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Abstract
Purpose  This study aims to develop an ensemble machine learning-based (EML-based) risk prediction model for 
radiation dermatitis (RD) in patients with head and neck cancer undergoing proton radiotherapy, with the goal of 
achieving superior predictive performance compared to traditional models.

Materials and methods  Data from 57 head and neck cancer patients treated with intensity-modulated proton 
therapy at Kaohsiung Chang Gung Memorial Hospital were analyzed. The study incorporated 11 clinical and 9 
dosimetric parameters. Pearson’s correlation was used to eliminate highly correlated variables, followed by feature 
selection via LASSO to focus on potential RD predictors. Model training involved traditional logistic regression (LR) and 
advanced ensemble methods such as Random Forest and XGBoost, which were optimized through hyperparameter 
tuning.

Results  Feature selection identified six key predictors, including smoking history and specific dosimetric parameters. 
Ensemble machine learning models, particularly XGBoost, demonstrated superior performance, achieving the 
highest AUC of 0.890. Feature importance was assessed using SHAP (SHapley Additive exPlanations) values, which 
underscored the relevance of various clinical and dosimetric factors in predicting RD.

Conclusion  The study confirms that EML methods, especially XGBoost with its boosting algorithm, provide 
superior predictive accuracy, enhanced feature selection, and improved data handling compared to traditional 
LR. While LR offers greater interpretability, the precision and broader applicability of EML make it more suitable for 
complex medical prediction tasks, such as predicting radiation dermatitis. Given these advantages, EML is highly 
recommended for further research and application in clinical settings.

Keywords  Radiation dermatitis, Proton radiotherapy, Head and neck cancer, Ensemble machine learning, Predictive 
modeling, Feature selection
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Introduction
Radiation therapy is a primary treatment for head and 
neck cancers, but it frequently leads to radiation derma-
titis (RD), a side effect that ranges from mild erythema to 
severe ulceration, significantly affecting patients’ quality 
of life and treatment outcomes [1]. Given its high preva-
lence and impact, RD is the focal endpoint of this study. 
Understanding and predicting this common and disrup-
tive side effect is crucial for enhancing patient manage-
ment and refining treatment protocols.

Analyzing prognostic factors for RD through data 
analytics and modeling is essential [2, 3], particularly in 
the context of proton radiotherapy. Traditional Lyman-
Kutcher-Burman (LKB) models, which assess dose-
related complication risks, are limited as they consider 
only single-dose thresholds and neglect potential clinical 
factors [4]. Conversely, machine learning (ML) provides 
a robust, rapid, and flexible alternative for individualized 
risk assessment by integrating a broader spectrum of fac-
tors affecting side effects.

In previous work [5], we used Logistic Regression (LR) 
and Least Absolute Shrinkage and Selection Opera-
tor (LASSO) techniques to develop a predictive model 
for xerostomia incidence in intensity-modulated proton 
therapy, incorporating both dosimetric and clinical fac-
tors. However, the simplicity of LR limits its effective-
ness in complex feature spaces [6], necessitating external 
methods like LASSO for dimensionality reduction. Addi-
tionally, LR’s linear nature restricts its ability to capture 
non-linear interactions. Thus, ML stands out as a prom-
ising upgrade over the traditional multivariate LR-based 
Normal Tissue Complication Probability (NTCP) and 
LKB models.

Unlike the LKB algorithm, which primarily focuses on 
dosimetric parameters, ML facilitates a more compre-
hensive analysis of features relevant to radiation therapy 
effects, leading to more precise predictions [4]. Through 
detailed data analysis, ML identifies various factors that 
could lead to side effects, covering both dosimetric and 
clinical variables. The ability to incorporate new data-
sets into the existing models not only enhances their 
robustness but also facilitates more personalized risk 
assessments.

Moreover, a newer approach known as Ensemble 
Machine Learning (EML) has gained prominence within 
ML. This advanced technique merges multiple base mod-
els, or weak learners, to create a stronger and more robust 
ensemble learner. Employing various ensemble methods 
like bagging, boosting, and stacking [7, 8] helps refine the 
system, with base models ranging from decision trees to 
support vector machines and logistic regression.

Considering these advancements, this study aims 
to develop an EML-based risk prediction model for 

RD following proton therapy in head and neck cancer 
patients, targeting superior predictive performance.

Materials and methods
This study employs data from 57 head and neck cancer 
patients, featuring 11 clinical factors and nine dosimet-
ric parameters in treatment plans [9]. Considering two 
skin depths (3 and 5  mm) for complication assessment, 
a total of 18 dosimetric factors are analyzed. To mitigate 
collinearity and enhance model interpretability, Pearson’s 
correlation is used to eliminate highly correlated fac-
tors. LASSO is then applied for feature selection, focus-
ing on variables potentially linked to radiation dermatitis. 
The models trained include both machine learning and 
ensemble learning techniques. Optimization is achieved 
through hyperparameter tuning, with performance met-
rics serving as the evaluation standard. Our research 
process, EML-based risk prediction model for RD, is 
depicted in Fig. 1.

