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Abstract
Background In this work, we compare input level, feature level and decision level data fusion techniques for 
automatic detection of clinically significant prostate lesions (csPCa).

Methods Multiple deep learning CNN architectures were developed using the Unet as the baseline. The CNNs use 
both multiparametric MRI images (T2W, ADC, and High b-value) and quantitative clinical data (prostate specific 
antigen (PSA), PSA density (PSAD), prostate gland volume & gross tumor volume (GTV)), and only mp-MRI images 
(n = 118), as input. In addition, co-registered ground truth data from whole mount histopathology images (n = 22) 
were used as a test set for evaluation.

Results The CNNs achieved for early/intermediate / late level fusion a precision of 0.41/0.51/0.61, recall value of 
0.18/0.22/0.25, an average precision of 0.13 / 0.19 / 0.27, and F scores of 0.55/0.67/ 0.76. Dice Sorensen Coefficient 
(DSC) was used to evaluate the influence of combining mpMRI with parametric clinical data for the detection of 
csPCa. We compared the DSC between the predictions of CNN’s trained with mpMRI and parametric clinical and the 
CNN’s trained with only mpMRI images as input with the ground truth. We obtained a DSC of data 0.30/0.34/0.36 
and 0.26/0.33/0.34 respectively. Additionally, we evaluated the influence of each mpMRI input channel for the task of 
csPCa detection and obtained a DSC of 0.14 / 0.25 / 0.28.

Conclusion The results show that the decision level fusion network performs better for the task of prostate lesion 
detection. Combining mpMRI data with quantitative clinical data does not show significant differences between 
these networks (p = 0.26/0.62/0.85). The results show that CNNs trained with all mpMRI data outperform CNNs with 
less input channels which is consistent with current clinical protocols where the same input is used for PI-RADS lesion 
scoring.
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Introduction
In clinical practice, the detection and management 
of clinically significant prostate cancer (csPCa) often 
involves a combination of different diagnostic tests and 
imaging protocols. For diagnosis, staging, and therapy 
planning, clinicians typically rely on findings from a 
digital rectal examination (DRE) [1], a prostate- specific 
antigen (PSA) test and, additionally, the Prostate Imag-
ing Reporting and Data System (PI-RADS) score derived 
from multiparametric MRI (mpMRI) [2]. To confirm the 
diagnosis of csPCa patients are required to undergo tar-
geted and systematic biopsy. During this procedure, tis-
sue samples are harvested and analyzed histologically, 
and a Gleason score is assigned to each sample, from 
which the lesions can be classified as clinical signifi-
cant_(Gleason score 7 and above) for further treatment. 
This parametric clinical data, i.e. PSA [3–6] and Gleason 
score [7, 8], is combined with image-derived parametric 
information, such as the prostate volume [8–11], lesion 
volume, and PSA density [12–16] to retrieve clinically 
relevant and reliable predictions. However, the multi-
modal data are not directly correlated among each other 
[17, 18], due to the different data modalities, and various 
acquisition techniques. Additionally the variability of the 
data and the modelling techniques as well as data privacy 
issues have made it challenging to develop medical multi-
modal data fusion models [19]. Hence, an analysis of the 
available image fusion strategies applied to medical imag-
ing and parametric clinical data is urgently needed.

Recently, deep-learning-based multimodal data fusion 
has gained significant interest in the medical commu-
nity [20], as the combination of diverse data from various 
modalities can aid the decision process of a convolu-
tional neural network (CNN) [20–22]. A CNN is a type 
of AI algorithm used to recognize patterns and features 
in images, such as shapes, colors, edges and textures to 
make decisions or predictions. It works by passing the 
image through multiple layers of filters that help iden-
tify important details and combine them to understand 
the overall image. Detailed information on how the CNN 
process image data can be found in [23–25]. In deep 
learning, multimodal data fusion refers to fusing data 
from various imaging modalities, such as magnetic reso-
nance imaging (MRI), computed tomography (CT), posi-
tron emission tomography (PET), histology images and 
non-imaging modalities, such as clinical data from elec-
tronic health records, to assist in the decision-making 

