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Abstract
Background  Multiple artificial intelligence (AI)-based autocontouring solutions have become available, each 
promising high accuracy and time savings compared with manual contouring. Before implementing AI-driven 
autocontouring into clinical practice, three commercially available CT-based solutions were evaluated.

Materials and methods  The following solutions were evaluated in this work: MIM-ProtégéAI+ (MIM), Radformation-
AutoContour (RAD), and Siemens-DirectORGANS (SIE). Sixteen organs were identified that could be contoured by all 
solutions. For each organ, ten patients that had manually generated contours approved by the treating physician (AP) 
were identified, totaling forty-seven different patients. CT scans in the supine position were acquired using a Siemens-
SOMATOMgo 64-slice helical scanner and used to generate autocontours. Physician scoring of contour accuracy 
was performed by at least three physicians using a five-point Likert scale. Dice similarity coefficient (DSC), Hausdorff 
distance (HD) and mean distance to agreement (MDA) were calculated comparing AI contours to “ground truth” AP 
contours.

Results  The average physician score ranged from 1.00, indicating that all physicians reviewed the contour as clinically 
acceptable with no modifications necessary, to 3.70, indicating changes are required and that the time taken to 
modify the structures would likely take as long or longer than manually generating the contour. When averaged 
across all sixteen structures, the AP contours had a physician score of 2.02, MIM 2.07, RAD 1.96 and SIE 1.99. DSC 
ranged from 0.37 to 0.98, with 41/48 (85.4%) contours having an average DSC ≥ 0.7. Average HD ranged from 2.9 to 
43.3 mm. Average MDA ranged from 0.6 to 26.1 mm.

Conclusions  The results of our comparison demonstrate that each vendor’s AI contouring solution exhibited 
capabilities similar to those of manual contouring. There were a small number of cases where unusual anatomy led 
to poor scores with one or more of the solutions. The consistency and comparable performance of all three vendors’ 
solutions suggest that radiation oncology centers can confidently choose any of the evaluated solutions based on 
individual preferences, resource availability, and compatibility with their existing clinical workflows. Although AI-based 
contouring may result in high-quality contours for the majority of patients, a minority of patients require manual 
contouring and more in-depth physician review.
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Background
Delineations of organs-at-risk (OARs) is a critical task in 
radiation therapy to define and outline the normal tis-
sue whose radiation dose tolerances must be observed 
to limit associated treatment-related toxicities. Various 
members of the radiation oncology care team, mostly 
dosimetrists and radiation oncologists, are involved 
in creating these normal tissue delineations; however, 
medical physicists and/or radiation therapists may also 
be involved. These delineations are performed manu-
ally using various tools, such as freehand drawing tools, 
Hounsfield unit (HU) thresholding, Boolean operations, 
etc. This manual contouring is often a time-consuming 
and subjective process, as different individuals may con-
tour the same structure differently [1–3]. While profound 
efforts have been made to create contouring guidelines 
to help reduce this variability [4], OAR and target con-
touring variability remain among the largest sources of 
uncertainty in the radiation therapy process [5, 6]. To 
reduce inter-observer variability [7], improve workflow 
efficiency [8] and provide necessary tools for adaptive 
radiation therapy [9, 10], automated contouring tools 
leveraging a variety of technologies have been developed 
by several vendors.

Atlas-based tools utilized predefined anatomical tem-
plates (atlases) created using manual contouring tech-
niques to assist in OAR delineation [11]. A library of atlas 
patients is created that ideally represents the patient pop-
ulation. When an atlas is selected to generate contours, 
the new patient is matched to the most similar patient 
from the library (source) and deformably registered to 
the patient (target). OAR contours are then transferred 
to the target patient using this deformable registration. 
Although these atlas-based tools reduce contouring time, 
studies have shown that there is still substantial variabil-
ity in the generated contours [7]. As atlas tools rely on a 
finite number of cases, they are of limited use in complex 
or nonstandard anatomies or in patient populations that 
were not included in the atlas data [12].

In recent years, multiple artificial intelligence (AI)-
based autocontouring software solutions have become 
widely available. Compared with previous autocontour-
ing software, AI-based solutions have been shown to 
have improved accuracy, reduced time requirements and 
fewer modifications of the generated structures required 
[13–16]. AI contouring tools use complex algorithms 
and machine learning techniques to automatically gen-
erate OAR contours. Although these contours can be 
more accurate than atlas-based contours, manual adjust-
ment may still be necessary. Contouring adjustment may 
be performed by a dosimetrist, or other appropriately 
trained staff, however, final review and approval by a 
radiation oncologist is required. Manual adjustment of 
automatically generated contours can be time consuming 

to the point of no time savings over manual contouring 
[17, 18], depending on the individual user’s skill level.

