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Abstract 

Objectives  Accurate segmentation of the clinical target volume (CTV) of CBCT images can observe the changes 
of CTV during patients’ radiotherapy, and lay a foundation for the subsequent implementation of adaptive radiother-
apy (ART). However, segmentation is challenging due to the poor quality of CBCT images and difficulty in obtaining 
target volumes. An uncertainty estimation- and attention-based semi-supervised model called residual convolutional 
block attention-uncertainty aware mean teacher (RCBA-UAMT) was proposed to delineate the CTV in cone-beam 
computed tomography (CBCT) images of breast cancer automatically.

Methods  A total of 60 patients who undergone radiotherapy after breast-conserving surgery were enrolled in this 
study, which involved 60 planning CTs and 380 CBCTs. RCBA-UAMT was proposed by integrating residual and atten-
tion modules in the backbone network 3D UNet. The attention module can adjust channel and spatial weights 
of the extracted image features. The proposed design can train the model and segment CBCT images with a small 
amount of labeled data (5%, 10%, and 20%) and a large amount of unlabeled data. Four types of evaluation metrics, 
namely, dice similarity coefficient (DSC), Jaccard, average surface distance (ASD), and 95% Hausdorff distance (95HD), 
are used to assess the model segmentation performance quantitatively.

Results  The proposed method achieved average DSC, Jaccard, 95HD, and ASD of 82%, 70%, 8.93, and 1.49 mm 
for CTV delineation on CBCT images of breast cancer, respectively. Compared with the three classical methods 
of mean teacher, uncertainty-aware mean-teacher and uncertainty rectified pyramid consistency, DSC and Jac-
card increased by 7.89–9.33% and 14.75–16.67%, respectively, while 95HD and ASD decreased by 33.16–67.81% 
and 36.05–75.57%, respectively. The comparative experiment results of the labeled data with different proportions 
(5%, 10% and 20%) showed significant differences in the DSC, Jaccard, and 95HD evaluation indexes in the labeled 
data with 5% versus 10% and 5% versus 20%. Moreover, no significant differences were observed in the labeled data 
with 10% versus 20% among all evaluation indexes. Therefore, we can use only 10% labeled data to achieve the exper-
imental objective.
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Conclusions  Using the proposed RCBA-UAMT, the CTV of breast cancer CBCT images can be delineated reliably 
with a small amount of labeled data. These delineated images can be used to observe the changes in CTV and lay 
the foundation for the follow-up implementation of ART.

Keywords  Breast cancer, Automatic delineation, Cone-beam computed tomography, clinical target volume, Semi-
supervised learning, Uncertainty estimation

Introduction
According to the 2023 Cancer Statistics, breast can-
cer is the most prevalent disease in women worldwide, 
accounting for about 31% of all cancers in women [1]. 
Radiotherapy (RT) after breast-conserving surgery can 
significantly improve the survival rate of breast cancer 
patients [2]. In clinical treatment, the cone-beam com-
puted tomography (CBCT) imaging device integrated 
on the linear accelerator is used to obtain CBCT images, 
and rigid registration of CBCT images and planning 
CT (PCT) images is used for patient setup correction, 
which has been widely used in RT [3]. During setup, the 
radiotherapy technician needs to compare the superim-
posed CT and CBCT images to observe the differences 
and adjust the setup. When the patient is lying on the 
treatment bed, fast and accurate judgment is needed. 
The traditional registration method is slow and does 
not meet the clinical needs. Some studies have pointed 
out that in interfractional radiotherapy with a long time 
span, changes in body size, setup errors, and anatomical 
structure of patients will affect the treatment effect and 
increase the probability of radiation injury [4, 5]. Adap-
tive radiotherapy (ART) uses the online image of the 
patient to make treatment decisions, re-contouring and 
evaluation, etc., which can automatically adjust the radio-
therapy plan during the fractional treatment [6], thereby 
reducing the influence of interfractional radiotherapy. 
Performing ART can improve the accuracy of treatment 
and is a promising method [7], among which automatic 
delineation of clinical target volume (CTV) on CBCT 
images is an important step in ART.

