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Abstract

Background In this work, we compare input level, feature level and decision level data fusion techniques for
automatic detection of clinically significant prostate lesions (csPCa).

Methods Multiple deep learning CNN architectures were developed using the Unet as the baseline. The CNNs use
both multiparametric MRl images (T2W, ADC, and High b-value) and quantitative clinical data (prostate specific
antigen (PSA), PSA density (PSAD), prostate gland volume & gross tumor volume (GTV)), and only mp-MRI images
(n=118), as input. In addition, co-registered ground truth data from whole mount histopathology images (n=22)
were used as a test set for evaluation.

Results The CNNs achieved for early/intermediate / late level fusion a precision of 0.41/0.51/0.61, recall value of
0.18/0.22/0.25, an average precision of 0.13/0.19/0.27,and F scores of 0.55/0.67/ 0.76. Dice Sorensen Coefficient
(DSC) was used to evaluate the influence of combining mpMRI with parametric clinical data for the detection of
csPCa. We compared the DSC between the predictions of CNN's trained with mpMRI and parametric clinical and the
CNN's trained with only mpMRI images as input with the ground truth. We obtained a DSC of data 0.30/0.34/0.36
and 0.26/0.33/0.34 respectively. Additionally, we evaluated the influence of each mpMRI input channel for the task of
csPCa detection and obtained a DSC of 0.14 /0.25 / 0.28.

Conclusion The results show that the decision level fusion network performs better for the task of prostate lesion
detection. Combining mpMRI data with quantitative clinical data does not show significant differences between
these networks (p=0.26/0.62/0.85). The results show that CNNs trained with all mpMRI data outperform CNNs with
less input channels which is consistent with current clinical protocols where the same input is used for PI-RADS lesion
scoring.
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Trial registration The trial was registered retrospectively at the German Register for Clinical Studies (DRKS) under

proposal number Nr. 476/14 & 476/19.

Keywords Multiparametric MRI (mpMRI), Prostate specific Antigen (PSA), PSA density (PSAD), Gleason Score,
Convolutional neural network, Data fusion, Early Fusion, Intermediate Fusion, Late Fusion, Automated prostate lesion

detection, Histological validation

Introduction
In clinical practice, the detection and management
of clinically significant prostate cancer (csPCa) often
involves a combination of different diagnostic tests and
imaging protocols. For diagnosis, staging, and therapy
planning, clinicians typically rely on findings from a
digital rectal examination (DRE) [1], a prostate- specific
antigen (PSA) test and, additionally, the Prostate Imag-
ing Reporting and Data System (PI-RADS) score derived
from multiparametric MRI (mpMRI) [2]. To confirm the
diagnosis of csPCa patients are required to undergo tar-
geted and systematic biopsy. During this procedure, tis-
sue samples are harvested and analyzed histologically,
and a Gleason score is assigned to each sample, from
which the lesions can be classified as clinical signifi-
cant_(Gleason score 7 and above) for further treatment.
This parametric clinical data, i.e. PSA [3-6] and Gleason
score [7, 8], is combined with image-derived parametric
information, such as the prostate volume [8-11], lesion
volume, and PSA density [12-16] to retrieve clinically
relevant and reliable predictions. However, the multi-
modal data are not directly correlated among each other
[17, 18], due to the different data modalities, and various
acquisition techniques. Additionally the variability of the
data and the modelling techniques as well as data privacy
issues have made it challenging to develop medical multi-
modal data fusion models [19]. Hence, an analysis of the
available image fusion strategies applied to medical imag-
ing and parametric clinical data is urgently needed.
Recently, deep-learning-based multimodal data fusion
has gained significant interest in the medical commu-
nity [20], as the combination of diverse data from various
modalities can aid the decision process of a convolu-
tional neural network (CNN) [20-22]. A CNN is a type
of Al algorithm used to recognize patterns and features
in images, such as shapes, colors, edges and textures to
make decisions or predictions. It works by passing the
image through multiple layers of filters that help iden-
tify important details and combine them to understand
the overall image. Detailed information on how the CNN
process image data can be found in [23-25]. In deep
learning, multimodal data fusion refers to fusing data
from various imaging modalities, such as magnetic reso-
nance imaging (MRI), computed tomography (CT), posi-
tron emission tomography (PET), histology images and
non-imaging modalities, such as clinical data from elec-
tronic health records, to assist in the decision-making