In this study, data from NPC patients collected at 
Kaohsiung Chang Gung Memorial Hospital were used to 
develop and validate ML and EML models. Initially, fea-
ture selection was performed to identify variables most 
predictive of radiation dermatitis. The training and analy-
sis were conducted using machine learning models that 
were implemented using Python and its libraries such 
as Scikit-learn for logistic regression and Random For-
est, and XGBoost and CatBoost for ensemble methods. 
The models were trained within two different machine 
learning frameworks: traditional ML models and more 
advanced EML models, which use a multi-model ensem-
ble technique to enhance prediction robustness and accu-
racy. Additionally, the EML models underwent robust 
optimization to ensure resilience to minor variations 
in input data, thereby enhancing reliability in practical 
applications. Finally, the effectiveness of these models 
was assessed through a series of performance evalua-
tions, such as accuracy and AUC metrics. Hyperparam-
eters were optimized using grid search techniques to 
identify the most effective settings for each model. This 
process not only improved the adaptability of the models 
to clinical practices but also enhanced the interpretability 
and accuracy of the predictions.

The analyses in this study were conducted using Python 
version 3.9.7 and SPSS software (Statistical Product and 
Service Solutions), version 25, developed by IBM (Inter-
national Business Machines Corporation). The model 
fitting was conducted using Jupyter as the compilation 
software for Python 3.9.7. Machine learning models were 
implemented using their respective module packages; 
Random Forest and Logistic Regression models utilized 
the Scikit-learn package, while XGBoost and CatBoost 
were implemented using their official packages.
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Patients’ data
This research was authorized by the Institutional Review 
Board (IRB-201900736B0(201900736B0C102)). At the 
Kaohsiung Chang Gung Memorial Hospital in Taiwan, 
treatment for nasopharyngeal carcinoma (NPC) patients 
using intensity-modulated proton therapy (IMPT) com-
menced in January 2019 [9]. This study focused on 
patients newly diagnosed with NPC who underwent 
the complete IMPT treatment [9]. Exclusion criteria 
included patients who did not finish the treatment, those 
who experienced interruptions during the treatment, or 
had previously received radiotherapy in the head and 
neck area. Following approval by the IRB, 57 patients 
were selected for data analysis. Clinical and dosimetric 
factors potentially impacting radiation dermatitis were 
detailed in Tables 1 and 2. The median age of the patients 
at diagnosis was 49 (ranging from 31 to 71 years). The 
cohort consisted of 42 males and 19 smokers. Accord-
ing to the American Joint Committee on Cancer (AJCC) 
8th edition, the staging distribution was 4 in stage I, 16 in 
stage II, 22 in stage III, and 15 in stage IVA. A significant 
majority, 91.2%, of the patients received IMPT in con-
junction with chemotherapy [9]. Clinical factors assessed 
included cancer stage, lifestyle factors, and individual 
patient conditions, while dosimetric variables consid-
ered encompassed volumes and dose parameters at skin 
depths of 3 and 5 millimeters.

Treatment
At Kaohsiung Chang Gung Memorial Hospital, nasopha-
ryngeal carcinoma (NPC) is treated using intensity-mod-
ulated proton therapy (IMPT) with a Sumitomo Proton 
Machine, leveraging scanning beam technology. Treat-
ment planning is performed on the RayStation treatment 
planning system (version 8, Raysearch Medical Laborato-
ries, Stockholm, Sweden), typically utilizing three beam 
directions: left and right anterior obliques, and posterior 
fields, facilitated by multi-field optimization. To mitigate 
range and positional uncertainties, robust optimization 
techniques are employed, which include a 3.5% margin 
for range uncertainties and 3  mm for positional uncer-
tainties. A comprehensive robust evaluation involves 
generating 21 scenario-based plans to determine the effi-
cacy of each treatment setup. Treatment precision is fur-
ther ensured through daily CT-based image guidance.

The treatment dosages are stratified by clinical tar-
get volume (CTV) classifications: the high-dose CTV 
(CTV-H) is prescribed 69.96 Gy, the medium-dose CTV 
(CTV-M) receives 59.4 Gy, and the low-dose CTV (CTV-
L) varies between 52.8 and 54.0  Gy, delivered over 33 
fractions at one fraction per day, five days a week. The 
CTV-H targets the primary tumor and associated lymph 
nodes with an isotropic expansion of 3  mm from the 
gross tumor volume (GTV). The CTV-M is designed to 
include adjacent at-risk anatomical structures such as the 
skull base and parapharyngeal space, addressing poten-
tial micro-metastatic pathways. The CTV-L covers sub-
clinical lymphatic regions in the lower neck that are not 
directly tumor-involved [9].

Organs at risk (OARs) are meticulously outlined with 
specified dose constraints to minimize radiation expo-
sure and mitigate side effects. These organs include the 
brainstem, brain, spinal cord, lens, optic nerve, optic 
chiasm, cochleas, thyroid gland, larynx, mandible, oral 
cavity, and the parotid and submandibular glands. The 
applied dose constraints adhere to established guidelines 
and recommendations, aiming to optimize treatment 
outcomes and reduce adverse effects [9].

