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Abstract
Purpose  Accurate deformable registration of magnetic resonance imaging (MRI) scans containing pathologies is 
challenging due to changes in tissue appearance. In this paper, we developed a novel automated three-dimensional 
(3D) convolutional U-Net based deformable image registration (ConvUNet-DIR) method using unsupervised learning 
to establish correspondence between baseline pre-operative and follow-up MRI scans of patients with brain glioma.

Methods  This study involved multi-parametric brain MRI scans (T1, T1-contrast enhanced, T2, FLAIR) acquired at 
pre-operative and follow-up time for 160 patients diagnosed with glioma, representing the BraTS-Reg 2022 challenge 
dataset. ConvUNet-DIR, a deep learning-based deformable registration workflow using 3D U-Net style architecture 
as a core, was developed to establish correspondence between the MRI scans. The workflow consists of three 
components: (1) the U-Net learns features from pairs of MRI scans and estimates a mapping between them, (2) the 
grid generator computes the sampling grid based on the derived transformation parameters, and (3) the spatial 
transformation layer generates a warped image by applying the sampling operation using interpolation. A similarity 
measure was used as a loss function for the network with a regularization parameter limiting the deformation. The 
model was trained via unsupervised learning using pairs of MRI scans on a training data set (n = 102) and validated 
on a validation data set (n = 26) to assess its generalizability. Its performance was evaluated on a test set (n = 32) by 
computing the Dice score and structural similarity index (SSIM) quantitative metrics. The model’s performance also 
was compared with the baseline state-of-the-art VoxelMorph (VM1 and VM2) learning-based algorithms.

Results  The ConvUNet-DIR model showed promising competency in performing accurate 3D deformable 
registration. It achieved a mean Dice score of 0.975 ± 0.003 and SSIM of 0.908 ± 0.011 on the test set (n = 32). 
Experimental results also demonstrated that ConvUNet-DIR outperformed the VoxelMorph algorithms concerning 
Dice (VM1: 0.969 ± 0.006 and VM2: 0.957 ± 0.008) and SSIM (VM1: 0.893 ± 0.012 and VM2: 0.857 ± 0.017) metrics. The 
time required to perform a registration for a pair of MRI scans is about 1 s on the CPU.

Conclusions  The developed deep learning-based model can perform an end-to-end deformable registration of a 
pair of 3D MRI scans for glioma patients without human intervention. The model could provide accurate, efficient, 
and robust deformable registration without needing pre-alignment and labeling. It outperformed the state-of-the-art 
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Introduction
The current standard conventional deformable regis-
tration algorithms and toolboxes, including Syn [1], 
Elastix [2], advanced normalization tools (ANTS) [3], 
and demons [4] involve solving a numerical optimiza-
tion problem independently for each volumetric pair of 
images by applying geometric methods. This process is 
usually computationally expensive and time-consuming 
due to its iterative nature. In addition, these algorithms 
are non-learning from previous registration and fre-
quently reiterate and optimize. Although the numerical 
optimization-based image registration methods perform 
reasonably well, they are restricted by their slow registra-
tion speeds.

Deep learning-based techniques have recently received 
significant attention in medical imaging and cancer treat-
ment e.g. neuro-/radiation oncology [5]. Their capability 
for the deformable registration task has been increasingly 
investigated in different medical image modalities [6]. 
In these methods, in contrast to classical ones, deform-
able registration is defined as a parametric function. The 
optimization process is carried out by tuning the learn-
ing parameters given a set of fixed and moving images. 
When the deep learning-based network is trained, it can 
register a pair of three-dimensional (3D) medical images 
significantly faster than current standard algorithms [6]. 
In addition to a significant reduction in the processing 
time, the recently published deep learning registration 
methods such as VoxelMorph [7], DLIR [8], and FAIM 
[9] have demonstrated comparable performance to the 
standard ones. Based on the way of training the model 
and the presence/absence of ground-truth data, deep 
learning-based image registration can be categorized 
into fully supervised [10], unsupervised [7], and weakly-
supervised learning-based methods [11].