process of CNNs. In the literature, three data fusion tech-
niques have been proposed. (1)  In early fusion or input 
level fusion (EF) (Fig.  1B), the CNN learns a fused fea-
ture representation by combining various imaging data 
and clinical data for decision making. The data from each 
modality corresponds to one channel in the multi-chan-
nel input. (2)  In the intermediate fusion or feature level 
fusion (IF) (Fig. 1C) each channel is passed through mul-
tiple CNN layers for feature extraction. These features are 
then fused and processed further as input to deeper layers 
of the CNN for decision making. The connection among 
the early layers enables the CNN to learn the unique fea-
ture representation of the corresponding modality, where 
as the connections from intermediate layers enables the 
CNN to capture complex relationships between the input 
modalities, by fully exploiting the feature representation 
of multimodal images for decision making. (3) In the late 
fusion method or decision level fusion (LF) (Fig. 1D) the 
data from each modality is used as input to train inde-
pendent CNNs. This allows the CNNs to exploit the 
unique feature representation of the corresponding 
modality. The outputs of the individual CNNs are then 
fused and the final prediction is obtained via mean aggre-
gation or by majority voting [26, 27]. Suresh, Harini, et 
al. [28] used the EF fusion technique to predict onset and 
weaning of multiple invasive interventions, by integrate-
ing data from all available ICU sources (vitals, labs, notes, 
demographics), Park, Chihyun and colleagues [29] used 
EF method for prediction of Alzheimer’s disease based on 
deep neural network by integrating gene expression and 
DNA methylation dataset. Peng, Chen, et al. [30] used 
the EF fusion technique to model features based on the 
capsule network, to identify breast cancer-related genes. 
Lee, Garam, et al. [31] used the IF approach to predicting 
Alzheimer’s disease progression using multi-modal deep 
learning approach. Huang, Zhi, et al. [32] for survival 
prediction for breast cancer. Islam, Md Mohaiminul, et 
al. [33] used the IF stratergy for classification of molecu-
lar subtypes of breast cancer. Poirion, Olivier B and coau-
thors [34] used IF for risk stratification of bladder cancer. 
Huang and colleagues [35] researched the optimal multi-
modal fusion strategy for PCa detection using 2D axial 
T2w imaging and apparent diffusion coefficient (ADC) 
imaging as the inputs for their multi-modal fusion model 
to identify a pipeline that works best for automated diag-
nosis of csPCa. Reda I, et al. [36] presented a noninvasive 
CAD system using a meta classifier that integrates PSA 

Trial registration The trial was registered retrospectively at the German Register for Clinical Studies (DRKS) under 
proposal number Nr. 476/14 & 476/19.
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screening results in addition to Diffusion weighted MRI 
based features for prostate cancer diagnosis using the LF 
technique. Hiremath A, et al [37] implemented a clinical 
nomogram combining deep learning-based imaging pre-
dictions, PI-RADS score, and the clinical data PSA, pros-
tate volume and lesion volume, using multivariate logistic 
regression to identify csPCa in bi-parametric MRI. They 
showed the integrated nomogram could help for risk 
stratification by identifying patients with very low risk, 
low risk, and intermediate risk of csPCa for active sur-
veillance and very high-risk patients who might benefit 
from adjuvant therapy using LF.

In this study, we compare three multimodal fusion 
strategies for automatic clinically significant prostate 

cancer (csPCa) lesion detection and segmentation. For 
this, we use mpMRI images (T2W, ADC, high b-value) 
and the corresponding parametric clinical data (PSA, 
gross tumor volume, gross prostate volume, and PSA 
density) as input to train EF, IF and LF networks as 
shown in Fig. 1(B-D), using an architecture that is based 
on a 3D-Unet [38]- Fig. 1(A). Specifically, we compare the 
csPCa detection of a CNN trained with only mpMRI data 
to a CNN trained with both mpMRI and non-imaging 
data. Additionally, we compare the lesion segmentation 
of the network to a commercial deep learning algorithm 
with EF.

Fig. 1 An overview of the mpMRI & parametric clinical data preprocessing pipeline. (A) UNet baseline architecture along with an overview of (B) the EF, 
(C) IF and (D) LF architectures used in this work
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Materials & methods
Clinical data
In this study, mpMRI data along with the correspond-
ing parametric clinical data from primary csPCa 
patients with histologically confirmed cancer lesions 
was used. The data consists of two groups, with (nprost 
= 22) and without (nirr+prost = 118) whole mount histol-
ogy data. In the group with whole mount histology data 
available(nprost), patients initally underwent MRI and 
during the subsequent therapy the prostate gland was 
surgically removed (prostatectomy). All other patients 
underwent radiation therapy.