Due to the intrinsic characteristics of radiotherapy 
after breast conserving surgery, there are some difficul-
ties in segmentation of CTV on CBCT images of breast 
cancer. Firstly, CBCT images are easily affected by medi-
cal equipment and patient motion, which makes CBCT 
images contain a large number of artifacts and low soft 
tissue contrast [8, 9]. Secondly, CTV is difficult to distin-
guish radiologically from normal tissues, which increases 
the difficulty of delineation. Third, the existing deep 
learning methods need to be trained with a large amount 
of labeled data to achieve good segmentation perfor-
mance, which is difficult to obtain CBCT labeled data. 
Finally, since CTV is delineated by estimating the degree 
of microscopic disease spread based on accumulated 

knowledge of previous treatment outcomes and histo-
logical evidence of the degree of tumor cell spread for a 
particular cancer, CTV contours delineated by different 
clinicians may vary considerably [10].

At present, CBCT image segmentation has been ini-
tially explored in areas such as lung [11, 12] and pelvic 
region [13–15], but due to the intrinsic complexity, there 
are few studies on CBCT image segmentation of breast 
cancer. Dai et  al. [16] used CycleGAN to generate syn-
thetic CT from CBCT of breast cancer patients, and 
then input the 3D U-Net segmentation network trained 
by PCT, so as to achieve CTV segmentation on CBCT 
images of breast cancer. However, Yuan et al. [17] pointed 
out that the similarity between synthetic images and 
PCT in radiomics features was quite different, and some 
error information may be synthesized, which still needs 
further study. Most of the existing deep learning-based 
segmentation methods rely on the training of a large 
number of labeled data. However, it is a time-consuming 
and laborious process to obtain large datasets for labeled 
segmentation, especially for medical image segmenta-
tion that requires clinical and medical knowledge. The 
semi-supervised learning (SSL) segmentation method 
emerging in recent years can learn additional feature 
information in a small amount of labeled and unlabeled 
data to reduce the training cost [18]. The commonly used 
semi-supervised segmentation methods include pseudo-
label [19, 20] and consistency regularization [21–23]. 
Methods based on pseudo-labels assign pseudo-labels to 
unlabeled data; however, low-quality pseudo-labels may 
have higher uncertainty and may contain more noise, 
thus having a greater impact on the performance of the 
model [24]. Approaches based on consistency regulari-
sation encourage models to produce the same predic-
tions for input images under small perturbations at the 
data, feature and model levels. For example, Tarvainen 
et al. [25] proposed the mean teacher (MT) model, which 
divides the network into two parts: the student network 
and the teacher network. The inputs of the two networks 
are respectively added with independent random noise, 
and the purpose of using a small amount of label segmen-
tation is achieved by training the consistency of the out-
puts of the two networks.

In order to avoid the potential propagation errors and 
internal deformation problems between the forms of the 
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synthetic images, we directly performed automatic seg-
mentation of the CBCT images. Inspired by the idea of 
consistency regularized semi-supervised segmentation, 
we propose the residual convolutional block attention-
uncertainty aware mean teacher (RCBA-UAMT) model 
for the automatic segmentation of CTV in CBCT images 
of breast cancer. The model integrates the residual mod-
ule and channel spatial attention module on the back-
bone network 3D UNet to improve the feature extraction 
ability of the framework, and introduces an uncertainty 
estimation strategy to assist the segmentation. In the 
labeled data part, CT and CBCT images were input, and 
the rich image information of high-quality CT was used 
to assist the network learning. Comprehensive evaluation 
of our model and existing SSL methods shows that our 
model has higher segmentation accuracy.

Materials and methods
Data acquisition
A total of 60 patients with breast cancer treated with 
right-side breast-conserving therapy in our hospital from 
February 2017 to September 2023, including 60 PCT and 
380 CBCT, were collected. The CTV labels on CBCT in 
52 cases were obtained by the deformable registration 
of CTV labels on CT images to CBCT images, and then 
manually refined by senior clinicians. The CT and CBCT 
of the same patient were only used for training or test-
ing simultaneously, and the specific data distribution 
is shown in Table  1. Only those patients who received 
whole breast irradiation were included in this study; 
therefore, patients who received axillary or supraclavicu-
lar irradiation were excluded. All patients were female, 
with age ranging from 30 to 72  years. The supine posi-
tion was adopted with the hands crossed over the head 
and fixed on the vacuum pad. The PCT images of all 
patients were obtained by Siemens CT (Somatom Force, 
Germany) with a size of 512 × 512, a spatial resolution 
of 0.98  mm × 0.98  mm, and a slicer thickness of 5  mm. 
CBCT images were acquired using the XVI system from 
Elekta Infinity (Elekta,Stockholm,Sweden) between 2 
and 4  weeks after PCT acquisition. Compared with the 
standard chest M20 technology, the gantry speed was 
increased from 180 to 360°/min using fast chest M20 

technology, and the projection frame was reduced from 
720 to 360, which not only reduced the patient’s scanning 
time and radiation dose but also reduced the image qual-
ity to a certain extent [26]. The tube voltage was 120 kV, 
and the current was 20 mA. The kV detector panel had 
a field of view of 42.5  cm × 42.5  cm, a reconstruction 
matrix of 410 × 410, and a pixel size of 1 mm × 1 mm. The 
acquired CBCT images of breast cancer had a truncation. 
This study was approved by the Medical Ethics Commit-
tee of our hospital (#2020KY154-01).