Deformable registration of baseline pre-surgical and 
follow-up volumetric MRI scans is essential to the treat-
ment plan and diagnosis of brain gliomas [12, 13] in 
neuro-/radiation oncology. Although the decent perfor-
mance of modern deep learning-based deformable reg-
istration algorithms concerning computation time and 
accuracy, their performance on the brain MR images con-
taining pathologies is far from perfect. This issue remains 
clinically unresolved. One of the reasons is the high 
deformation of the brain tissues induced by the resected 
tumor after the surgery. Some heavy deformations are 
not restricted to the lesion area and can affect the entire 
brain. Another reason is that the intensity profiles of the 

pre-surgical and follow-up scans are inconsistent. A third 
reason is the lack of correspondence between the pre- 
and post-operative images [14].

Considering the above points, establishing spatial cor-
respondences between MRI scans acquired at two time-
point (e.g., pre- and post-operation) from glioma patients 
can further help in the understanding of the mechanisms 
of these tumors. Precisely, for potential tumor recur-
rence and tumor infiltration, it can further contribute to 
developing predictive modeling for related pathophysi-
ological processes. It can also aid in understanding the 
biophysical dynamic and plasticity characteristic of brain 
tissues besides neurosurgical planning. Few studies have 
addressed this correspondence utilizing different con-
volutional neural networks (CNNs) for deformable reg-
istration. These methods include proposing a one-stage 
[15–19], two-stage [20] or three-stage [21] registration 
pipeline for this purpose. Despite the inspiring perfor-
mance of these models, obtaining accurate results may 
remain challenging for deep learning-based deform-
able registration because of the large deformation of the 
healthy images. In addition, most of these methods need 
initial rigid registration performed separately before 
deformable registration. They involve more than a single 
stage (two- and three-stage methods) and cannot be fully 
automated. In this paper, we develop an unsupervised 3D 
convolutional U-Net-based deformable image registra-
tion (ConvUNet-DIR) framework to estimate the corre-
spondences between pre-surgical and follow-up 3D MRI 
scans for glioma patients. Our method can perform an 
end-to-end deformable registration (i.e., without human 
intervention) and does not need supervision (e.g., data 
such as ground-truth registration fields or anatomical 
landmarks) during the network training. The network 
resembles a multi-scale U-Net style architecture [22] to 
capture the feature maps, and its parameters are updated 
during the training by minimizing the dissimilarity 
between the baseline and warped images.

Materials and methods
The ConvUNet-DIR framework (Fig. 1) proposed in this 
study is to estimate the optimal parameterized mapping 
function φ  between a baseline pre-operative MR image 
(fixed image, If ) and the follow-up MR image (mov-
ing image, Im ). The φ  is a nonlinear voxel-wise corre-
spondence between If  and Im . The deformed/warped 
image (Im ◦ φ ) from Im  can be registered to If . Here, 
the global mapping function φ (x) = x + s (x)  is formed 

VoxelMorph learning-based deformable registration algorithms and other supervised/unsupervised deep learning-
based methods reported in the literature.
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by an identity spatial transform and deformation field s
. Once the framework has been trained, the deformation 
field s  can be obtained from a new pair of MRI scans.

Dataset
A multi-institutional dataset (n = 160) of multi-para-
metric MRI scans, representing the training and vali-
dation sets of the Brain Tumor Sequence Registration 
(BraTS-Reg 2022) challenge, was used in this study [23]. 
The patients were diagnosed with glioma and clinically 
scanned with multi-parametric MRI acquisition pro-
tocol. The multi-parametric MRI scans of each patient 
included T1-weighted (T1), contrast-enhanced T1 (T1-
ce), T2, and T2 Fluid Attenuated Inversion Recovery 
(T2-FLAIR or simply FLAIR). The mages were acquired 
at two time-point: pre-operative (treatment-naïve) and 
follow-up. The follow-up scans range from 27 days to 
37 weeks. The images have been manipulated already. 
All scans were first transformed into the same coordi-
nate system and then rigidly co-registered to the same 
anatomical coordinate using the greedy diffeomorphic 
registration algorithm [24]. Then, the images were skull-
striped by extracting the brain tissue and sampled down 
to 240 × 240 × 155 dimensions with 1 mm3 spatial resolu-
tion. The brain extraction was performed using the Brain 
Mask Generator, a deep learning-based algorithm [25]. 

Precisely, non-cerebral tissues such as the skull, scalp, 
and dura were removed from all MRI scans.