End points
In this study, we evaluated 57 follow-up assessments con-
ducted during and 1 to 3 weeks after proton radiother-
apy. The primary outcome was the occurrence of Grade 
2 or higher radiation dermatitis (RD) as defined by the 
CTCAE 4.0 guidelines [10]. There were no reported cases 
of Grade 4 RD among the participants. The RD grad-
ing is as follows: Grade 1 consists of slight erythema or 
mild desquamation; Grade 2 involves more pronounced 
erythema, patchy moist desquamation mainly in skin 
folds, and moderate edema; Grade 3 includes widespread 
moist desquamation beyond skin folds, bleeding trig-
gered by minor injuries; and Grade 4 is characterized 

Fig. 1  Research Workflow Diagram Abbreviation ML: machine learning; 
EML: ensemble machine learning; LASSO: least absolute shrinkage and 
selection operator; ACC: Accuracy; NPV: Negative predictive value; AUC: 
Area Under the Curve
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Table 1  Clinical features of patients
< Grade 2 RD
Value-x (%)

≥ Grade 2 RD
Value-x (%)

p-value

n = 26 n = 31
AJCC Stage 0.007
I 4 (15) 0 (0)
II 10 (38) 6 (19)
III 5 (19) 17 (55)
IV 7 (27) 8 (26)
Tumor classification 0.661
T1 16 (62) 15 (48)
T2 3 (12) 6 (19)
T3 2 (8) 7 (23)
T4 5 (19) 3 (10)
Node classification 0.005
N0 6 (23) 3 (10)
N1 13 (50) 8 (26)
N2 6 (23) 12 (38)
N3 1 (4) 8 (26)
Age (years) 0.501
Mean 49 51
Range 31–71 36–71
< 49 14 (54) 16 (52)
≥ 49 12 (46) 15 (48)
BMI (kg/m2) 0.180
Mean 24.3 25.6
Range 17.1–30.8 17.7–28.7
< 24 13 (50) 10 (32)
≥ 24 13 (50) 21 (68)
Gender 0.193
Male 17 (65) 25 (81)
Female 9 (35) 6 (19)
DM 0.792
Yes 2 (8) 3 (10)
No 24 (92) 28 (90)
HTN 0.513
Yes 4 (15) 3 (10)
No 22 (85) 28 (90)
Smoking 0.008
Yes 4 (15) 15 (48)
No 22 (85) 16 (52)
Chemotherapy 0.499
Yes 23 (89) 29 (94)
No 3 (11) 2 (6)
Planning 0.188
Yes 15 (58) 23 (74)
No 11 (42) 9 (26)
Abbreviations AJCC: American Joint Committee on Cancer; RD: Radiation dermatitis; BMI: Body mass index; DM: Diabetes mellitus; HTN: Hypertension
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by life-threatening effects, including dermis necrosis or 
ulceration, spontaneous bleeding at the affected site, and 
the potential need for skin grafting.

Features selection
In feature selection, Pearson correlation coefficients were 
initially used to eliminate highly collinear variables, set-
ting a threshold of 0.8 to define high correlation for 
exclusion. In cases of multicollinearity, the most statis-
tically significant variable in univariate analysis (lowest 
p-value) was retained. After preliminary collinear feature 
removal, LASSO was employed to select remaining fea-
tures. The feature set chosen by the LASSO model with 
the lowest prediction error was used as input parameters 
for subsequent predictive models.

Ensemble models
To compare traditional machine learning with ensemble 
ML methods, two tree-based ensemble ML models were 
chosen based on feature types and non-linear model-
ing capabilities: random forest (RF) using bagging and 
XGBoost using boosting. Features were categorized 
into two sets: one using all remaining features after col-
linearity removal (RFALL, XGBALL), and the other using 
LASSO-selected features (RFLASSO, XGBLASSO), result-
ing in four models. For model interpretation, the SHAP 
method (SHapley Additive exPlanations) was employed 
to assess feature importance and contributions [11]. The 
best-performing model’s SHAP values were analyzed to 

evaluate each feature’s significance and impact on pre-
dicting radiation dermatitis.

Robust optimization
For algorithm robust optimization, 10 iterations of 
10-fold cross-validation [12] and grid search were 
employed to select the optimal hyperparameter combi-
nation for peak predictive performance, as depicted in 
the accompanying diagram. The dataset was initially split 
into an 80% training-validation set and a 20% test set. The 
grid search method exhaustively explored hyperparam-
eter combinations across the training-validation set.

The structure of the cross-validation is illustrated 
in the Fig.  2, where each fold in the 10-fold cross-val-
idation process is used sequentially as a validation set 
while the remaining nine folds form the training set. 
This process is repeated across 10 iterations to mitigate 
the risk of overfitting and ensure robustness, especially 
in a smaller dataset. The performance from each valida-
tion fold is independently calculated and then averaged 
over all iterations to provide a reliable measure of model 
performance.

For the final model assessment, a unique single data 
point was randomly selected from the test set to act as 
an independent test instance. This focused approach pro-
vides a stringent test of the model’s predictive capability, 
assessing how well the model generalizes to new, unseen 
data. This rigorous testing methodology, which includes 
the systematic averaging of validation set performance 

