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Abstract
Background  To integrate radiomics and dosiomics features from multiple regions in the radiation pneumonia (RP 
grade ≥ 2) prediction for esophageal cancer (EC) patients underwent radiotherapy (RT).

Methods  Total of 143 EC patients in the authors’ hospital (training and internal validation: 70%:30%) and 32 EC 
patients from another hospital (external validation) underwent RT from 2015 to 2022 were retrospectively reviewed 
and analyzed. Patients were dichotomized as positive (RP+) or negative (RP-) according to CTCAE V5.0. Models with 
radiomics and dosiomics features extracted from single region of interest (ROI), multiple ROIs and combined models 
were constructed and evaluated. A nomogram integrating radiomics score (Rad_score), dosiomics score (Dos_score), 
clinical factors, dose-volume histogram (DVH) factors, and mean lung dose (MLD) was also constructed and validated.

Results  Models with Rad_score_Lung&Overlap and Dos_score_Lung&Overlap achieved a better area under curve 
(AUC) of 0.818 and 0.844 in the external validation in comparison with radiomics and dosiomics models with features 
extracted from single ROI. Combining four radiomics and dosiomics models using support vector machine (SVM) 
improved the AUC to 0.854 in the external validation. Nomogram integrating Rad_score, and Dos_score with clinical 
factors, DVH factors, and MLD further improved the RP prediction AUC to 0.937 and 0.912 in the internal and external 
validation, respectively.

Conclusion  CT-based RP prediction model integrating radiomics and dosiomics features from multiple ROIs 
outperformed those with features from a single ROI with increased reliability for EC patients who underwent RT.
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Background
Esophageal cancer (EC) is one of the most malignant 
diseases with its incidence and mortality rates ranking 
seventh and sixth globally [1]. Radiotherapy (RT) is an 
important component of the standard treatment for EC 
[2]. Especially, with the advancement in RT planning and 
delivering techniques, such as intensity-modulated radia-
tion therapy (IMRT), volumetric modulated arc therapy 
(VMAT), and proton therapy, etc., better dose coverage 
and normal tissue protection have been achieved with 
improved RT outcomes for EC [3]. However, due to the 
close geometric relationship between lung and para-
esophageal tissue, radiation pneumonitis (RP) is one 
of the major dose-limiting factors and toxicities dur-
ing thoracic RT for EC, which also seriously impacts the 
life quality and treatment outcomes [4]. Therefore, early 
detection and intervention of RP are imperative to maxi-
mize the therapeutic gain for EC patients.

Traditionally, clinical factors, such as tumor stage, 
smoking history, tuberculosis, asthma, other preexist-
ing lung diseases, concurrent chemotherapy, etc., and 
dosimetric factors extracted from the dose-volume his-
togram (DVH), such as the relative volume of lung irradi-
ated by a specific threshold dose (Vx) or/and mean lung 
dose (MLD), have been intensively investigated as the 
risk factors in the assessment and prediction of RP [5–7]. 
Although some factors and dosimetric metrics appeared 
promising, there is still no consensus on the compara-
tive importance of these predictors [8]. With the devel-
opment of quantitative analysis using image features, 
radiomics features extracted from images and dosiomics 
features extracted from dose distributions have been 
demonstrated to improve the performance of RP predic-
tion for EC patients who underwent RT [9–11].

There was a study indicated that radiomics models 
with features extracted from multiple regions of interest 
(ROIs) improved the RP prediction in comparison with 
features from single whole-lung for lung cancer [12]. Pre-
vious studies also demonstrated that adding radiomics 

features from subregion improves the survival predic-
tion accuracy for EC patients who underwent concur-
rent chemoradiotherapy [13]. Therefore, we hypothesized 
that radiomics and dosiomics features extracted from 
multiple regions would improve the RP prediction for 
EC patients. The purpose of this study is to investigate 
the performance of radiomics models, dosiomics mod-
els, and integrated models with features from multiple 
regions in the RP prediction for EC patients who under-
went RT. An external validation was also conducted to 
reduce the false-positive rates and improve the reproduc-
ibility of these RP prediction models.