Contour delineation
In order to reduce the influence of subjective differences 
in the delineation of CTV between doctors on the net-
work, we invited an oncologist to delineate the CTV of 
all the included data according to a unified standard. (1) 
Upper margin: the upper margin of breast tissue was 
referred to clinical markers and CT, and the highest level 
of sternoclavicular joint was observed. (2) Lower margin: 
refer to the lower margin of breast tissue seen by clinical 
markers and CT, or the level of breast folds. (3) Internal 
margin: the inner margin of breast tissue was referred to 
clinical markers and CT, and did not exceed the paraster-
nal. (4) External: referring to clinical markers and the 
outer edge of breast tissue visible on CT, or referring to 
the contralateral breast. (5) Anterior margin: 5 mm sub-
cutaneous (mainly including breast tissue, if the breast 
volume is small, 3 mm subcutaneous can be considered). 
(6) Posterior border: excluding ribs, intercostal muscles 
and pectoralis major muscles. When delineating CBCT 
images, we first deformable registration the CTV on CT 
images to CBCT images, and then the doctor compared 
the two images and delineated the CTV on CBCT images 
according to the standard to form the ground true(GT) 
on CBCT images.

Proposed methodology
Our proposed RCBA-UAMT is shown in Fig.  1, where 
labeled CT and CBCT images are inputted to the stu-
dent model, and unlabeled CBCT images are inputted 
to the student model and the teacher model, with differ-
ent noise perturbations added randomly to each input. 
Features are randomly lost in the teacher network, and 
N forward propagation is performed to obtain N sets of 
prediction results. Therefore, for each pixel of the input 
image, N groups of SoftMax probability vectors can be 
obtained. Subsequently, the average probability vector 
can be calculated. Finally, the information entropy can 
be calculated as the evaluation measure of uncertainty. 
The supervision loss, Lsup. is calculated by the student 
model on the input and output of the labeled image. The 
consistency loss Lcon. is calculated from the output of 
the student model and the teacher model, and utilizes 

Table 1  Summary of patient characteristics

Patient 
characteristics

CTlabeled CBCTlabeled CBCTunlabeled

Age range 30–72

Train 51 31 328

Test 9 21

Total 60 52 328
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the uncertainty guided consistency loss by using the 
information of the uncertain feature map of the target. 
The teacher model was optimized using an exponen-
tial moving average (EMA), which refers to the average 
of the student model weights. In this section, a detailed 
explanation of the proposed RCBA-UAMT segmentation 
model is given.

Backbone architecture
RCBA-UAMT model with the same structure model of 
the teachers and students model, as shown in Fig. 2a. In 
this study, the residual module [27] and convolutional 
block attention module (CBAM) [28] are integrated 
on 3D UNet [29] to optimize the network. The residual 
module can connect the feature information between the 

two layers, prevent the degradation problem caused by 
the deepening of the network layer, and optimize the seg-
mentation performance. As shown in Fig. 2b, the CBAM 
module is used to adjust the attention weight of output 
features from channel and space in detail to extract more 
effective feature information and enable the network to 
pay attention to more important information adaptively. 
In the encoder part, a convolution operation consists of 
a 3 × 3 × 3 convolution, InstanceNorm [30], and Leaky 
ReLU [31], using a maximum pooling (MaxPool) layer as 
downsampling. CBAM is mainly composed of two serial 
modules, namely, channel attention module (CAM) and 
spatial attention module (SAM). CAM is mainly used to 
perform attention weighting on the channel dimension of 
the input features, and the MaxPool and average pooling 

Fig. 1  Schematic illustration of our RCBA-UAMT framework
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operations are performed after the feature map is input-
ted to aggregate the spatial information of the feature 
map. SAM is mainly used for the attention weighting of 
the spatial dimension of the input features. Finally, the 
convolution and sigmoid activation functions were used 
to obtain the spatial attention map, which was multiplied 
with the input feature map to obtain the final output fea-
ture map.