Table 2  Dosimetric features of patients
Variable < Grade 2 RD

n = 26
≥ Grade 2 RD
n = 31

p-value

Mean Range Mean Range
Skin 3 mm
V40 (ml) 58.26 23.26–116.06 65.62 23.44–155.41 0.040
V50 21.41 0.93–77.16 26.48 3.81–65.99 0.038
V60 1.49 0–9.12 4.79 0–30.17 0.021
V70 0.03 0–0.53 0.67 0–10.26 0.294
D10 (Gy) 52.06 44.53–59.85 54.78 45.84–70.11 0.025
D30 46.97 38.17–57.00 48.34 37.96–60.08 0.078
D50 42.00 33.24–54.19 42.95 32.85–52.41 0.068
D70 36.13 24.59–51.51 37.50 27.06–49.53 0.027
D100 28.44 17.76–44.06 30.20 21.48–46.44 0.020
Skin 5 mm
V40 (ml) 104.61 52–199.16 116.08 46.47–237.43 0.035
V50 45.80 6.12–136.03 54.05 10.97–115.17 0.035
V60 4.37 0–25.49 10.55 0.15–47.61 0.008
V70 0.21 0–1.86 1.50 0–17.89 0.167
D10 (Gy) 55.74 48.60–64.13 58.69 50.38–71.76 0.014
D30 51.43 44.01–59.63 53.43 44.15–65.53 0.034
D50 48.53 40.33–58.03 49.93 39.30–59.28 0.062
D70 45.66 37.10–56.31 46.73 35.52–54.29 0.081
D100 40.49 29.69–53.75 41.87 31.85–51.12 0.037
Abbreviations RD: Radiation dermatitis; Vx: Volume receiving x Gy dose; Dx: Dose received by x cc volume
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and the final evaluation on a distinct test data point, 
ensures a comprehensive evaluation of the model’s gener-
alization ability and predictive accuracy.

We acknowledge that a larger sample size would 
enhance the statistical power and generalizability of the 
results. However, this structured approach to validation 
and testing is designed to maximize the insights gained 
from the available data, thoroughly testing the model’s 
effectiveness across various subsets of the data and under 
different scenarios as outlined in the provided cross-vali-
dation diagram.

Logistic regression model
Drawing on previous studies for constructing multi-
variate logistic NTCP models [5, 13, 14], this research 
establishes LRLASSO as a comparative baseline against 
ensemble machine learning predictions. We employed 
the LASSO technique for automated feature selection, 
using the penalty term λ from the LASSO iteration with 
the lowest prediction error as the selection criterion. This 
approach identifies a feature set that balances predic-
tive power and model simplicity for logistic regression 
modeling. Model performance is assessed based on area 
under the curve (AUC), R-squared, Omnibus test, and 
Hosmer-Lemeshow test.

Results
Features with Pearson correlation coefficients above 0.8 
were excluded, retaining only statistically significant 
variables with lower p-values in cases of multicollinear-
ity. As a result, 11 clinical features were retained, while 
most dosimetric features were excluded, leaving only 
V60Gy− 5  mm, V70Gy− 5  mm, and D100− 3  mm. Prior to 

logistic regression, LASSO was used for feature selection. 
Figure  3(a) shows that the 30th LASSO iteration, with 
the lowest mean absolute error (MAE = 0.849), was used 
as the basis for feature selection for predicting radiation 
dermatitis. Post-LASSO, six features—Smoking, N stage, 
AJCC stage, V60− 5  mm, D100− 3  mm, and Gender—were 
retained based on their λ values, as shown in Fig. 3(b).

Table  3 presents the performance and coefficients 
of the logistic regression model built on six variables: 
Gender, Smoking, N stage, AJCC stage, V60_5mm, and 
D100_3mm. The table shows an AUC of 0.870, and other 
metrics like R2, Hosmer-Lemeshow test, and Omnibus 
test indicate a good model fit. Internal model parameters, 
such as coefficient β and odds ratio, reveal a significant 
correlation and causality between radiation dermatitis 
and smoking history. With a p-value < 0.05, the factor 
is statistically significant within the model. The posi-
tive coefficient β suggests a direct correlation between 
smoking history and radiation dermatitis, while the odds 
ratio indicates that smokers are 14.4 times more likely to 
develop radiation dermatitis than non-smokers.

In ensemble machine learning, two sets of features 
are used to build predictive models. The first set, post-
collinearity exclusion, comprises 14 features and is used 
to construct RFALL and XGBALL models. The second set, 
selected by LASSO, includes six features: Gender, Smok-
ing, N stage, AJCC stage, V60− 5  mm, and D100− 3  mm, 
and is used for RFLASSO and XGBLASSO models. The 
training-validation set primarily fine-tunes hyperpa-
rameters to prevent overfitting. Model performance 
is chiefly assessed by the test set’s AUC. Table  4 shows 
XGBALL outperforms XGBLASSO with an AUC of 0.890 
vs. 0.820, suggesting that more features may provide 

Fig. 2  The structure of the cross-validation
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richer information or introduce noise that affects predic-
tion. Conversely, RFALL and RFLASSO show similar per-
formance, indicating that feature selection has minimal 
impact on predictive accuracy.

In terms of feature importance, SHAP values quantify 
each feature’s contribution to predictive performance 
after training. Higher SHAP values indicate a significant 
impact on predicting radiation dermatitis, while lower 
values suggest lesser relevance. Figure  4 reveals notable 
differences in feature importance between the XGBoost 
(XGB) and Random Forest (RF) models. For instance, the 
AJCC feature has a stronger impact in the XGB model, 
whereas in the RF model, its SHAP values are concen-
trated near zero. Similarly, the influence of smoking var-
ies, with XGB displaying a moderate spread of values and 
RF showing less consistency.