Methods
Patients
According to exclusion criteria (Appendices A), EC 
patients who underwent three-dimensional confor-
mal RT (3D-CRT) or VMAT from 2015 to 2022 in the 
authors’ hospital were retrospectively reviewed and ana-
lyzed. Additional EC patients who underwent IMRT from 
another hospital with the same criteria were enrolled as 
an external validation cohort. The workflow for this study 
is shown in Fig.  1. The prescription doses for these EC 
patients were from 27 Gy to 64 Gy at 1.8 Gy to 3.0 Gy per 
fraction. During treatment planning with Pinnacle 9.2 
(Philips Medical Systems, Andover, MA), the objective 
goal was to achieve 95% of the planning target volume 
(PTV) covered by 100% of the prescribed dose. Adaptive 
Convolve Algorithm was used to calculated the radiation 
dose with a dose gird of 4*4*4 mm. The dose limitations 
for organs at risk (OARs) were: maximum point dose 
of spinal cord < 45  Gy; lung V5 < 65%, lung V20 < 30%, 
lung V30 < 20%; heart V30 < 40%, etc. Detail beam set-
ting and optimization parameters for 3DCRT, VMAT, 
and IMRT were reported previously [14, 15]. The Insti-
tutional Review Board of the authors’ hospital approved 
this retrospective study (IRB#2,019,059). The study was 
conducted according to the Declaration of Helsinki with 

Fig. 1  The flow diagram in the study
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the waived need for written informed consent due to its 
retrospective nature.

Images and regions of interest
Planning computed tomography (pCT) of EC patients 
was acquired using a CT simulator with a 16-detector 
row (Brilliance, Phillips) under the same clinical protocol: 
120 kV, 180–280 mA, and a field of view of 500 mm. An 
iodinated contrast of 100 mL at 300 mg/mL was injected 
intravenously before the CT scan. Images were recon-
structed with a 3-mm section thickness for delineation of 
PTV and OARs by senior radiation oncologists. Images 
were resampled to a pixel spacing of 1 × 1 × 1 mm3 with 
B-spline interpolation algorithm to standardize feature 
computation [16]. The pixel values were distilled into 
equally spaced bins using a fixed bin width of 16 Houn-
sfield Units to eliminate the influence of different gray-
scale ranges and to ensure better comparability [17]. 
Radiomics and dosiomics features were extracted from 
two ROIs: the bilateral lung, and overlap volume, which 
was the overlapped volume between lung and PTV. Typi-
cal contours of PTV, OARs, lung, and overlapped vol-
umes are shown in Appendices B.

Feature extraction and selection
The radiomics features were extracted from each ROI 
using PyRadiomics [18]. The dose distributions were res-
caled to the same size as CT images for dosiomics fea-
tures extraction, in which the “image” consists of voxels 
with their grey level corresponding to the absolute dose 
in Gy [19]. A total of 1288 features were extracted includ-
ing shape features, intensity features, and texture features, 
where the texture features were calculated from gray-
level co-occurrence matrix (GLCM), ray-level run-length 
matrix (GLRLM), gray-level size zone matrix (GLSZM), 
gray-level dependence matrix (GLDM), and neighboring 
gray-tone difference matrix (NGTDM) [20]. The Mann-
Whitney U test was first used to decrease the dimen-
sion of features with a p < 0.05 as potentially informative 
features in the prediction of RP, then the least absolute 
shrinkage and selection operator (LASSO) method with 
5-fold cross-validation was applied to screen the optimal 
features by tuning the regulation weight λ to achieve a 
maximum area under the curve (AUC) of receiver oper-
ating characteristic (ROC) curves and to set the coeffi-
cients of irrelevant features exactly to zero [21].