Preprocessing
We implemented some preprocessing to the multi-para-
metric MRI data before being utilized to train the pro-
posed model. First, we cropped the multi-parametric 
MRI data into smaller sizes of 224 × 224 × 155 dimensions 
by excluding peripheral voxels with no information. Then, 
we resized the data into 128 × 128 × 128 dimensions. Next, 
the image data were normalized using the zero mean and 
unit variance technique and scaled the data to the [0, 1] 
range. Accurate registration requires the input MRI scans 
to be normalized (i.e., voxel intensities range from 0 to 
1) to produce consistent results for the images acquired 
with different scanners/imaging protocols. Finally, we 
randomly split the data into 64% (n = 102) as a training 
set, 16% (n = 26) as a validation set, and 20% (n = 32) as a 
test set.

CNN architecture
Our proposed ConvUNet-DIR framework uses U-Net 
[22] as a core (Fig.  2). It takes a two-channel 3D MR 
image representing the concatenation of If  and Im  as 
input. The input size of the network is 128 × 128 × 128 × 2. 
The convolutional network consists of an encoder with 
four downsampling layers, a bottleneck or bridge, and 

Fig. 1  The framework of our unsupervised convolutional U-Net based deformable image registration (ConvUNet-DIR) of pre-operative and follow-up 
magnetic resonance images of glioma patients
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a decoder network of four upsampling layers. In the 
encoder, 3D convolutional layers (3 × 3 × 3 kernel size and 
2 × 2 × 2 stride) and the LeakyReLU activation are used 
to extract features and down-sample/reduce the spatial 
resolution of the volumes by a factor of 1/2 at differ-
ent spatial resolution levels. The base level of the model 
or bottleneck is composed of two convolutional layers 
(3 × 3 × 3 kernel size and 1 × 1 × 1 stride). The decoder 
network is made up of four upsampling convolutional 
layers (3 × 3 × 3 kernel size and 1 × 1 × 1 stride) and the 
LeakyReLU activation function to reconstruct the defor-
mation field. The encoder and decoder networks are 
concatenated via skip connections to detect and com-
bine information at different spatial levels to produce the 
deformation field. Three additional convolutional layers 
(3 × 3 × 3 kernel size and 1 × 1 × 1 stride) with LeakyReLU 
activation function are added after the decoder network. 
The final layer is a convolutional layer (3 × 3 × 3 kernel 
size and 1 × 1 × 1 stride) with a linear activation used for 
a regression output. The linear activation in this layer 
enables positive and negative values as the output of the 
deformation field. The output layer of the network is a 
deformation field s  with a size of 128 × 128 × 128 × 3.

Spatial transformation layer
The spatial transformation layer computes Im ◦ φ . The 
position of individual voxels in Im  is determined in the 
space of If . In this layer, φ  is used to warp Im  and then 
obtain Im ◦ φ . To ensure that the spatial transformation 
layer is differentiable, we used linear interpolation to esti-
mate the voxel value of Im  in the x, y, and z coordinates. 
As a result, back-propagation of the errors through the 
network could be implemented during the training.

Loss function
We implemented an unsupervised loss function (Loss
) to evaluate the model using only the If  and Im ◦ φ
. The loss function consists of a similarity loss (Lsim ) 
and a regularization term (Lsmooth ) that penalizes large 
deformations to produce smooth registration fields. Lsim  
penalizes the difference in appearance, whereas Lsmooth  
penalizes the first derivative of s  to produce a fine regis-
tration field. The Loss  is defined as:

	Loss (If , Im ◦ φ) = Lsim (If, Im ◦ φ) + λ•Lsmooth(If , Im ◦ φ)

where λ  is a regularization parameter.

Fig. 2  The convolutional U-Net-style architecture. Numbers at the bottom of the blocks represent the spatial resolution ratio of each volume to the input 
volume. Numbers inside the block indicate the extracted features. Arrows donate different operations
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The Lsim  was set to the negative local normalized 
cross-correlation (NCC) coefficient [26] of If  and Im ◦ φ
. This intensity-based similarity measure was found to 
be optimal for single/mono-modality image registration 
where the image pair shares similar intensity distribution 
[2]. The NCC  coefficients were calculated over a volume 
of 9 × 9 × 9. The Lsim  is defined as:

	 Lsim (If, Im ◦ φ) = −NCC(If , Im ◦ φ)

.Minimizing the Lsim  without applying constraints 
can lead to Im ◦ φ  with unrealistic organ appearances. 
Obtaining a smooth s  requires implementing a diffusion 
regularizer on the spatial gradients (∇ ) of deformation s  
as follows:

	 Lsmooth (If, Im ◦ φ) =
∑

|| ∇s(If , Im ◦ φ) ||2

.The spatial gradients were approximated using differ-
ences between neighboring voxels.

