use of adaptive Gaussian filters 
[42].

Especially the high variability in injected dose and 
scan duration directly affects the SUV quantification. 
Additionally, it is a well-known phenomenon that the 
comparability of SUVs across different PET scanners or 
reconstruction methods is limited. The scanner used for 
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the current analysis complies with the initial standard 
set by the EANM Research GmbH’s (EARL) initiative in 
2010. It has already been demonstrated that SUV values 
from newer generation scanners, which adhere to the 
updated EARL standard [43], cannot be directly com-
pared, and established prognostic SUV thresholds may 
not necessarily be transferrable [44]. Consequently, when 
transferring the currently used thresholds or quantitative 
(SUV) results to new PET scanners, correction methods 
or harmonization steps would have to be applied [42]. 
This is particularly true for small lesions, whose activ-
ity or SUV might be underestimated due to the limited 
reconstructed spatial resolution of the used scanner 
compared to newer scanners or advanced reconstruction 
methods.

However, it should be noted that even in this subopti-
mal setting we were able to confirm the previously pub-
lished prognostic value of SUV, underlining the validity 
of these results. Third, the follow-up time of patients is 
still relatively short and needs to be confirmed by longer 
follow-up. As mentioned earlier, this is particularly true 
for OS, which would require 10 years of follow-up even 
in high-risk patients. Another limitation regards the rela-
tively small number of patients, especially when analyz-
ing sub-groups. Due to the small sub-groups, we did not 
perform multivariate analyses, which is another limi-
tation of the current study. Due to the small number of 
patients, our results should be interpreted as hypothesis 
generating. Especially the association of quantitative PET 
parameters with outcome in surgically treated, but not 
in irradiated patients. While these findings are of great 
interest since they could indicate a predictive biomarker 
that could potentially be used for better treatment deci-
sions, these findings must be regarded as exploratory. 
It is an important limitation that the number of events 
in the group of irradiated patients is low, therefore the 
missing statistical association might only be due to this. 
In addition, our chosen approach to classify complete 
biochemical response after salvage radiotherapy as local 
recurrence might be debatable, as local control is usu-
ally defined based on follow-up imaging. Furthermore, 
clinical and pathological staging might differ in surgical 
patients, as previously reported [23]. We decided to com-
pare patients according to clinical staging, as this would 
be the information available for treatment decisions in a 
clinical setting.

Conclusion
Our exploratory analysis suggests that SUVmax, PSMA-
TV and PSMA-TLU are promising parameters for 
better patient stratification in curatively treated high 
and intermediate-risk PCA patients. Quantitative 

PSMA-PET parameters might also have a predictive 
value regarding the chosen therapeutic approach. After 
successful prospective validation of these findings, 
these parameters could aid physicians in treatment 
selection and shared decision making.
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