The figure also uses color-coding for clarity—AJCC < 3 
is shown in blue, ≥ 3 in red; non-smokers in blue, 

Table 3  Performance Metrics and Parameters of LASSO-based 
Logistic Regression Model
AUC ACC R2 Hosmer-Lemeshow Omnibus
0.870 73.7% 0.383 0.727 < 0.001
Feature β p-value  OR (CI) S.E. Wald

Gender 1.427 0.178 4.166 (0.53–33.17) 1.06 1.82
Smoking 2.670 0.023 14.446 (1.47–143.30) 1.17 5.20
N 1.143 0.241 3.137 (0.46–21.23) 0.98 1.37
AJCC 2.335 0.065 10.325 (0.86–123.73) 1.27 3.39
V60− 5 mm 0.116 0.194 1.123 (0.94–1.34) 0.09 1.68
D100− 3 mm -0.073 0.517 0.929 (0.745–1.160) 0.11 0.42
Constant -2.223
Abbreviations β: Coefficient; OR: Odds Ratio; CI: Confidence Interval; S.E.: 
Standard Error; AJCC: American Joint Committee on Cancer; N: Lymph Node 
Metastasis; Vx: Volume receiving x Gy dose; Dx: Dose received by x cc volume; 
ACC: Accuracy

Fig. 3  (a) Iterative Performance of LASSO Model with MAE Metrics (b) The LASSO shrinking path diagrams. Abbreviation LASSO: least absolute shrinkage 
and selection operator; ACC: Accuracy; NPV: Negative predictive value; AUC: Area Under the Curve; RD: Radiation dermatitis; BMI: Body mass index
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smokers in red. This color distribution forms two distinct 
clusters, clearly demonstrating the significant contribu-
tion of these features to the models’ ability to assess the 
severity of radiation dermatitis. Such distinct grouping 
highlights their predictive relevance and underscores 
their crucial role in determining the severity of skin reac-
tions in patients.

Discussion
This study employs Random Forest, XGBoost, and Logis-
tic Regression to develop predictive models for assessing 
the risk of radiation dermatitis in head and neck cancer 
patients post-proton radiotherapy. Although Logistic 
Regression offers greater interpretability, machine learn-
ing models, particularly XGBoost, excel in predictive 
accuracy, aligning with the growing emphasis on machine 
learning for complication prediction in medical research. 
Studies like Poolakkad et al. [15], who achieved a higher 
AUC using gradient boosting for predicting mucositis 
post-chemotherapy, and Smith et al. [16], who demon-
strated superior performance using neural networks for 
post-radiation xerostomia, support this trend. Dean et 
al.’s use of penalized logistic regression, SVM, and ran-
dom forest to predict dysphagia with strong external vali-
dation further validates the efficacy of advanced models 
[16].

Additionally, Xie et al. [17] conducted a meta-analysis 
on risk factors for RD post-radiotherapy in breast cancer 
patients. Their sensitivity analysis revealed that Euro-
pean studies identified smoking as a risk factor for RD, 

while North American and Asian studies found no such 
correlation. Our study focuses on head and neck can-
cer patients, and according to Lilla et al. [18], the factors 
causing RD may vary based on the irradiation site. This 
could explain the discrepancy with Xie et al.‘s findings in 
breast cancer patients. Our data source, Fang et al. [19], 
his research also suggests a correlation between smok-
ing and RD, aligning with our results. However, further 
validation is needed to confirm the link between smoking 
and RD, possibly due to data limitations.

In this study, logistic regression, a traditional machine 
learning method, is simpler but offers limited param-
eter tuning options, which can lead to overfitting and 
reduced generalization compared to ensemble methods. 
Ensemble machine learning methods aggregate predic-
tions from multiple models, enhancing prediction accu-
racy, stability, and generalization capabilities [20, 21]. 
These methods are particularly effective in handling 
imbalanced datasets as they can improve minority class 
detection by balancing predictions from multiple mod-
els and are less likely to be biased towards the majority 
class. Furthermore, ensemble methods benefit from the 
diversity among weak learners, which can be fine-tuned 
through hyperparameter adjustments to optimize predic-
tive performance [22]. Despite logistic regression show-
ing comparable performance in some cases, the broader 
applicability and advanced capabilities of ensemble meth-
ods make them the preferred choice for complex predic-
tive modeling tasks.

Table 4  Evaluation Metrics for Two Predictive Models Built with and without LASSO Feature Selection Post-Collinearity Exclusion
Model AUC ACC NPV PPV Recall F1-Score
RFALL 0.670 0.50 0.29 0.80 0.44 0.57
RFLASSO 0.710 0.50 0.29 0.80 0.44 0.57
XGBALL 0.890 0.75 1.00 0.67 1.00 0.80
XGBLASSO 0.820 0.67 0.75 0.63 0.83 0.71
Abbreviations LR: Logistic regression; RF: Random forest; PPV: Positive predictive value; ACC: Accuracy; NPV: Negative predictive value

Fig. 4  Bee Swarm Plot of Feature Importance via SHAP Values in Ensemble Learning Models. Abbreviation SHAP: SHapley Additive exPlanations; DM: 
Diabetes mellitus; HTN: Hypertension; RD: Radiation dermatitis; BMI: Body mass index
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In our study, XGBoost significantly outperformed 
Random Forest, achieving a higher AUC score of 0.890 
compared to Random Forest’s 0.670. This superior per-
formance of XGBoost can be attributed to several key 
factors that enhance its robustness and adaptability. 
XGBoost integrates both L1 and L2 regularization tech-
niques, which are crucial for preventing overfitting, 
especially beneficial in datasets with numerous features 
or smaller sample sizes [23]. Moreover, XGBoost utilizes 
the Gradient Boosting algorithm, which optimizes per-
formance by building trees sequentially to correct errors 
from previous trees, allowing for more precise and adap-
tive parameter adjustments. This methodical approach to 
error correction and regularization significantly contrib-
utes to the higher predictive accuracy and robustness of 
XGBoost compared to Random Forest.