process of CNNSs. In the literature, three data fusion tech-
niques have been proposed. (1) In early fusion or input
level fusion (EF) (Fig. 1B), the CNN learns a fused fea-
ture representation by combining various imaging data
and clinical data for decision making. The data from each
modality corresponds to one channel in the multi-chan-
nel input. (2) In the intermediate fusion or feature level
fusion (IF) (Fig. 1C) each channel is passed through mul-
tiple CNN layers for feature extraction. These features are
then fused and processed further as input to deeper layers
of the CNN for decision making. The connection among
the early layers enables the CNN to learn the unique fea-
ture representation of the corresponding modality, where
as the connections from intermediate layers enables the
CNN to capture complex relationships between the input
modalities, by fully exploiting the feature representation
of multimodal images for decision making. (3) In the late
fusion method or decision level fusion (LF) (Fig. 1D) the
data from each modality is used as input to train inde-
pendent CNNs. This allows the CNNs to exploit the
unique feature representation of the corresponding
modality. The outputs of the individual CNNs are then
fused and the final prediction is obtained via mean aggre-
gation or by majority voting [26, 27]. Suresh, Harini, et
al. [28] used the EF fusion technique to predict onset and
weaning of multiple invasive interventions, by integrate-
ing data from all available ICU sources (vitals, labs, notes,
demographics), Park, Chihyun and colleagues [29] used
EF method for prediction of Alzheimer’s disease based on
deep neural network by integrating gene expression and
DNA methylation dataset. Peng, Chen, et al. [30] used
the EF fusion technique to model features based on the
capsule network, to identify breast cancer-related genes.
Lee, Garam, et al. [31] used the IF approach to predicting
Alzheimer’s disease progression using multi-modal deep
learning approach. Huang, Zhi, et al. [32] for survival
prediction for breast cancer. Islam, Md Mohaiminul, et
al. [33] used the IF stratergy for classification of molecu-
lar subtypes of breast cancer. Poirion, Olivier B and coau-
thors [34] used IF for risk stratification of bladder cancer.
Huang and colleagues [35] researched the optimal multi-
modal fusion strategy for PCa detection using 2D axial
T2w imaging and apparent diffusion coefficient (ADC)
imaging as the inputs for their multi-modal fusion model
to identify a pipeline that works best for automated diag-
nosis of csPCa. Reda I, et al. [36] presented a noninvasive
CAD system using a meta classifier that integrates PSA
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Fig. 1 An overview of the mpMRI & parametric clinical data preprocessing pipeline. (A) UNet baseline architecture along with an overview of (B) the EF,

(€) IF and (D) LF architectures used in this work

screening results in addition to Diffusion weighted MRI
based features for prostate cancer diagnosis using the LF
technique. Hiremath A, et al [37] implemented a clinical
nomogram combining deep learning-based imaging pre-
dictions, PI-RADS score, and the clinical data PSA, pros-
tate volume and lesion volume, using multivariate logistic
regression to identify csPCa in bi-parametric MRI. They
showed the integrated nomogram could help for risk
stratification by identifying patients with very low risk,
low risk, and intermediate risk of csPCa for active sur-
veillance and very high-risk patients who might benefit
from adjuvant therapy using LF.

In this study, we compare three multimodal fusion
strategies for automatic clinically significant prostate

cancer (csPCa) lesion detection and segmentation. For
this, we use mpMRI images (T2W, ADC, high b-value)
and the corresponding parametric clinical data (PSA,
gross tumor volume, gross prostate volume, and PSA
density) as input to train EF, IF and LF networks as
shown in Fig. 1(B-D), using an architecture that is based
on a 3D-Unet [38]- Fig. 1(A). Specifically, we compare the
csPCa detection of a CNN trained with only mpMRI data
to a CNN trained with both mpMRI and non-imaging
data. Additionally, we compare the lesion segmentation
of the network to a commercial deep learning algorithm
with EF.
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Table 1 Overview of the median along with minimum and
maximum age, PSA, PSAD, Prostate gland volume and the
prostate lesion volume across the two patient cohorts
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Table 2 Overview of the number of patients with various
Gleason grades from the two patient cohorts
Gleason Grades 6 7a 7b 8 9

Median (Min-Max) Irradiation & Whole mount
Prostatectomy  Histology
(nirr+prost) (HM)

Age 74 (56-85) 64 (48-76)

PSA (ng/mL) 8.8 (2.1-66) 174 (6.07-218)

PSAD(mL or cc3) 0.2(0.1-2.7) 047 (0.15-1.67)

Prostate Volume (mL or cc3) 408 (10.8-167.7) 426 (29.2-130)

PCa Lesion Volume (mLorcc3) 1.8 (0.0-38.1) 11.9 (0.5-76)

Materials & methods

Clinical data

In this study, mpMRI data along with the correspond-
ing parametric clinical data from primary csPCa
patients with histologically confirmed cancer lesions
was used. The data consists of two groups, with (1,,,,,
= 22) and without (,,.,,,,, = 118) whole mount histol-
ogy data. In the group with whole mount histology data
available(n,,,,), patients initally underwent MRI and
during the subsequent therapy the prostate gland was
surgically removed (prostatectomy). All other patients
underwent radiation therapy.