Before implementing AI-driven autocontouring in our 
clinical practice, three commercially available CT-based 
AI autocontouring solutions were evaluated through 
physician scoring and similarity metrics to verify their 
accuracy and determine which, if any, of the available 
solutions would have sufficient accuracy to be clinically 
applicable. Each of these solutions utilizes individual 
deep learning AI-based algorithms to generate between 
thirty-seven and eighty-five organ contours, based on the 
acquired CT imaging data. Sixteen organs that could be 
contoured by all three of the available solutions across a 
range of anatomical sites including head and neck, tho-
rax, abdomen, and pelvis were investigated. Differences 
in training data, neural network architecture and con-
tour definitions, such as the superior border of the heart, 
lead to differences between the individual solutions and 
hence, the need for evaluation before clinical implemen-
tation. While this paper focuses on comparing AI auto-
contouring solutions, providing detailed descriptions of 
each algorithm is beyond its scope. Interested readers are 
encouraged to refer to the respective white papers cited 
for in-depth information on each algorithm’s specifics 
[19–21].

Methods
In this study, three autocontouring solutions were com-
pared to manual contouring. The three solutions used 
were ProtégéAI + v7.2.7, MIM Software Inc. (Beachwood, 
OH, USA) (MIM), AutoContour v2.2.8 RADforma-
tion Inc. (New York, NY, USA) (RAD), DirectORGANS 
v.a.40  S Healthineers (Erlangen, Germany) (SIE). Six-
teen organs that were common to all three were identi-
fied: bladder, brain, brainstem, esophagus, eyes, femoral 
heads, heart, kidneys, liver, lungs, mandible, oral cavity, 
parotids, rectum, submandibular glands, and spinal cord. 
For each of these organs, ten patients who had manually 
generated contours approved by the treating physician 
(AP) were identified. For bilateral organs, five patients 
were utilized, with the left and right organs contoured 
individually. For the spinal cord, five patients had thoracic 
scans, and five had abdominal/pelvic scans, ensuring that 
the entire spinal cord was investigated. AP contours were 
approved by one of eight attending physicians at our 
institution with between five and twenty-eight years of 
experience. A total of forty-six patients were included: 
seventeen females (37%) and twenty-nine males (63%). 
All patients were simulated in a supine position on a Sie-
mens SOMATOM go 64-slice helical CT scanner. Each 
scan was reconstructed with either a 1–2 mm slice thick-
ness, depending on the intended treatment technique. 
These CT scans were exported to each of the three con-
touring solutions and contour sets generated. Images and 
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contours were anonymized, randomized, and reviewed 
by at least three physicians who were blinded to the con-
touring technique used to generate a given contour set. 
Reviewing physicians had at least three years of experi-
ence in Radiation Oncology and a maximum of twenty-
eight years of experience.

A five-point Likert scale (1: use as-is; 5: unusable), 
modified from a scale previously utilized for the review 
of automated RT plans [22], was utilized for physician 
review. A score of 1 indicates that the structures are clini-
cally acceptable and can be used for treatment without 
change. A score of 2 indicates minor edits that are not 
necessary and that stylistic changes may occur; how-
ever, these edits are not clinically important, and current 
structures are clinically acceptable. A score of 3 indicates 
minor edits that are necessary and can be made in less 
time than starting from scratch or are expected to have 
minimal effect on treatment outcome. A score of 4 indi-
cates major edits that are necessary and are sufficiently 
significant that the user would prefer to start from 
scratch. Finally, a score of 5 indicates the quality of the 
automatically generated structures is so poor that they 
are unusable, incorrect structures may be contoured, or 
no structure may be generated.

The Dice similarity coefficient (DSC) [23], Hausdorff dis-
tance (HD) [24], and mean distance to agreement (MDA) 
[25] were calculated for each structure using the AP con-
tour as the ground truth. To calculate these similarity met-
rics, all structures were transferred to the same CT image, 
and contour statistics were analyzed in MIM. As AI con-
touring solutions typically contour the esophagus and spi-
nal cord over the whole organ length or the length of the 
CT vs. the physician contours, which are mostly restricted 

to the area of the PTV, the AI contours were modified to 
include only the length of the physician contours to allow 
unbiased review and volumetric comparisons.