Model construction and validation
Patients from hospital one were divided into the train-
ing and internal validation sets at a ratio of 7:3. Mod-
els with radiomics (Rad_score) and dosiomics features 
(Dos_score) alone were constructed with the linear com-
bination of selected features with their corresponding 
coefficients. Four models were constructed according 

to the source of features: Rad_score_Lung, Rad_score_
Overlap; and Dos_score_Lung, Dos_score_Overlap. 
For the combining models with features from multiple 
ROIs, features extracted from lung and overlap regions 
were combined to go through the Mann-Whitney U test 
and LASSO for the final screen of optimal features, then 
models Rad_score_Lung & Overlap and Dos_score_Lung 
& Overlap were calculated based on the selected features 
and their corresponding coefficients. Logistic regres-
sion  (LR) and support vector machine (SVM) were 
applied to construct combined radiomics and dosiomics 
models: Model A integrated Rad_score_Lung, Rad_
score_Overlap, Dos_score_Lung and Dos_score_Overlap 
and Model B integrated Rad_score_Lung & Overlap and 
Dos_score_Lung & Overlap, respectively.

Nomogram
Based on the univariate and multivariate analysis, clinical 
and DVH factors with p < 0.05 and MLD were included 
to construct a nomogram. A multivariable LR analysis 
was applied to build the radiomics and dosiomics-based 
nomogram integrating clinical and DVH factors. The 
performance of nomogram in both internal validation 
and external validation cohorts with calibration curves 
plotted using the Hosmer-Lemeshow (H-L) test. Decision 
curve analysis (DCA) in the internal validation and exter-
nal validation dataset was plotted to evaluate the clinical 
value of the radiomics nomogram in this study [22].

Follow-up and RP evaluation
After the treatment completion, EC Patients were fol-
lowed up with a CT scan monthly in the first half year, 
and then every 3 months until 2 years. Immediate exami-
nation or intervention was administered for patients with 
symptoms, such as fever, cough, or shortness of breath 
during follow-up. RP was diagnosed by at least two radia-
tion oncologists according to Common Terminology 
Criteria for Adverse Events (CTCAE) (Appendices G) 
[23]. Patients with obvious symptoms, indicated medi-
cal intervention, or had limiting instrumental activities 
of daily living were defined as positive RP+ (grade ≥ 2). 
Patients with less than grade 2 RP were defined as RP-.

Statistical analysis
The clinical variables between the RP + and RP- groups 
were compared using the Fisher exact test or Chi-square 
test for categorical variables and the Mann-Whitney U 
test or independent-sample T-test for continuous vari-
ables. A two-tailed p value < 0.05 was defined as statistical 
significance. The statistical analysis was conducted with 
SPSS version 27.0 (IBM, Armonk, NY, USA). The LASSO 
and other statistical analyses were performed using the R 
analysis platform (version 5.0.1, MathSoft) along with the 
“glmnet” package (http://www.Rproject.org). The SVM 

http://www.Rproject.org
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model was performed using the “e1071” package with the 
confusion matrix performed using the “caret” package. 
The LR model was performed using the “glm” function 
and the “caret” package. The ROC curve was performed 
using the “pROC” package.

Results
A total of 143 EC patients (123 male, 20 female) were 
recruited from hospital one as the training and inter-
nal validation sets, and another 32 patients (24 men, 8 
women) from the second hospital were included as an 
external validation cohort with a mean age of 65 and 
71, respectively. A total of 39 EC patients suffered from 
positive RP (RP+, 22.29%) with 26 (26%), 5 (11.63%), and 
8 (25%) RP + patients in the training, internal validation, 

and external validation cohorts, respectively. There was 
a significant difference in gender between the RP + group 
and the RP- group in the training and internal valida-
tion cohorts, but not in the external validation cohort. 
MLD was statistically different between the RP + group 
and RP- group in the training cohort and external vali-
dation cohort, but not in the internal validation cohort. 
Table  1 presents a summary of the detailed patient 
characteristics.