All MRI studies were carried out between 2008 and
2019 on a clinical 1.5T (Avanto, Aera & Symphony, Sie-
mens, Erlangen, Germany) and 3T (Tim TRIO, Siemens,
Erlangen, Germany) MRI systems. The MRI protocol
consisted of pre-contrast T2-weighted turbo spin echo
(TSE) images in transverse, sagittal, and coronal orien-
tations, diffusion-weighted imaging (DWI) with an echo
planar imaging sequence in transverse orientation, and
dynamic contrast-enhanced (DCE) MRI images. All the
images were acquired with surface phased array (body
matrix) coils in combination with integrated spine array
coils. The DWI data were acquired with b-values of [0,
100, 400, 800] s/mm? or [0, 250 500, 800] s/mm? for 1.5T,
and [50, 400, 800] s/mm?® for 3T. From the diffusion-
weighted imaging data, a synthetic high b-value image
(b=1400 s/mm?) was calculated as recommended by the
PI-RADS lexicon [2, 39]. To account for the varying diffu-
sion weightings (b-values) across different field strengths,
we generated synthetic DWI images with b=1400 s/mm?,
with original b-values for the 1.5T system being [0, 100,
400, 800] s/mm? or [0, 250, 400, 800] s/mm?, and for the
3T system, [50, 400, 800] s/mm?] [40]. While no homog-
enization method was applied to the T2-weighted images
due to field strength-dependent tissue T1 and T2 val-
ues, we expect similar contrast in the T2-weighted TSE
images from both 1.5T and 3T systems, given the compa-
rable T2-values in a wide range of human tissues and the
use of repetition times exceeding 5500 ms to minimize
T1 contrast [41]. The parametric clinical data consisted
of initial PSA values, PSA density, gross prostate gland

Irradiation & Prostatectomy (n 16 35 38 20 5
Whole mount Histology (n, 2 6 7 4

irr+prost)

Qrost)

volume, gross lesion volume. Tables 1 and 2 provide an
overview of the parametric clinical data. In addition,
clinical scores were derived from the biopsy data such as
the Gleason grade, the TNM status, and Gleason grade
group [42]. The study was approved by the institutional
ethics review board (Proposal Nr.476/14 & 476/19) and
patients gave written informed consent.

Patient data was seperated into a training and a test
cohort. The training cohort included a large irradiation
and prostatectomy group (ny, + n,,, = 118), as training
the CNN requires a substantial dataset. Due to the lim-
ited number of patients, the test cohort consisted solely
of the prostatectomy group (n,. = 22). For the test
cohort, post-operative gleason score and tumor volume
information were available, along with the ground truth
contours from the whole organ histopathology slices,
which were co-registered with pre-operative MRI data.
The CNNs were trained on T2-weighted images and
apparent diffusion coefficient (ADC) maps together with
synthetic high b-value images (b=1400 s/mm?®). For all
Miriprose = 118 and the n,,,,,=22 in-house mpMRI data
sets, the entire gland (PG-Rad), and the tumor within the
prostate (PCa-Rad) were contoured by two experienced
radiation oncologists during radiation therapy treatment
planning. Images of the whole mount histology slices and
the ground truth counters from corresponding whole
mount histology slices were acquired as described in [40].
The AI-Rad Companion Prostate MR VA20A_HFO02 for
biopsy support (Siemens Healthcare AG [43-45]). It per-
forms automated segmentation and automated volume
estimation of the prostate and additionally calculates the
PSA density, if PSA value is known. The system was used
to generate for the csPCa (Rad-Al) contours.

CNN architecture

As the baseline architecture a patch-based 3D Unet [46]
with 3 encoder blocks and 3 decoder blocks (Fig. 1A) was
used. Figure 1(B-D) shows the three fusion networks used
in this study. For the EF network the input layer consisted
of all three mpMRI volumes and parametric clinical data.
The parametric clinical data was reshaped to match the
dimensions of the image volumes and concatenated with
the mpMRI volumes into a single 4D volume. Each chan-
nel in the 4D volume corresponds to mpMRI (channel 1
to 3) and parametric clinical data (channel 4 to 7). The
IF network consisted of 3 independent encoder heads
for each mpMRI volume as input. Each encoder head
had 3 encoder blocks, which extracted features from the
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corresponding mpMRI volumes independently. A shallow
multi-layer perceptron (MLP) with three fully connected
layers was used to extract features from parametric clini-
cal data. The features from the 3 encoder heads and the
MLP head were concatenated at the bottleneck block of
the UNet and processed further as input to the decoder
blocks in Fig. 1B. For the decision level fusion methods,
3 UNets were trained separately for each mpMRI volume
(see Fig. 1C), and an MLP with parametric clinical data
as input was trained individually. The final prediction
was obtained by mean aggregation of the predicted indi-
vidual probability scores of these networks as depicted
in Fig. 1D. All CNNs were implemented in MATLAB®
(2022b, Math Works, Inc., Natick/MA).