In contrast, Random Forest uses the Bagging (Boot-
strap Aggregating) algorithm [24], which creates multiple 
decision trees that are trained independently on random 
subsets of the data. The final prediction is then made 
by averaging or taking a majority vote from these trees. 
While this approach is computationally less intensive and 
can be parallelized, it generally offers fewer hyperparam-
eters to fine-tune, potentially limiting its optimization 
capacity. Random Forest also randomly selects a subset 
of features for each tree, adding a layer of robustness but 
possibly missing out on the nuanced feature selection 
that XGBoost offers through its gradient information.

Furthermore, XGBoost has a more extensive range of 
hyperparameter options, providing greater flexibility 
to adapt to various data types and problem complexi-
ties [24]. This is especially beneficial in scenarios requir-
ing intricate model tuning. Both algorithms consider 
the importance of features in making predictions, but 
XGBoost refines this process by optimizing based on pre-
diction errors and incorporating regularization terms in 
its information gain calculations, leading to more accu-
rate and insightful feature selection.

In summary, while both XGBoost and Random Forest 
are powerful ensemble learning techniques, the choice 
between them often depends on the specific require-
ments of the project, including the nature of the data, 
computational resources, and the level of interpretability 
needed. XGBoost generally excels in scenarios requir-
ing high predictive accuracy and intricate model tuning, 
whereas Random Forest may be more suitable for proj-
ects that prioritize interpretability and computational 
efficiency. Therefore, the effectiveness of each algorithm 
is highly context-dependent and should be considered 
carefully based on the project’s unique needs.

While the focus of this study has been on the predic-
tive accuracy of Random Forest and XGBoost models, 
it’s important to also consider the computational cost 
and time efficiency of these algorithms, especially when 

deployed in real-world clinical settings. Random Forest, 
with its parallelizable nature, can be more time-efficient 
and less computationally demanding, making it a viable 
option for systems with limited computational resources. 
On the other hand, the sequential nature of XGBoost’s 
Gradient Boosting can be computationally intensive and 
time-consuming, particularly for large datasets or com-
plex feature spaces. Therefore, the choice between these 
two algorithms may also hinge on the available computa-
tional resources and the urgency of obtaining predictive 
results. This aspect could be particularly crucial in medi-
cal applications where timely decision-making is often 
required but was not explored in the current study.

We acknowledge a critical limitation regarding the 
sample size and validation methods of our study. It 
involved a relatively small cohort of 57 patients, all 
treated at Kaohsiung Chang Gung Memorial Hospital. 
This limited sample size might affect the generalizability 
of our findings across different populations and settings. 
Although our models underwent rigorous internal vali-
dation using 10 iterations of 10-fold cross-validation to 
ensure reliability and robustness within our dataset, the 
lack of external validation could restrict confirmation of 
these models’ robustness and broader applicability.

Regarding the minimal differences in AUC scores 
among the logistic regression (AUC = 0.870), XGBALL 
(AUC = 0.890), and XGBLASSO (AUC = 0.820) models, we 
acknowledge the constraints posed by our small sample 
size and single-institution study design. While the incre-
mental gains in predictive performance with ensemble 
methods are evident, their clinical significance remains 
to be fully substantiated.

The advantages of ensemble methods, as reflected 
in the slightly higher AUC for XGBALL, suggest poten-
tial improvements in handling complex interactions 
between clinical and dosimetric variables, which are not 
as effectively captured by logistic regression. However, 
the modest enhancements observed warrant a cautious 
interpretation regarding the generalizability and practical 
application of these findings.

Recognizing the limitations of our study, it is crucial to 
conduct further research involving a larger, more diverse 
patient cohort across multiple institutions. External vali-
dation of our models is essential to confirm their robust-
ness and assess their performance in broader clinical 
contexts. Such studies would not only provide a definitive 
evaluation of the models’ utility in clinical practice but 
also help establish more reliable benchmarks for predict-
ing radiation dermatitis. This would strengthen the evi-
dence for using advanced machine learning techniques in 
clinical settings and potentially lead to more personalized 
and effective management strategies for patients under-
going proton radiotherapy.
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To enhance the credibility and applicability of our pre-
dictive models, future research should aim to include a 
more diverse patient cohort from multiple institutions. 
This expansion would provide a robust evidence base and 
facilitate essential external validation, verifying the mod-
els’ effectiveness across various clinical environments. 
This step is crucial for ensuring that our predictive mod-
els can reliably support clinical decision-making and 
improve patient outcomes in diverse settings. Further-
more, we recommend fostering collaboration between 
centers to enrich the datasets, allowing for nuanced 
adjustments and calibrations of the models according to 
different patient demographics and treatment protocols. 
Such collaboration would enhance the predictive accu-
racy and clinical utility of our risk assessment tools, mak-
ing them more effective in practical applications.