Training and validation
The ConvUNet-DIR model was trained using an unsu-
pervised manner for deformable registration of a pair of 
MRI scans (If , Im ) with volumes of 128 × 128 × 128 on a 
training data set (n = 102). Adam optimizer, implement-
ing the gradient descent approach, was set to optimize 
the learning model with a 0.0001 learning rate. The regu-
larization parameter, λ, was set to 1. We assessed differ-
ent settings for λ, including 0 (no regularization), 0.1, 0.2, 
0.5, and 1. The λ = 1 found to work best with our task. The 
model was trained for 150 epochs using a batch size of 
1. Our GPU memory does not permit us to use a larger 
batch size. During the network training, each pair of MRI 
scans is concatenated into a 2-channel 3D image and fed 
into the 3D U-Net. The deformation field s  was com-
puted through the convolutional layers of U-Net. The 
spatial transformation layer was used to warp Im  into 
Im ◦ φ  by using linear resampling. The network param-
eters are regularly tuned during the training by minimiz-
ing the dissimilarity between the If  and Im ◦ φ . The s  is 
punished by regularization terms to encourage smooth-
ness (i.e., regularize the predicted deformation). During 
the training, the model was validated on the validation 
set (n = 26) to assess its generalizability and to update the 
hyper-parameters.

The training was performed using Keras API (ver-
sion 2.10) with a Tensorflow (version 2.10) platform as 
the backend in Python (version 3.10, Python Software 
Foundation, Wilmington, DE, USA) by using an NVIDIA 
Quadro M1200 4 GB GPU. The trained model takes less 
than 2 s to register a pair of MRI scans for a new patient, 
making its deployment to the clinical practice feasible.

Evaluation
The model was assessed to evaluate its performance 
on the registration of pairs of If  and Im  on a test set 
(n = 32). One of the utilized metrics is the Dice similar-
ity coefficient. It is used to estimate the volume overlap 
of the brain fields which was determined using the gen-
erated brain masks. The Dice score of the warped mask 
(Am ◦ φ ) and the fixed mask (Af ) of the If  is calculated 
as follows:

	
Dice(Am ◦ φ, Af) =

2|Am ◦ φ ∩ Af |
|Am ◦ φ| + |Af |

Another metric used to evaluate our proposed method is 
the structural similarity index (SSIM). This metric simu-
lates the human-perceived quality of images by compar-
ing two images. Mathematically, it is defined as:

	
SSIM(x, y) =

(2µxµy + C1)(2σxy + C2)(
µ2

x + µ2
y + C1

)
(σ2

x + σ2
y + C2)

,

where µ  is the mean image intensity, σ2 is the variance 
of the image, σxy  is the covariance of the fixed (x)  and 
moving (y) images, and C1  and C2  are constants added 
to stabilize the division with a weak denominator. The 
performance of the ConvUNet-DIR model was also 
compared with the open-source VoxelMorph (VM1 and 
VM2) methods [7], deep learning-based algorithms. We 
trained the two versions of the VoxelMorph algorithms 
from scratch on the BraTS-Reg 2021 dataset for a fair 
comparison.

Results
The results of the ConvUNet-DIR model are reported 
for pairs of T1, T1-ce, T2, and FLAIR MRI scans on the 
test set (n = 32). Figure  3 shows representative registra-
tion results of aligning two images for one patient on 
axial, coronal, and sagittal views. The figure also dis-
plays the overlay of the fixed (pre-operative) and moving 
(follow-up) images, the overlay of the fixed and warped 
(deformed) images, and the deformation field. The over-
lay of the fixed and moving images shows variable degrees 
of deformation, whereas the warped image is nearly over-
lapping on the fixed image. The figure shows the fixed 
image (in green color) on top of the moving image (in red 
color) and the warped image (in green color) on top of 
the fixed image (in red color). It looks like the deformed 
image has a slightly lower spatial resolution. The results 
of the deformable registration of the four MRI scans with 
ConvUNet-DIR and VoxelMorph (VM1 and VM2) mod-
els are shown in Fig. 4. It is clear that the ConvUNet-DIR 
model provides better registration results compared to 
both VM1 and VM2 algorithms.