Data preprocessing

To reduce the computation time, the mpMRI data were
cropped to a smaller FOV around the prostate. A chance
of 70% for a random 2D-rotation (0-360°) in the axial
plane was added for data augmentation. Due to the large
sizes of the image volumes which would result in system
memory issues, calculations were performed on patches
of size 64x64x16 that were randomly chosen with
respect to the center location of the original image. Based

Page 5 of 10

on the type of fusion network these data were reshaped
to match the image dimensions and concatenated along
the 4th dimension.

Training & testing

All CNNs were trained for 50 epochs on an NVIDIA
RTX2080 GPU with a learning rate of 1le-5, a batch size
of 4, patch size of 64x64x16, 50 patches per image,
and using the Adam optimizer (Bayesian optimization).
The mpMRI data from the prostatectomy group (1es=
22) were used during the testing phase, as the histologic
information could be used as a ground truth.

Performance evaluation

The performance of each network over different epochs
was evaluated using precision recall, average precision
(AP), F-Score, and Dice Similarity coefficient (DSC). A
t-test was performed to identify differences in the pre-
dicted scores for these networks.

Results

Figure 2 illustrates the overlap between the detected
lesions and the ground truth in the test set, using input
level, feature level, and decision level fusion strategies.

Comparision of DSC for multimodal data fusion methods

0.7 -

0.6 -

05

DSC

02

0.1
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RadAl

-

1

RadAl

Fig. 2 Comparision of DSC for the prediction of csPCa lesion on the test cohort (n=22) for input level, feature level, and decision level fusion networks
using mpMRI & parametric clinical data in purple, mpMRI data only in blue and with RADAI in red with the ground truth
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The CNNs achieved a precision of 0.41, 0.51, 0.61 for
input level, feature level, and decision level fusion,
respectively, while the recall values were 0.18, 0.22, 0.25.
Additionally, the AP was 0.13, 0.19, 0.27, and the F scores
were 0.55, 0.67, 0.76, respectively for the fusion of image
and clinical data. For networks trained only with image
data, the CNNs achieved a precision of 0.36, 0.45, 0.56
for input level, feature level, and decision level fusion,
respectively, while the recall values were 0.13, 0.21, 0.23.
Additionally, the AP was 0.12, 0.16, 0.23, and the F scores
were 0.19, 0.26, 0.33, respectively. The network’s perfor-
mance was further summarized using an area under the
precision-recall curve (AUC-PR) in Fig. 3. A two-sided
student’s t-test did not reveal any significant differ-
ences between the predicted scores of any two networks
(p=0.26, 0.62, and 0.85). In Fig. 4, the ground truth and
the predicted lesion maps are displayed overlaid along
with the ground truth on the corresponding input image
data for three test patients from the test cohort. We show
test cases with multiple lesions as well as single lesions.
In patients 1 and 3 all networks detected multiple and
single lesions, while in patient 2 the IF network and the
RAD-AI detected a suspected lesion additionally in con-
trast to the ground truth. Table 3 provides an overview
of the comparison of mean DSC obtained by compar-
ing the ground truth with predicted segmentation maps
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for networks trained with T2w, ADC, and High b-value
images only, only with mpMRI data, mpMRI and para-
metric clinical data and RadAl

Discussion

In this study, we investigated multiple deep learning data
fusion methods for the automatic detection and segmen-
tation of csPCa lesions using a patch-based 3D UNet. The
late fusion network performed better with a mean DSC of
0.36£0.24 when compared to the input and feature level
fusion networks 0.30£0.23 & 0.34+0.26 respectively.
A statistical t-test showed no significant differences in
the prediction (p=0.51, 0.10, and 0.82). The EF network
offers advantages in cost effectiveness and memory effi-
ciency; however, this approach does not exploit the rela-
tionships between the different modalities. Rather, as it
learns a joint feature representation, it simply fuses the
data at the input level. The IF networks instead capture
the complex relationships between the input modalities,
by learning both individual and joint feature represen-
tations. However, both the EF and IF networks are not
flexible to train in case of missing data. Moreover, the LF
network only learns an independent feature representa-
tion, and is flexible to train such network when one or
more input data modality is missing, it fails to learn the
joint feature representation, since each network is trained

Precision-Recall Curve for various Data Fusion methods

EF mpMRI & PD
IF mpMRI & PD
LF mpMRI & PD
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Fig. 3 Precision-Recall Curve for various data fusion methods EF (orange), IF (blue), and LF (green) for networks trained with mpMRI and parametric clini-

cal data(solid lines) and mpMRI data only(dotted lines)
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High-b-val.