All MRI studies were carried out between 2008 and 
2019 on a clinical 1.5T (Avanto, Aera & Symphony, Sie-
mens, Erlangen, Germany) and 3T (Tim TRIO, Siemens, 
Erlangen, Germany) MRI systems. The MRI protocol 
consisted of pre-contrast T2-weighted turbo spin echo 
(TSE) images in transverse, sagittal, and coronal orien-
tations, diffusion-weighted imaging (DWI) with an echo 
planar imaging sequence in transverse orientation, and 
dynamic contrast-enhanced (DCE) MRI images. All the 
images were acquired with surface phased array (body 
matrix) coils in combination with integrated spine array 
coils. The DWI data were acquired with b-values of [0, 
100, 400, 800] s/mm2 or [0, 250 500, 800] s/mm2 for 1.5T, 
and [50, 400, 800] s/mm² for 3T. From the diffusion-
weighted imaging data, a synthetic high b-value image 
(b = 1400 s/mm2) was calculated as recommended by the 
PI-RADS lexicon [2, 39]. To account for the varying diffu-
sion weightings (b-values) across different field strengths, 
we generated synthetic DWI images with b = 1400 s/mm², 
with original b-values for the 1.5T system being [0, 100, 
400, 800] s/mm² or [0, 250, 400, 800] s/mm², and for the 
3T system, [50, 400, 800] s/mm²] [40]. While no homog-
enization method was applied to the T2-weighted images 
due to field strength-dependent tissue T1 and T2 val-
ues, we expect similar contrast in the T2-weighted TSE 
images from both 1.5T and 3T systems, given the compa-
rable T2-values in a wide range of human tissues and the 
use of repetition times exceeding 5500 ms to minimize 
T1 contrast [41]. The parametric clinical data consisted 
of initial PSA values, PSA density, gross prostate gland 

volume, gross lesion volume. Tables  1 and 2 provide an 
overview of the parametric clinical data. In addition, 
clinical scores were derived from the biopsy data such as 
the Gleason grade, the TNM status, and Gleason grade 
group [42]. The study was approved by the institutional 
ethics review board (Proposal Nr.476/14 & 476/19) and 
patients gave written informed consent.

Patient data was seperated into a training and a test 
cohort. The training cohort included a large irradiation 
and prostatectomy group (nirr + nprost = 118), as training 
the CNN requires a substantial dataset. Due to the lim-
ited number of patients, the test cohort consisted solely 
of the prostatectomy group (nprost = 22). For the test 
cohort, post-operative gleason score and tumor volume 
information were available, along with the ground truth 
contours from the whole organ histopathology slices, 
which were co-registered with pre-operative MRI data. 
The CNNs were trained on T2-weighted images and 
apparent diffusion coefficient (ADC) maps together with 
synthetic high b-value images (b = 1400  s/mm²). For all 
nirr+prost = 118 and the nprost=22 in-house mpMRI data 
sets, the entire gland (PG-Rad), and the tumor within the 
prostate (PCa-Rad) were contoured by two experienced 
radiation oncologists during radiation therapy treatment 
planning. Images of the whole mount histology slices and 
the ground truth counters from corresponding whole 
mount histology slices were acquired as described in [40]. 
The AI-Rad Companion Prostate MR VA20A_HF02 for 
biopsy support (Siemens Healthcare AG [43–45]). It per-
forms automated segmentation and automated volume 
estimation of the prostate and additionally calculates the 
PSA density, if PSA value is known. The system was used 
to generate for the csPCa (Rad-AI) contours.

CNN architecture
As the baseline architecture a patch-based 3D Unet [46] 
with 3 encoder blocks and 3 decoder blocks (Fig. 1A) was 
used. Figure 1(B-D) shows the three fusion networks used 
in this study. For the EF network the input layer consisted 
of all three mpMRI volumes and parametric clinical data. 
The parametric clinical data was reshaped to match the 
dimensions of the image volumes and concatenated with 
the mpMRI volumes into a single 4D volume. Each chan-
nel in the 4D volume corresponds to mpMRI (channel 1 
to 3) and parametric clinical data (channel 4 to 7). The 
IF network consisted of 3 independent encoder heads 
for each mpMRI volume as input. Each encoder head 
had 3 encoder blocks, which extracted features from the 

Table 1 Overview of the median along with minimum and 
maximum age, PSA, PSAD, Prostate gland volume and the 
prostate lesion volume across the two patient cohorts
Median (Min-Max) Irradiation & 

Prostatectomy
(nirr+prost)

Whole mount 
Histology
(nprost)

Age 74 (56–85) 64 (48–76)
PSA (ng/mL) 8.8 (2.1–66) 17.4 (6.07–218)
PSAD(mL or cc3) 0.2 (0.1–2.7) 0.47 (0.15–1.67)
Prostate Volume (mL or cc3) 40.8 (10.8–167.7) 42.6 (29.2–130)
PCa Lesion Volume (mL or cc3) 1.8 (0.0–38.1) 11.9 (0.5–76)