The parameters of the teacher model are obtained from 
the student model through EMA, and the formula is 
expressed as follows:

where z and z′ represent the parameters of the student 
network and the teacher network, respectively. ε is the 
fixed value parameter, which is set to 0.99 in this study. 
When the teacher network is updated, 99% of its own 
parameters remain unchanged, and 1% is transferred 
from the student network.

zt ′ = εzt−1′ + (1− ε)zt ,

Uncertainty estimation
Given that the boundary between CTV and normal tissue 
is fuzzy, the CTV edge is inevitably prone to uncertainty 
during automatic segmentation. In this paper, an uncer-
tainty estimation method based on Monte Carlo dropout 
[32] is used to add uncertainty estimation to the network 
to provide reliable segmentation possibilities with differ-
ent confidence levels and explain incorrect predictions. In 
this method, dropout is used to train the model so that the 
model parameters seem to follow a Bernoulli distribution. 
For each input, different outputs will be generated, and 
the variance of different outputs is calculated to obtain the 
uncertainty. Specifically, noise was added randomly to each 
input image and entered into the teacher network multiple 
times. It is used to conduct N times of forward propaga-
tion in the teacher network to obtain N groups of predic-
tion results. Therefore, for each pixel of the input image, N 
groups of SoftMax probability vectors can be obtained, and 

Fig. 2  a Architecture of residual convolutional block attention 3D UNet, which is used as the backbone network in the RCBA-UAMT. b Architecture 
of 3D convolutional block attention module
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the average probability vector can be calculated. The for-
mula is expressed as follows:

The formula for calculating the uncertainty of the aver-
age probability is as follows:

where N is the number of forward propagation, which is 
set to 8 in this study; c is the segmentation category; pt is 
the probability graph of the t degree; M is the probabil-
ity map after averaging; and U is the information entropy 
and is the probability weighting of the entropy of all seg-
mentation categories.

Loss functions
The semi-supervised 3D segmentation model was pro-
posed to minimize the following joint objective loss 
functions:

 where Lsup. represents the supervised loss function, 
and the Dice loss function [33] combined with the cross-
entropy loss function [34] is used in this study to evalu-
ate the segmentation quality of the labeled data. Lcon. is 
denoted as the unsupervised consistency loss function 
[35]. The segmentation neural network is denoted by f  , 
z , and z′ , which denote the parameters of the student and 
teacher networks. ξ and ξ′ are random noises with dif-
ferent teacher and student models. y is the label. M is a 
case of labeled data. Q is a case of unlabeled data. i is the 
data index, and � is a weighting coefficient to regulate the 
trade-off between unsupervised and supervised losses.

The consistency loss is only calculated in the region of 
low uncertainty, and the formula is expressed as follows:

where H is the sign function (u < I is 1, u > I is 0); fi and fi′ 
are the prediction results of the student and teacher net-
works at the ith voxel, respectively; ui is the uncertainty 
of the prediction results of the teacher network; and I 
is the uncertainty threshold used to filter the uncertain 
voxels.
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Construction of comparative experiments
We compare and analyze with several advanced SSL seg-
mentation methods, including MT, uncertainty-aware 
mean teacher (UAMT) [21] and Uncertainty Rectified 
Pyramid Consistency (URPC) [36]. For fair comparison, 
we used the same network backbone (3D UNet) with the 
same epoch for testing in these methods. In addition, 
the above networks were trained with 5%, 10% and 20% 
labeled data to evaluate the effect of different proportions 
of data on the segmentation effect of the network. In the 
labeled part, the ratio of CT to CBCT data was 5:3.

Three sets of network experiments were constructed 
to evaluate the effects of different modules on the seg-
mentation performance of the network. The first group 
is UAMT with only 3D U-Net in the backbone network, 
and the second group is Res-UAMT with residual fast 
added to the backbone network. The third group is for 
our proposed network RCBA-UAMT.

Experimental setup and evaluation metrics
This study is implemented based on the PyTorch frame-
work using the SGD optimizer to update the network 
parameters, the initial learning rate is set to 0.001, the 
batch size is 2, it consists of 1 labeled image and 1 unla-
beled image, and the training epoch is 100. A sub-vol-
ume of 400 × 400 × 48 in the center of the 3D image was 
trimmed as the network input, and the final segmenta-
tion result was obtained using a sliding window strategy.