Fig. 4 Detected lesions for three patients from the test set by EF fusion network (orange), IF (blue), and & LF (green), ground truth (yellow) and RAD-AI

(cyan)

Table 3 Mean DSC between the ground truth (csPCa-Histo)
segmentation and the predicted segmentation (csPCa-CNN and
csPCa-Al-Rad) for various networks

Network Input Data Fusion Mean DSC
UNet T2W only 0.14+14
ADC only 0.25+20

High b-Value only 0.28+21

mMpMRI & parametric clinical data  EF 0.30+0.23

IF 0.34+0.26

LF 0.36+0.24

mpMRI only EF 0.26+0.22

IF 0.33+0.23

LF 0.34+0.26

RADAI mpMRI only EF 031+0.21

with a particular input data. Though the IF and LF have
a better performance; their design leads to an increased
number of network parameters, which in turn increase
memory consumption and training time, making it com-
putationally expensive to train such networks [17, 47, 48].

In this work we evaluated the influence of combining
parametric clinical data with mpMRI images, by com-
paring the predictions of the networks trained solely on

mpMRI data with networks trained on both mpMRI and
parametric clinical. By performing a t-test (p-value=0.47,
0.88, 0.28), we found no significant difference in the over-
all prediction for csPCa detection and segmentation.
Multimodal imaging alone could be adequate for training
CNNs for csPCa detection and segmentation. However,
the inclusion of clinical data could be beneficial for csPCa
lesion risk classification.

To determine the importance of each mpMRI sequence
in the tasks of lesion detection, we relied on predic-
tions from the independently trained CNNs using T2W,
ADC and High-b Value images as inputs (Table 3). For
the prostate gland detection, the UNet trained with only
T2W images performed the best, in comparison to the
networks trained using ADC images or High b-Value
images only. This is likely a result of the well-defined
prostate anatomy in the T2W sequence thus validating
the use of T2W images in for prostate gland & prostate
zone segmentation [49-52]. For prostate lesion detection
and segmentation, the networks trained with only the
ADC and High b-Value images showed an 18% improve-
ment in detection csPCa lesions on the test set, in com-
parison with the UNet trained with only T2W images.
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We also showed that the network trained with only T2W
images performed better in detecting csPCa lesions with
PI-RADS score greater than 4 and 5, a DSC of 0.50, 0.49
& 0.32 and underperformed in detecting csPCa lesions
with PI-RADS score 1 to 3, a DSC of 0.17, 0.09, 0.13,0.0
respectively. We compared the AI-Rad generated seg-
mentation mask with PCa-Histo and PCa-CNN (Early-
Fusion) Table 3, indicate that our network performed
similarly to RAD-AI [43-45] in segmentation of csPCa
lesions.

Conclusion

In this study, mpMRI and the corresponding clinical data
were combined to compare the various data fusion meth-
ods for CNN-based csPCa detection, segmentation and
risk prediction. We evaluated the significance of includ-
ing clinical data and found no significant improvement in
the predictions of the CNNs for Detection and segmen-
tation. The importance of each mpMRI sequence was
analyzed and the results illustrated that all the sequences
play a critical role in detection and segmentation of
csPCa. Combining parametric clinical data with mpMRI
data improves risk prediction. Finally, we compared the
performance of our network with RAD-AI [43, 45] and
found that our network performs comparably to the
DI2IN method [44].

Abbreviations

csPCa Clinically significant Prostate carcinoma
DRE Digital Rectal Examination

PSA Prostate Specific Antigen

PI-RADS  Prostate Imaging Reporting and Data System
MRI Magnetic Resonance Imaging

mpMRI multiparametric MRI

ADC Apparent Diffusion Coefficient maps
PSAD PSA density

GTV Gross Tumor Yolume

cT Computed Tomography

PET Positron Emission Tomography

CNN Convolutional Neural Network

MLP Multi-Layer perceptron

EF Early Fusion

IF Intermediate Fusion

LF Late Fusion

AP Average Precision

DSC Dice Similarity Coefficient
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