Conclusion
This study evaluates the efficacy of traditional and 
ensemble machine learning methods for predicting radi-
ation dermatitis in head and neck cancer patients after 
proton radiotherapy. Ensemble machine learning, partic-
ularly XGBoost with its inherent feature selection capa-
bilities, outperforms logistic regression, which requires 
complex procedures like LASSO for preventing overfit-
ting. XGBoost simplifies model construction by integrat-
ing feature convergence within its algorithm, eliminating 
the need for additional steps like LASSO, thus streamlin-
ing the modeling process while achieving comparable or 
superior performance.

Despite these advantages, it’s crucial to note that the 
skin data was collected retrospectively from patient 
charts, which might limit data quality. While acute radia-
tion dermatitis significantly impacts patients, it is not 
the primary factor guiding treatment decisions in this 
cohort. Therefore, the practical utility of these predictive 
models in clinical settings requires careful validation to 
ensure they truly support improved patient management 
and decision-making. This study highlights that while 
logistic regression is useful for exploratory analysis due 
to its simplicity, ensemble methods offer a more efficient 
and potentially more accurate approach for clinical appli-
cations, pending further validation.

Acknowledgements
This study was supported financially, in part, by grant from the National 
Science and Technology Council (NSTC) of the Executive Yuan of the Republic 
of China, 111-2221-E-992-016-MY2). Part of this study has been presented as a 
thesis in Chinese.

Author contributions
Tsair-Fwu Lee: Conceived and designed the analysis; contributed data or 
analysis tools; performed the analysis; wrote the paper. Yen-Hsien Liu: Data 
organization and combing; Analyzed and interpreted the data; contributed 
to the writing of the paper. Chu-Ho Chang: Data organization and combing; 
Analyzed and interpreted the data; contributed to the writing of the paper. 
Chien-Liang Chiu: Guided the analysis and interpretation of data; Chih-

Hsueh Lin: Analyzed and interpreted the data; contributed to the writing of 
the paper. Jen-Chung Shao: Data organization and combing; Analyzed and 
interpreted the data; contributed to the writing of the paper. Yu-Cheng Yen: 
Contributed data or analysis tools; assisted in data interpretation. Guang-Zhi 
Lin: Played a role in data analysis and interpretation. Jack Yang: Provided 
expertise in machine learning algorithms; contributed to data analysis and 
interpretation. Chin-Dar Tseng: Participated in data collection and analysis; 
provided technical support for data management. Fu-Min Fang: Patient data 
collection; Contributed to the conception and design of the study; assisted 
in the analysis and interpretation of data. Pei-Ju Chao: Guided the analysis 
and interpretation of data; Participated in data collection; contributed to the 
preparation and revision of the manuscript. Shen-Hao Lee: Guided the analysis 
and interpretation of data; critically revised the manuscript for important 
intellectual content.

Funding
This study was supported financially, in part, by grant from the National 
Science and Technology Council (NSTC) of the Executive Yuan of the Republic 
of China, (111-2221-E-992-016-MY2).

Data availability
The datasets used and/or analyzed during the current study available from the 
corresponding author on reasonable request.

Declarations

Ethics approval
Institutional Review Board (IRB) approval was obtained from the IRB (approval 
number: 201900736B0(201900736B0C102)), and the requirement for informed 
consent was waived given the retrospective nature of the study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Medical Physics and Informatics Laboratory of Electronics Engineering, 
National Kaohsiung University of Science and Technology, No.415, 
Jiangong Rd., Sanmin Dist,, Kaohsiung 807, Taiwan (ROC)
2Graduate Institute of Clinical Medicine, Kaohsiung Medical University, 
Kaohsiung 807, Taiwan (ROC)
3Department of Medical Imaging and Radiological Sciences, Kaohsiung 
Medical University, Kaohsiung 80708, Taiwan (ROC)
4Medical Physics at Monmouth Medical Center, Barnabas Health Care, 
NJLong Branch, US
5Department of Radiation Oncology, Kaohsiung Chang Gung Memorial 
Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan 
(ROC)
6Department of Radiation Oncology, Linkou Chang Gung Memorial 
Hospital, Chang Gung University College of Medicine, Linkou, Taiwan 
(ROC)

Received: 16 January 2024 / Accepted: 10 June 2024

References
1.	 Hegedus F, Mathew LM, Schwartz RA. Radiation dermatitis: an overview. Int J 

Dermatol. 2017;56(9):909–14.
2.	 Kang J, Schwartz R, Flickinger J, Beriwal S. Machine learning approaches for 

predicting radiation therapy outcomes: a clinician’s perspective. Int J Radia-
tion Oncology* Biology* Phys. 2015;93(5):1127–35.

3.	 Gao S, Calhoun VD, Sui J. Machine learning in major depression: from 
classification to treatment outcome prediction. CNS Neurosci Ther. 
2018;24(11):1037–52.

4.	 Samant P, de Ruysscher D, Hoebers F, Canters R, Hall E, Nutting C, Maughan 
T, Van den Heuvel F. Machine learning for normal tissue complication 



Page 11 of 11Lee et al. Radiation Oncology           (2024) 19:78 

probability prediction: predictive power with versatility and easy implemen-
tation. Clin Translational Radiation Oncol 2023, 39.