There were 15 and 7 radiomics features, and 5 and 
2 dosiomics features selected from Lung and Overlap 
regions, respectively. For multiple ROI models, there 
were 11 radiomics features (7 from Lung and 4 from 
Overlap) and 7 dosiomics features (5 from Lung and 2 
from Overlap) were selected, respectively. The lists of 

Table 1  Characteristic of patients in the training, internal validation and external validation cohorts
Characteristic Training cohort(n = 100) Internal

validation cohort(n = 43)
p 
Value

External
validation cohort(n = 32)

RP-(n = 74) RP+(n = 26) p 
Value

RP-(n = 38) RP+(n = 5) p 
Value

RP-(n = 24) RP+(n = 8) p 
Value

Gender (N, %) < 0.05* 0.01* 0.99 0.64
Female 6(8.11%) 8(31.77%) 3(7.89%) 3(60.00%) 17(70.83%) 1(12.50%)
Male 68(91.89%) 18(69.23%) a 35(92.11%) 2(40.00%) a 7(29.17%) 7(87.50%) d

Age(years) 0.56 0.01* 0.21 < 0.05*
Mean ± SD 65.76 ± 9.43 66.96 ± 7.77 62.61 ± 8.64 74.20 ± 11.43 70.17 ± 8.80 74.87 ± 3.94
Range 46–87 53–79 b 42–80 64–89 b b 54–82 70–80 c

Smoking (N, %) 0.55 0.15 0.26 0.22
Yes 32(43.24%) 13(50.00%) 15(39.47%) 0(0.00%) 14(58.33%) 2(25.00%)
No 42(56.76%) 13(50.00%) a 23(60.53%) 5(100.00%) d a 10(41.67%) 6(75.00%) d

Total radiation dose (Gy) 0.37 0.09 0.27 0.99
Median 50 53 52 54 54 54
Mean ± SD 50.09 ± 7.99 51.71 ± 7.60 52.09 ± 6.74 51.52 ± 4.57 53.60 ± 2.53 53.6 ± 2.99
Range 27.00–64.00 30.00–60.00 b 40.00–60.00 45.00–56.00 c b 50.00–60.00 50.96-60.00 c

Dose per fraction (Gy) 0.99 0.24 0.45 0.68
Median 1.8 2 2 1.8 1.8 1.81
Mean ± SD 1.91 ± 0.21 1.92 ± 0.10 1.90 ± 0.12 1.84 ± 0.09 1.86 ± 1.53 1.83 ± .0.07
Range 1.60-3.00 1.80-2.00 b 1.60–2.10 1.80-2.00 c b 1.80–2.50 1.80-2.00 c

Chemotherapy history 0.05 0.32 0.17 1.00
Yes 44(59.46%) 21(80.77%) 28(73.68%) 5(100.00%) 17(70.83%) 6(75.00%)
No 30(40.54%) 5(19.23%) a 10(26.32%) 0(0.00%) d a 7(29.17%) 2(25.00%) a

Chemoradiotherapy
(N, %)
Current
Induction

34(77.27%)
10(22.73%)

15(71.43%)
6(28.57%)

0.11d 23(82.14%)
5(17.86%)

3(60.00%)
2(40.00%)

0.18d 0.36a 12(70.59%)
5(29.41%)

4(66.67%)
2(33.33%)

0.88d

Chemotherapy regimen 
(N, %)

0.03* 0.15 0.17 0.59

PF regimen 8(18.18%) 2(9.52%) 4(14.29%) 2(40.00%) 9(52.94%) 5(62.50%)
TP regimen 36(81.82%) 19(90.48%) d 24(85.71%) 3(60.00%) d d 8(29.41%) 3(37.50%) d

MLD (Gy) 0.03* 0.64 0.26 0.03*
Median 10.63 11.17 12.63 10.30 11.69 9.17
Mean ± SD 10.29 ± 4.03 11.84 ± 2.50 11.65 ± 4.01 10.78 ± 1.98 11.38 ± 2.26 9.18 ± 2.83
Range 1.04–16.97 6.18–16.06 c 2.80-18.03 8.97–14.17 b b 6.25–15.38 5.20-12.72 b