Page 6 of 10Osman et al. Radiation Oncology           (2024) 19:61 

Figure 5 shows the effects of the regularization parame-
ter, λ, on the warped image (T1 as an example) generated 
by the ConvUNet-DIR model. The results demonstrate 
that the best registration is obtained with the regulariza-
tion weight set to 1, which agrees with that reported by 
Chen et al. [27].

Table  1 presents a quantitative summary of all regis-
tration results with the ConvUNet-DIR, VM1, and VM2 
models on the test set (n = 32). The mean SSIM and Dice 
scores were reported for all correspondences. The SSIM 
and the Dice score were calculated for the brain fields of 
a 3D MR image. From the results, we can observe that 

Fig. 3  Example registration results of pairs of T1, T1-ce, T2, and FLAIR 3D MRI scans on three planes (axial, coronal, and sagittal) by our proposed ConvU-
Net-DIR model for one patient in the test set. Overlays of the fixed image (green color) and moving/warped image (red color) on top of each other and 
the deformation field are also displayed
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the performance of the ConvUNet-DIR method is con-
sistently better compared to VM1 and VM2. The table 
also reports the CPU computation time required by each 
model to perform deformable registration on a pair of 
volumetric MRI scans for a new patient. The computa-
tion time of all models was about 1  s, which is signifi-
cantly shorter than the traditional methods. The learning 
parameters of all models also were reported in the table.

Discussion
Deformable registration of MRI scans of patients with 
pathologies is challenging. In this study, we developed 
an unsupervised deep learning-based deformable regis-
tration algorithm to establish complex correspondences 
between the pre- and post-operative 3D MRI scans of 
patients with glioma. Given a pair of MRI scans at two 
time-point as input, the ConvUNet-DIR model computes 
the voxel-wise deformation between the two images. In 
addition to its 3D nature that accounts for adjacent slices 
in the volumetric image data, ConvUNet-DIR does not 
need supervision during its training.

The qualitative results are illustrated in Figs. 3 and 4 for 
an example patient in the test set. The ConvUNet-DIR 
method demonstrated registration with high accuracy 
while preserving deformation smoothness. It also seemed 
to preserve the original intensity distribution better, 
while VM1 and VM2 appeared to have an impact on the 
intensity values. The quantitative registration results are 
presented in Table 1. The table shows impressive results 
achieved by our proposed model with a mean SSIM 
of 0.908 and a mean Dice score of 0.975. The execution 

time of the ConvUNet-DIR model was about 1 s, which 
is significantly shorter than the conventional methods. 
This advantage signifies its clinical deployment for criti-
cal time applications in neuro-oncology and radiation 
oncology.

This study also compared the performance of the 
ConvUNet-DIR with the VoxelMorph models [7], 
as shown in Table  1. Both methods are deep learn-
ing-based algorithms that allow unsupervised 3D 
deformable registration. The results achieved by Con-
vUNet-DIR (SSIM = 0.908, Dice = 0.975) were superior to 
VM1 (SSIM = 0.893, Dice = 0.969) and VM2 (SSIM = 0.857, 
Dice = 0.957). Our method produces a more competitive 
deformation field than VoxelMorph. We also compared 
the performance of the ConvUNet-DIR with the current 
state-of-the-art supervised and unsupervised deep learn-
ing-based approaches reported in the literature utilized 
public brain MRI datasets. Our method (Dice = 0.980) 
outperformed Han et al. [19] (Dice = 0.839), Martin 
et al. [28] (Dice = 0.756), Wu et al. [29] (Dice = 0.873), 
Meng et al. [30] (Dice = 0.654), Kuang and Schmah [9] 
(Dice = 0.533), Mok and Chung [31] (Dice = 0.770), Huang 
et al. [32] (Dice = 0.707), Xu et al. [33] (Dice = 0.830), Dey 
et al. [34] (Dice = 0.781), Fan et al. [35] (Dice = 0.788), Liu 
et al. [36] (Dice = 0.909), Chen et al. [37] (Dice = 0.873), 
Wang et al. [38] (Dice = 0.731) methods using unsuper-
vised approach; and Zhu et al. [39] (Dice = 0.637) method 
using supervised approach.