5.	 Lee T-F, Liou M-H, Huang Y-J, Chao P-J, Ting H-M, Lee H-Y, Fang F-M. LASSO 
NTCP predictors for the incidence of xerostomia in patients with head and 
neck squamous cell carcinoma and nasopharyngeal carcinoma. Sci Rep. 
2014;4(1):6217.

6.	 Babyak MA. What you see may not be what you get: a brief, nontechnical 
introduction to overfitting in regression-type models. Psychosom Med. 
2004;66(3):411–21.

7.	 Dietterich TG. Ensemble methods in machine learning. In: International 
workshop on multiple classifier systems: 2000: Springer; 2000: 1–15.

8.	 Zhang C, Ma Y. Ensemble machine learning: methods and applications. 
Springer; 2012.

9.	 Liao K-C, Huang Y-J, Tsai W-L, Lee C-H, Fang F-M. Longitudinal assessment of 
quality of life in nasopharyngeal cancer patients treated with intensity-mod-
ulated proton therapy and volumetric modulated arc therapy at different 
time points. Cancers. 2024;16(6):1217.

10.	 Yokota T, Zenda S, Ota I, Yamazaki T, Yamaguchi T, Ogawa T, Tachibana H, 
Toshiyasu T, Homma A, Miyaji T. Phase 3 randomized trial of topical steroid 
versus placebo for prevention of radiation dermatitis in patients with head 
and neck cancer receiving chemoradiation. Int J Radiation Oncology* Biol-
ogy* Phys. 2021;111(3):794–803.

11.	 Mangalathu S, Hwang S-H, Jeon J-S. Failure mode and effects analysis of RC 
members based on machine-learning-based SHapley Additive exPlanations 
(SHAP) approach. Eng Struct. 2020;219:110927.

12.	 Bertsimas D, Gupta V, Kallus N. Data-driven robust optimization. Math Pro-
gram. 2018;167:235–92.

13.	 Lee TF, Chao PJ, Ting HM, Chang LY, Huang YJ, Wu JM, Wang HY, Horng MF, 
Chang CM, Lan JH et al. Using Multivariate Regression Model with least 
Absolute Shrinkage and Selection Operator (LASSO) to predict the incidence 
of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck 
Cancer. PLoS ONE 2014, 9(2).

14.	 Kong C, Zhu X-z, Lee T-F, Feng P-b, Xu J-h, Qian P-d, Zhang L-f, He X, Huang 
S-f. Zhang Y-q: LASSO-based NTCP model for radiation-induced temporal 
lobe injury developing after intensity-modulated radiotherapy of nasopha-
ryngeal carcinoma. Sci Rep. 2016;6(1):26378.

15.	 Satheeshkumar PS, El-Dallal M, Mohan MP. Feature selection and predicting 
chemotherapy-induced ulcerative mucositis using machine learning meth-
ods. Int J Med Informatics. 2021;154:104563.

16.	 Smith DK, Clark H, Hovan A, Wu J. Neural network and spline-based regres-
sion for the prediction of salivary hypofunction in patients undergoing 
radiation therapy. Radiat Oncol. 2023;18(1):77.

17.	 Xie Y, Wang Q, Hu T, Chen R, Wang J, Chang H, Cheng J. Risk factors related 
to acute radiation dermatitis in breast cancer patients after radiotherapy: a 
systematic review and meta-analysis. Front Oncol. 2021;11:738851.

18.	 Lilla C, Ambrosone CB, Kropp S, Helmbold I, Schmezer P, von Fournier D, 
Haase W, Sautter-Bihl M-L, Wenz F, Chang-Claude J. Predictive factors for late 
normal tissue complications following radiotherapy for breast cancer. Breast 
Cancer Res Treat. 2007;106:143–50.

19.	 Fang KC, Lee CH, Chuang HC, Huang TL, Chien CY, Tsai WL, Fang FM. Acute 
radiation dermatitis among patients with nasopharyngeal carcinoma treated 
with proton beam therapy: prognostic factors and treatment outcomes. Int 
Wound J. 2023;20(2):499–507.

20.	 Sagi O, Rokach L. Ensemble learning: a survey. Wiley Interdisciplinary Reviews: 
Data Min Knowl Discovery. 2018;8(4):e1249.

21.	 Maalouf M. Logistic regression in data analysis: an overview. Int J Data Anal 
Techniques Strategies. 2011;3(3):281–99.

22.	 Mao S, Chen J-W, Jiao L, Gou S, Wang R. Maximizing diversity by transformed 
ensemble learning. Appl Soft Comput. 2019;82:105580.

23.	 Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings 
of the 22nd acm sigkdd international conference on knowledge discovery and 
data mining: 2016; 2016: 785–794.

24.	 Syam N, Kaul R. Random forest, bagging, and boosting of decision trees. 
machine learning and artificial intelligence in Marketing and sales: essential 
reference for practitioners and data scientists. edn.: Emerald Publishing 
Limited; 2021. pp. 139–82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Development of a risk prediction model for radiation dermatitis following proton radiotherapy in head and neck cancer using ensemble machine learning
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Patients’ data
	﻿Treatment
	﻿End points
	﻿Features selection
	﻿Ensemble models
	﻿Robust optimization
	﻿Logistic regression model

	﻿Results
	﻿Discussion
	﻿Conclusion
	﻿References