Notes RP + = RP grade ≥ 2; RP- = RP grade < 2; PTV = Planning Target Volume; Overlap = the overlap part of PTV and Lung; PF regimen: cisplatin + fluorouracil; TP 
regimen: paclitaxel + cisplatin; MLD = mean lung dose
a Chi-squared test, b independent t test, c Mann-Whitney test, d Fisher’s precision probability test. * The p value < 0.05 is considered statistically significant
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these features along with their corresponding coeffi-
cients were shown in supplementary file Table D.1-D.4 
and Fig. D.1-D.3. The risk score formulas were shown in 
supplementary file E. As shown in Fig.  2a, the AUC of 
Rad_score_Lung, Rad_score_Overlap, Dos_score_Lung, 
and Dos_score_Overlap was 0.763, 0.684, 0.668, 0.626; 
and 0.750, 0.693, 0.740, 0.724 in the internal and external 
validation, respectively. With multiple regions features, 
the AUC of Rad_score_Lung & Overlap and Dos_score_
Lung & Overlap were 0.784 (95%CI, 0.569–0.999), 0.818 
(95%CI, 0.569–0.999) and 0.737 (95%CI, 0.566–0.907), 

0.844 (95%CI, 0.702–0.986) in the internal and external 
validation, respectively. Detailed performance of these 
models is shown in Table 2.

Models combining radiomics and dosiomics features 
using LR and SVM are shown in Fig. 2b and details are 
shown in Table 3. The AUC of Model A integrating Rad_
score_Lung, Rad_score_Overlap, Dos_score_Lung, and 
Dos_score_Overlap was 0.853, 0.784, and 0.854, 0.839 
in the internal and external validation cohorts using 
SVM and LR, respectively. Model B integrating Rad_
socre_Lung & Overlap and Dos_score_Lung & Overlap 

Fig. 2  ROC curves of radiomics, dosiomics, radiomcis & dosiomics and machine learning models in validation cohort. The first row shows ROC curves of 
six models in the internal validation cohort (i)-(ii). The second row shows ROC curves of six models in the external validation cohort (iii)-(iv). The third row 
shows ROC curves of eight models in the internal validation cohort (i)-(iv). The fourth row shows ROC curves of eight models in the external validation 
cohort (v)-(viii)
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achieved an AUC of 0.821, 0.821, and 0.854, 0.854 in the 
internal and external validation cohorts using SVM and 
LR, respectively.

According to the univariate analysis of clinical parame-
ters (Supplementary file F), gender, age, smoking history, 
chemotherapy history, chemoradiotherapy, chemother-
apy regimen, total radiation dose, dose per fraction, lung 
V5, lung V20, and lung V30 were the potential high-risk 
factors in the development of RP (all p < 0.05). Multi-
variate analysis revealed that gender (odds ratio [OR], 
0.203; 95% CI, 0.057–0.718; p < 0.005) and lung V5 (OR: 
0.958; 95% CI: 0.920–0.996) were independent predic-
tors of RP. Prediction model with gender, lung V5 and 
MLD achieved an AUC of 0.684 and 0.858 in the internal 
validation cohort using SVM and LR, respectively. The 
details were shown in Supplementary file H.

Based on multivariate analysis, a nomogram (Fig.  3a) 
was conducted integrating Rad_score_Lung, Dos_
score_Lung, Rad_score_Overlap, Dos_score_Overlap, 
gender, lung V5, and MLD. The calibration curve of the 
bootstrap resampling-validated nomogram is shown in 
Fig. 3b, which demonstrates a good agreement between 
the projected probabilities of RP and the true observed 
probabilities. The calibration curve resulting from the 
H-L test indicated an insignificant statistic in the internal 
validation (p = 0.512) and external validation (p = 0.619) 
cohorts. The AUC of the nomogram (Fig. 3c) was 0.937 
and 0.912 in the internal and external validation cohorts, 
respectively. Figure  3d, e demonstrated the clinical via-
bility and efficacy of the nomogram with decision curve 
analysis (DCA), which indicated that the integrated 
model with Rad_score, Dos_score, clinical parameters, 
DVH factors, and MLD showed the best positive net ben-
efits at threshold probabilities.