This study has demonstrated that the proposed method 
can perform an end-to-end deformable registration of 
a pair of volumetric brain MR images without human 

Fig. 4  Example registration results of pairs of T1, T1-ce, T2, and FLAIR 3D MRI scans with the ConvUNet-DIR and VoxelMorph (VM1 and VM2) models
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intervention. It does not require pre-alignment compared 
to similar algorithms that require at least two steps to 
perform the registration [20, 21]. Compared to super-
vised registration networks, our method does not require 
additional segmentation masks or anatomical marks for 
network training. ConvUNet-DIR could also support 
multimodality image registration by substituting NCC 
with mutual information. Combining T1 pre- and post-
contrast, T2, and FLAIR might achieve even better reg-
istration. The reason is that different scans are implicitly 
co-registered within the pre- or post-operative data (just 
some rigid registration), barring image distortion from 

the acquisition). It is worth noting that ConvUNet-DIR 
works for a broad window of time (27 days to 37 months 
follow-up).

We can briefly discuss the limitations of this study in 
three points. First, our model requires resizing all images, 
which may cause information loss. Employing a tri-linear 
interpolation could minimize this issue. Second, due to 
the restriction of the GPU memory, we set the batch to 
only 1 sample. Using a small batch size may cause regis-
tration errors. Third, this work is a multi-institution study 
with a relatively small dataset. To assess the performance 
of this model in a more general way in clinical practice, 

Fig. 5  Results of effects of the regularization parameter, λ, on the warped image (T1 as an example) produced by the ConvUNet-DIR model. Rows show 
different regularization weights. Columns show the moving image, fixed image, warped image, and the deformation field, respectively

 



Page 9 of 10Osman et al. Radiation Oncology           (2024) 19:61 

we recommend training the model using more data sam-
ples from several institutions for better generalizability.

Conclusions
We developed a ConvUNet-DIR framework based on 
unsupervised learning to establish correspondence 
between a pair of 3D MRI scans acquired at two time-
point from patients with glioma. The proposed method 
demonstrated registration accuracy superior to the 
state-of-the-art VoxelMorph (VM1 and VM2) registra-
tion tools (open-sourced learning-based registration 
algorithms) and other supervised/unsupervised deep 
learning-based algorithms reported in the literature. It 
can perform an automated deformable registration of 
a pair of 3D MRI scans for glioma patients. The model 
could provide accurate, efficient, and robust deformable 
registration without needing pre-alignment and labeling, 
resulting in a significantly shorter registration time. This 
method has the potential for application in clinical prac-
tice in neuro-/radiation oncology.
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Table 1  Comparison results of the proposed model (ConvUNet-DIR), VM1, and VM2 models for deformable registration of pairs of 3D 
MRI scans evaluated on a testing data set (n = 32). Results were reported in the form of mean ± 1 standard deviation. Values in bold 
indicate the best results
Modality Model SSIM Dice Score CPU (s) Parameters
T1 VM1 0.876 ± 0.052 0.965 ± 0.007 0.83 ± 0.17 259,675

VM2 0.818 ± 0.120 0.943 ± 0.015 1.34 ± 0.22 300,547
ConvUNet-DIR 0.898 ± 0.041 0.976 ± 0.005 1.32 ± 0.14 328,227

T1-ce VM1 0.906 ± 0.039 0.974 ± 0.008 0.83 ± 0.17 259,675
VM2 0.848 ± 0.104 0.959 ± 0.012 1.34 ± 0.22 300,547
ConvUNet-DIR 0.919 ± 0.035 0.980 ± 0.008 1.32 ± 0.14 328,227

T2 VM1 0.875 ± 0.053 0.962 ± 0.010 0.83 ± 0.17 259,675
VM2 0.816 ± 0.118 0.937 ± 0.018 1.34 ± 0.22 300,547
ConvUNet-DIR 0.894 ± 0.043 0.971 ± 0.008 1.32 ± 0.14 328,227

FLAIR VM1 0.878 ± 0.046 0.964 ± 0.010 0.83 ± 0.17 259,675
VM2 0.821 ± 0.113 0.945 ± 0.022 1.34 ± 0.22 300,547
Ours 0.896 ± 0.041 0.973 ± 0.008 1.32 ± 0.14 328,227

Overall (T1, T1ce, T2, & FLAIR) VM1 0.884 ± 0.011 0.966 ± 0.004 0.83 ± 0.17 259,675
VM2 0.826 ± 0.011 0.946 ± 0.006 1.34 ± 0.22 300,547
ConvUNet-DIR 0.902 ± 0.009 0.975 ± 0.004 1.32 ± 0.14 328,227

SSIM: structural similarity index; VM1: voxelmorph1; VM2: voxelmorph2

https://www.med.upenn.edu/cbica/brats-reg-challenge/
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