In this study, four indicators, namely, dice similar-
ity coefficient (DSC), Jaccard, the average surface dis-
tance (ASD), and 95% Hausdorff distance (95HD), were 
used for quantitative assessment. DSC is used to meas-
ure the similarity of two sets, and Jaccard coefficient is 
used to calculate the problem of whether the common 
features among individuals are consistent and to com-
pare the similarity and difference between finite sample 
sets. The larger the values of these two, the higher the 
sample similarity will be. ASD is used to measure the 
distance between two surfaces. 95HD calculates the dis-
tance between two sets and is sensitive to segmenting the 
boundary region. The smaller the values of these two, the 
higher the similarity of the two sets. DSC, Jaccard, 95HD, 
and ASD are defined as follows:

DSC =
2(A

⋂

B)

A+ B

Jaccard =
(A

⋂

B)

A
⋃

B

HD(A, B) = max(min||a− b||), a ∈ A, b ∈ B
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where A represents the predicted segmentation result, B 
represents the GT, S (A) represents the surface voxels in 
the set A, and S (B) represents the surface voxels in the 
set B.

Results
The quantitative results of labeled data with different 
ratios are shown in Table  2. The evaluation indexes of 
the method proposed in this study are better than those 
of several advanced SSL segmentation methods at pre-
sent on 10% labeled data and 20% labeled data, especially 
on 95HD. Compared with the three other SSL methods 
on 10% labeled data, our method resulted in a 9.33%, 
7.89%, and 7.89% increase in DSC, 16.67%, 14.75%, and 
14.75% increase in Jaccard, 57.35%, 67.81%, and 33.16% 
decrease in 95HD, and 71.46% decrease in ASD, 75.57% 
and 36.05%. Table 3 shows whether the results obtained 
by using the T-test method have significant difference to 
calculate different proportions of labeled data. 10% and 
20% labeled data have significant differences compared 
with 5% labeled data, whereas 10% and 20% data have 
no significant difference, indicating that the method pro-
posed in this study can obtain relatively stable segmenta-
tion results on a small amount of labeled data. Thus, the 
cost of manual delineation is saved. Figure  3 shows the 
quantitative analysis plot of the four evaluation indexes, 
namely, MT, URPC, UAMT, and RCBA-UAMT at 10% 
labeled data, with the top of the cylinder as the mean 
value and the top as the standard deviation range, indi-
cating that the proposed method has better effect and 
relatively higher stability.
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1

�
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
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�
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�


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Figure  4 shows the segmenting results of the four 
methods on CBCT when the labeled data is 10%. Red is 
the GT, blue is the MT segmenting result, yellow is the 
UAMT segmenting result, green is the URPC segment-
ing results, and purple is the segmenting results of the 
method proposed in this study. The method proposed 
in this study is more fully contouring and does not con-
tour other regions. Table  4 summarizes the influence 
of each module on the network segmentation perfor-
mance under training data with 10% labeled data. Our 
proposed method has remarkable performance on all 
metrics. Compared with the baseline model, DSC and 
Jaccard of the proposed model increased by 5.13% and 
7.70%, respectively, whereas 95HD and ASD decreased 
by 35.80% and 51.94%, respectively.

Discussion
CBCT has been widely used in image-guided RT and is 
register with PCT to assist patient setup [37]. However, 
when CBCT images produce large anatomical structure 
changes or poor quality, the registration results with CT 
are poor [38], and manual correction is required, thereby 
increasing the time and labor cost. ART can re-optimize 

Table 2  Quantitative comparison of the model in this paper with existing semi-supervised models

Boldface data are the best values for this column and underlined data are the second best values

Labeled data Method DSC (%)↑ Jaccard (%)↑ 95HD (voxel)↓ ASD (voxel)↓

21/389(5%) MT 0.62 0.45 123.80 42.91

UAMT 0.75 0.60 18.28 4.56

URPC 0.75 0.60 15.55 2.78

Ours 0.73 0.57 20.98 1.89

41/369(10%) MT 0.75 0.60 20.94 5.22

UAMT 0.76 0.61 27.74 6.10

URPC 0.76 0.61 13.36 2.33

Ours 0.82 0.70 8.93 1.49
82/328(20%) MT 0.79 0.66 13.72 3.16

UAMT 0.79 0.66 13.23 5.39

URPC 0.78 0.64 13.21 1.75

Ours 0.81 0.68 8.48 1.70

Table 3  In our proposed method, whether the evaluation 
indicators results of different proportions of labeled data have 
significant differences

*Represents a significant difference

Evaluation metrics 5% vs. 10% 5% vs. 20% 10% vs. 20%

DSC P < 0.05* P < 0.05* 0.53

Jaccard P < 0.05* P < 0.05* 0.49

95HD P < 0.05* P < 0.05* 0.80

ASD 0.14 0.12 0.86
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the planning parameters according to the anatomical 
changes of the patient before treatment, which requires 
automatic delineation of the target volume on online 
CBCT images. However, most of the existing CBCT seg-
mentation focuses on the segmentation of tumor targets 
with normal anatomical structures and obvious differ-
ences from normal tissues, and there are few studies on 
CTV segmentation.