Discussion
In this study, radiomics and dosiomics features from 
multiple ROIs were integrated to predict the risk of RP 
for EC patients who underwent RT. Models with Rad_
score_Lung & Overlap and Dos_score_Lung & Overlap 
achieved a better AUC of 0.818 and 0.844 in the external 
validation in comparison with radiomics and dosiomics 
models with features extracted from single ROI. Com-
bining four radiomics and dosiomics models using SVM 
improved the AUC to 0.854 in the external validation. 
Nomogram integrating Rad_score, and Dos_score with 
clinical factors, DVH factors, and MLD further improved 
the RP prediction AUC to 0.937 and 0.912 in the internal 
and external validation, respectively.

The irradiation fields of RT for EC are usually large and 
complex to reduce the risk of recurrence in the subclini-
cal region along the esophagus and regional lymph nodes 
[24]. Therefore, a healthy lung is inevitably irradiated to 
trigger the development of RP [25]. The incidence rate Ta
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of RP + in this study was around 22%, which was similar 
to the reported 23.1% of RP with 3DCRT in the study of 
Lan et al. [26]. However, it was lower than the reported 
34.95% RP ≥ 2 grade in the study of Du et al. [27]. Rela-
tively lower RP rates were also reported in many other 
studies with a range from 15 to 40% [6]. These differ-
ences may result from different RT techniques applied. 
It may also be due to different adjuvant chemotherapy 
administered.

With the emergence of radiomics, studies demon-
strated that it is promising for RP prediction for patients 
who underwent thoracic RT. In this study, Rad_score_
Lung achieved an AUC of 0.763 and 0.750 with an 
accuracy of 0.786 and 0.750 in the internal and external 
validation, respectively. Similarly, Du et al. achieved an 
AUC of 0.765 in the independent validation cohort using 
cone beam CT in the prediction of RP for patients with 
esophageal squamous cell carcinoma (ESCC) undergo-
ing RT [28]. Puttanawarut et al. also demonstrated that 
radiomics features from CT images achieved an AUC 
of 0.71 ± 0.10 in the RP prediction for EC patients who 
underwent RT [29]. In this study, the AUC of radiomics 
models was further increased to 0.784 and 0.818 with 
an accuracy of 0.744 and 0.781 in the internal and exter-
nal validation cohorts, respectively, by combining fea-
tures from lung and overlap regions (Rad_score_Lung & 
Overlap). To the best of our knowledge, few studies have 
reported radiomics features from multiple regions for 
RP prediction for EC patients. However, Kawahara et al. 
demonstrated that multi-region radiomics improved the 
AUC and accuracy from 0.62 to 60.8% to 0.84 and 80.1% 
in comparison with whole-lung radiomics in the RP pre-
diction for patients with locally advanced non‑small cell 
lung cancer (NSCLC) treated by definitive RT [12].

In addition, previous studies demonstrated that DVH 
metrics are closely correlated with the reset of RP, but 
no universal parameters were accepted due to the het-
erogeneity across the studies [30, 31]. Consistently, the 
univariate analysis in this study demonstrated that all the 
selected DVH parameters and clinical factors were asso-
ciated with RP of EC patients. Lung V5 was included in 
the nomogram in this study according to the multivari-
ate analysis. And MLD was also considered as a factor of 
RP. This was consistent with previously reported findings 
[8, 31]. With the development of radiomics, dosiomics 
features have been regarded as containing profound 
information on DVH and dose distributions for RP pre-
diction [11, 32, 33]. Puttanawarut et al. indicated that 
dosiomics features outperformed DVH parameters in 
the RP prediction for EC with an AUC of 0.71 [34]. Simi-
larly, in this study, comparing to the model conducted 
by clinical and DVH parameters, Dos_score_Lung and 
Dos_score_Overlap achieved a higher AUC of 0.740 and 
0.724 in the external validation, respectively. Dosiomics Ta
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models with combined dosiomics features from multiple 
regions further improved the RP prediction with an AUC 
of 0.737 and 0.844 in the internal and external validation, 
respectively.