Table 2 Overview of the number of patients with various 
Gleason grades from the two patient cohorts
Gleason Grades 6 7a 7b 8 9
Irradiation & Prostatectomy (nirr+prost) 16 35 38 20 5
Whole mount Histology (nprost) 2 6 7 4 3
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corresponding mpMRI volumes independently. A shallow 
multi-layer perceptron (MLP) with three fully connected 
layers was used to extract features from parametric clini-
cal data. The features from the 3 encoder heads and the 
MLP head were concatenated at the bottleneck block of 
the UNet and processed further as input to the decoder 
blocks in Fig. 1B. For the decision level fusion methods, 
3 UNets were trained separately for each mpMRI volume 
(see Fig. 1C), and an MLP with parametric clinical data 
as input was trained individually. The final prediction 
was obtained by mean aggregation of the predicted indi-
vidual probability scores of these networks as depicted 
in Fig.  1D. All CNNs were implemented in MATLAB® 
(2022b, Math Works, Inc., Natick/MA).

Data preprocessing
To reduce the computation time, the mpMRI data were 
cropped to a smaller FOV around the prostate. A chance 
of 70% for a random 2D-rotation (0-360°) in the axial 
plane was added for data augmentation. Due to the large 
sizes of the image volumes which would result in system 
memory issues, calculations were performed on patches 
of size 64 × 64 × 16 that were randomly chosen with 
respect to the center location of the original image. Based 

on the type of fusion network these data were reshaped 
to match the image dimensions and concatenated along 
the 4th dimension.

Training & testing
All CNNs were trained for 50 epochs on an NVIDIA 
RTX2080 GPU with a learning rate of 1e-5, a batch size 
of 4, patch size of 64 × 64 × 16, 50 patches per image, 
and using the Adam optimizer (Bayesian optimization). 
The mpMRI data from the prostatectomy group (ntest = 
22) were used during the testing phase, as the histologic 
information could be used as a ground truth.

Performance evaluation
The performance of each network over different epochs 
was evaluated using precision recall, average precision 
(AP), F-Score, and Dice Similarity coefficient (DSC). A 
t-test was performed to identify differences in the pre-
dicted scores for these networks.

Results
Figure  2 illustrates the overlap between the detected 
lesions and the ground truth in the test set, using input 
level, feature level, and decision level fusion strategies. 

Fig. 2 Comparision of DSC for the prediction of csPCa lesion on the test cohort (n = 22) for input level, feature level, and decision level fusion networks 
using mpMRI & parametric clinical data in purple, mpMRI data only in blue and with RADAI in red with the ground truth
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The CNNs achieved a precision of 0.41, 0.51, 0.61 for 
input level, feature level, and decision level fusion, 
respectively, while the recall values were 0.18, 0.22, 0.25. 
Additionally, the AP was 0.13, 0.19, 0.27, and the F scores 
were 0.55, 0.67, 0.76, respectively for the fusion of image 
and clinical data. For networks trained only with image 
data, the CNNs achieved a precision of 0.36, 0.45, 0.56 
for input level, feature level, and decision level fusion, 
respectively, while the recall values were 0.13, 0.21, 0.23. 
Additionally, the AP was 0.12, 0.16, 0.23, and the F scores 
were 0.19, 0.26, 0.33, respectively. The network’s perfor-
mance was further summarized using an area under the 
precision-recall curve (AUC-PR) in Fig.  3. A two-sided 
student’s t-test did not reveal any significant differ-
ences between the predicted scores of any two networks 
(p = 0.26, 0.62, and 0.85). In Fig. 4, the ground truth and 
the predicted lesion maps are displayed overlaid along 
with the ground truth on the corresponding input image 
data for three test patients from the test cohort. We show 
test cases with multiple lesions as well as single lesions. 
In patients 1 and 3 all networks detected multiple and 
single lesions, while in patient 2 the IF network and the 
RAD-AI detected a suspected lesion additionally in con-
trast to the ground truth. Table  3 provides an overview 
of the comparison of mean DSC obtained by compar-
ing the ground truth with predicted segmentation maps 

for networks trained with T2w, ADC, and High b-value 
images only, only with mpMRI data, mpMRI and para-
metric clinical data and RadAI.