In this study, we propose the RCBA-UAMT model for 
automatic delineation of CTV in CBCT images of breast 
cancer. In order to avoid the morphological changes of 
the image during the synthesis process, the model was 
automatically contouring directly on the CBCT images. 
RCBA-UAMT is trained using a small amount of labeled 
data against a large amount of unlabeled data. Firstly, CT 
and CBCT images were input into the model, and the 
rich image information of high-quality CT was used to 

assist the network learning. In addition, we propose an 
uncertainty estimation based on MC-dropout to quantify 
the uncertainty by calculating the variance of each pixel 
of the segmentation output to obtain the information 
entropy on different channels, which is used to analyze 
the confidence of each pixel. Finally, the spatial channel 
attention module was integrated into the backbone net-
work so that the model could focus on learning the seg-
mentation information. The results showed that under 
the training of 10% labeled data, the average DSC, Jac-
card, 95HD, and ASD of CTV delineated by our model 
on CBCT images were 82%, 70%, 8.93, and 1.49  mm, 
respectively. Our method also has several advantages. 
First, the direct segmentation of CBCT images can 
effectively avoid the deformation caused by the registra-
tion or synthesis process. In addition to bone alignment, 
it can be matched with the CTV label of PCT to assist 

Fig. 3  Quantitative analysis of each evaluation index of the four SSL methods was performed under 10% labeled data, with the columns 
representing the mean and the top representing the standard deviation
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Fig. 4  Proposed RCBA-UAMT model visual results compared with different semi-supervised segmentation models. Red represent GT, blue is MT, 
yellow is UAMT, green is URPC, and purple is ours method. Each row shows a different sample
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radiotherapy positioning. In addition, if a large change 
in CTV is, then the radiotherapy plan can be adjusted in 
time. This study also lays the foundation for subsequent 
research on ART, and realized the monitoring of tar-
get dose in the whole process of radiotherapy in further 
research. We also believe that this method will have great 
potential in future clinical applications.

Our study also has some limitations. First, this study 
lacks a labeled dataset of all CBCT images for compara-
tive experiments. One solution is to use a deformable 
registration algorithm, such as GT, to generate a large 
number of labels; however, this approach also introduces 
registration errors that are difficult to eliminate [39]. In 
this study, partial contouring CBCT data combined with 
labeled PCT were used for SSL segmentation research, 
and a small amount of labeled CTV data information 
and a large amount of unlabeled image information were 
learned to achieve the automatic delineation of CTV in 
CBCT images. In addition, this study lacks more data 
from open source or other hospitals for external testing 
and model generalization study. In the follow-up study, 
we will actively cooperate with other hospitals to con-
duct multi-institutional studies to further optimize the 
model and improve the segmentation performance and 
generalization ability of the model. Finally, automatic 
segmentation of organs at risk (OARs) is also an impor-
tant part of ART. We will further study the content of 
joint segmentation of CTV and OARs in the following 
experiments.

Conclusion
This study shows that the proposed RCBA-UAMT can 
be used to reliably delineate the CTV in CBCT images of 
breast cancer using a small number of labeled datasets. 
It can be matched with PCT label to assist patient setup, 
reduce setup error, observe whether the CTV changes, 
determine whether the treatment plan needs to be 
adjusted, etc., which lays a foundation for ART and tar-
get dose monitoring. The automatic delineation of CTV 
can reduce the burden of observation during setup and 
improve the consistency of delineation.
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Table 4  With 10% labeled data, comparison of proposed RCBA-
UAMT with baseline model and after plus residual module in 
proposed model

Boldface data are the best values for this column

Method DSC (%)↑ Jaccard (%)↑ 95HD (voxel)↓ ASD (voxel)↓

UAMT 0.78 0.65 13.91 3.10

Res-UAMT 0.79 0.66 11.60 2.07

RCBA-UAMT 0.82 0.70 8.93 1.49
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