Combining radiomics and dosiomics features from the 
lung achieved an AUC of 0.774 and 0.781 in the internal 
and external validations, respectively. A similar AUC of 
0.77 ± 0. 09 was reported in the study by Puttanawarut 
et al. in the RP prediction of EC by combining radiomics 

Fig. 3  Nomogram of the combination models. (a) nomogram integrating Rad_score, Dos_score, clinical factors, DVH factors and MLD; (b) calibration 
curve of nomogram; (c) ROC curves of nomogram in the training cohort, internal validation cohort and external validation cohort; (d) DCA of internal 
validation cohort; (e) DCA of external validation cohort
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and dosiomics features [29]. Li et al. also reported an 
AUC of 0.849 ± 0.064 when combing radiomics and 
dosiomics from whole lung in the RP prediction for lung 
cancer patients [35]. In this study, combining radiomics 
and dosiomics features from multiple ROIs further 
improved the RP prediction, as shown in Table  3. SVM 
Model A integrating Rad_score_Lung, Rad_score_Over-
lap, Dos_score_Lung, and Dos_score_Overlap achieved a 
best AUC of 0.853 and 0.854 in the internal and external 
validation, respectively.

Wang L et al. achieved a C-index of 0.975 and 0.921 in 
the training and validation cohorts with a delta-radiomics 
nomogram, respectively, for the assessment of severe 
acute RP in EC with CT images following RT [10]. Lan 
K et al. developed a nomogram integrating non-smoking 
status, 3DCRT, lung V20, and PTV, for the prediction 
of symptomatic RP in ESCC patients received definitive 
concurrent chemoradiotherapy, and achieved an AUC of 
0.772 and 0.900 in the primary and validation cohorts, 
respectively [36]. The nomogram in this study integrating 
Rad_score_Lung, Dos_score_Lung, Rad_score_Overlap, 
Dos_score_Overlap, gender, lung V5, and MLD further 
improved the AUC to 0.937 and 0.912 in the internal 
and external validation, respectively. The H-L test indi-
cated that there was no significant deviation between the 
calibration curves and a perfect fit for predicting recur-
rence risk. The DCA results in Fig.  3d, e demonstrated 
the clinical viability and efficacy of the nomogram with 
best positive net benefits at threshold probabilities. This 
indicated that many patients could benefit from using 
the integrated RP prediction model to assist clinical 
decision-making.

One limitation of this retrospective study is the rela-
tively small number of cases enrolled, even though 
external validation was conducted to strengthen the 
reproducibility of these models. Many risk factors have 
been reported to be associated with RP except for the 
dosimetric and clinical factors studied in this study, such 
as systemic therapies and intrinsic genetic phenotypes 
[37]. Integrating more related risk factors into these 
models will certainly further improve the prediction per-
formance in the future. Another limitation is that the 
differences in data from different institutions were not 
considered thoroughly during data processing. In order 
to reduce the discrepancies caused by different data 
sources, appropriate data processing methods should be 
applied in future analyses. In this study, intersection of 
the lung and the PTV was treated as a sub-region, and 
exclude patients without overlap area between PTV and 
lung, which imposes limitations on the clinical applica-
tion of the model.

Conclusions
A CT-based RP prediction model integrating radiomics 
and dosiomics features from multiple ROIs was devel-
oped and validated externally for EC patients who 
underwent RT. Our findings demonstrated that models 
incorporating features from multiple ROIs outperformed 
those with features from a single ROI with increased 
reliability.
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