Discussion
In this study, we investigated multiple deep learning data 
fusion methods for the automatic detection and segmen-
tation of csPCa lesions using a patch-based 3D UNet. The 
late fusion network performed better with a mean DSC of 
0.36 ± 0.24 when compared to the input and feature level 
fusion networks 0.30 ± 0.23 & 0.34 ± 0.26 respectively. 
A statistical t-test showed no significant differences in 
the prediction (p = 0.51, 0.10, and 0.82). The EF network 
offers advantages in cost effectiveness and memory effi-
ciency; however, this approach does not exploit the rela-
tionships between the different modalities. Rather, as it 
learns a joint feature representation, it simply fuses the 
data at the input level. The IF networks instead capture 
the complex relationships between the input modalities, 
by learning both individual and joint feature represen-
tations. However, both the EF and IF networks are not 
flexible to train in case of missing data. Moreover, the LF 
network only learns an independent feature representa-
tion, and is flexible to train such network when one or 
more input data modality is missing, it fails to learn the 
joint feature representation, since each network is trained 

Fig. 3 Precision-Recall Curve for various data fusion methods EF (orange), IF (blue), and LF (green) for networks trained with mpMRI and parametric clini-
cal data(solid lines) and mpMRI data only(dotted lines)
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with a particular input data. Though the IF and LF have 
a better performance; their design leads to an increased 
number of network parameters, which in turn increase 
memory consumption and training time, making it com-
putationally expensive to train such networks [17, 47, 48].

In this work we evaluated the influence of combining 
parametric clinical data with mpMRI images, by com-
paring the predictions of the networks trained solely on 

mpMRI data with networks trained on both mpMRI and 
parametric clinical. By performing a t-test (p-value = 0.47, 
0.88, 0.28), we found no significant difference in the over-
all prediction for csPCa detection and segmentation. 
Multimodal imaging alone could be adequate for training 
CNNs for csPCa detection and segmentation. However, 
the inclusion of clinical data could be beneficial for csPCa 
lesion risk classification.

To determine the importance of each mpMRI sequence 
in the tasks of lesion detection, we relied on predic-
tions from the independently trained CNNs using T2W, 
ADC and High-b Value images as inputs (Table  3). For 
the prostate gland detection, the UNet trained with only 
T2W images performed the best, in comparison to the 
networks trained using ADC images or High b-Value 
images only. This is likely a result of the well-defined 
prostate anatomy in the T2W sequence thus validating 
the use of T2W images in for prostate gland & prostate 
zone segmentation [49–52]. For prostate lesion detection 
and segmentation, the networks trained with only the 
ADC and High b-Value images showed an 18% improve-
ment in detection csPCa lesions on the test set, in com-
parison with the UNet trained with only T2W images. 

Table 3 Mean DSC between the ground truth (csPCa-Histo) 
segmentation and the predicted segmentation (csPCa-CNN and 
csPCa-AI-Rad) for various networks
Network Input Data Fusion Mean DSC
UNet T2W only 0.14 ± 14

ADC only 0.25 ± 20
High b-Value only 0.28 ± 21
mpMRI & parametric clinical data EF 0.30 ± 0.23

IF 0.34 ± 0.26
LF 0.36 ± 0.24

mpMRI only EF 0.26 ± 0.22
IF 0.33 ± 0.23
LF 0.34 ± 0.26

RADAI mpMRI only EF 0.31 ± 0.21

Fig. 4 Detected lesions for three patients from the test set by EF fusion network (orange), IF (blue), and & LF (green), ground truth (yellow) and RAD-AI 
(cyan)
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We also showed that the network trained with only T2W 
images performed better in detecting csPCa lesions with 
PI-RADS score greater than 4 and 5, a DSC of 0.50, 0.49 
& 0.32 and underperformed in detecting csPCa lesions 
with PI-RADS score 1 to 3, a DSC of 0.17, 0.09, 0.13,0.0 
respectively. We compared the AI-Rad generated seg-
mentation mask with PCa-Histo and PCa-CNN (Early-
Fusion) Table  3, indicate that our network performed 
similarly to RAD-AI [43–45] in segmentation of csPCa 
lesions.

Conclusion
In this study, mpMRI and the corresponding clinical data 
were combined to compare the various data fusion meth-
ods for CNN-based csPCa detection, segmentation and 
risk prediction. We evaluated the significance of includ-
ing clinical data and found no significant improvement in 
the predictions of the CNNs for Detection and segmen-
tation. The importance of each mpMRI sequence was 
analyzed and the results illustrated that all the sequences 
play a critical role in detection and segmentation of 
csPCa. Combining parametric clinical data with mpMRI 
data improves risk prediction. Finally, we compared the 
performance of our network with RAD-AI [43, 45] and 
found that our network performs comparably to the 
DI2IN method [44].
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