Results
Physician scoring results are shown in Table 1 and Fig. 1A 
as averages and sample standard deviations for each con-
tour. The average scores ranged from 1.00, indicating that 
all physicians reviewed the contour as clinically accept-
able, with no modifications necessary or stylistic differ-
ences found, to 3.70, indicating that changes are required 
and that the time taken to modify the structures would 
likely take as long or longer than manually generating 
the contour. Overall, 12/64 (18.8%) contours had aver-
age scores ≤ 1.5, 37/64 (57.7%) had scores > 1.5 but ≤ 2.5, 
12/64 (18.8%) had scores > 2.5 but ≤ 3.5 and 3/64 (4.7%) 
had scores > 3.5. The AP contours had an overall average 
of 2.02, MIM had an average of 2.07, RAD had an average 
of 1.96 and SIE had an average of 1.99.

Table 2 and Fig. 1B show the average and sample stan-
dard deviation of the DSC data. The DSC ranged from 
0.37 (RAD: femur-head) to 0.98 (RAD: brain). Only 
1/48 (2%) contours have an average DSC < 0.5, indicat-
ing poor overlap and significant differences between the 
segmented region and the ground truth. A total of 6/48 
(12.5%) had average DSC values between 0.5 and 0.7, 
indicating moderate overlap with some agreement; how-
ever, AI segmentation may still need improvement. A 
total of 32/48 (66.7%) had an average DSC between 0.7 
and 0.9, indicating substantial overlap and showing good 
agreement between the AI contour and the ground truth 
AP contour. A total of 9/48 (18.8%) have average DSC 
values ≥ 0.9; these contours have a high overlap, and there 

Table 1  Average Physician Score with standard deviations of scores for manually generated approved physician contours (AP) and 
autocontours from MIM Software Inc. (MIM), RADformation Inc. (RAD) and Siemens Healthineers (SIE). One-way ANOVA F and P values 
are also shown. Minimum values and statistically significant P values are shown in bold *Left or right
Organ AP MIM RAD SIE F value P value
Bladder 1.20 (0.23) 3.27 (1.24) 2.50 (1.43) 2.30 (1.41) 5.178 0.004
Bone_Mandible 1.83 (0.76) 1.70 (0.51) 1.70 (0.43) 2.00 (0.57) 0.607 0.61
Brain 2.07 (0.91) 1.90 (0.45) 1.53 (0.23) 2.53 (0.63) 4.628 0.008
Brainstem 2.57 (1.10) 1.60 (0.44) 1.37 (0.19) 1.50 (0.42) 7.403 < 0.001
Cavity_Oral 2.87 (0.95) 2.53 (0.71) 2.50 (0.67) 2.87 (0.88) 0.628 0.60
Esophagus 2.15 (0.69) 2.56 (0.75) 2.41 (0.67) 1.91 (0.41) 1.999 0.13
Eye* 1.20 (0.24) 1.07 (0.16) 1.00 (0.00) 1.53 (0.74) 5.644 0.003
Femur_Head* 1.00 (0.00) 2.20 (0.67) 3.70 (0.71) 1.80 (1.69) 13.50 < 0.001
Glnd_Submand* 3.19 (1.53) 2.59 (0.81) 1.89 (0.24) 1.96 (0.20) 5.118 0.005
Heart 1.83 (0.45) 2.87 (0.78) 1.97 (0.36) 2.35 (0.92) 4.847 0.006
Kidney* 1.80 (0.86) 1.53 (0.80) 1.00 (0.00) 1.40 (0.31) 2.990 0.04
Liver 2.67 (0.70) 2.77 (1.01) 2.63 (0.99) 1.93 (0.97) 1.709 0.18
Lung* 1.85 (0.53) 1.69 (0.29) 1.92 (0.91) 1.98 (0.97) 0.297 0.83
Parotid* 2.53 (0.86) 1.83 (0.28) 2.03 (0.81) 1.90 (0.82) 1.868 0.15
Rectum 1.73 (0.82) 1.67 (0.42) 1.80 (0.65) 1.50 (0.18) 0.584 0.63
SpinalCord 1.84 (0.57) 1.29 (0.28) 1.35 (0.35) 2.33 (0.69) 9.495 < 0.001
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is excellent agreement between the contours. When the 
DSCs for all structures are averaged, MIM and SIE both 
have averages of 0.81, while RAD has an average of 0.80.

Table 3 and Fig. 1C show the average and standard devia-
tion of the HD. The average HD ranged from 2.9  mm 
(RAD: eye) to 43.3 mm (SIE: lung). Overall, 24/48 (50.0%) 
had an average HD > 20.0  mm. A total of 17/48 (35.4%) 
had an average HD between 10.0  mm and 20.0  mm. A 
total of 4/48 (8.3%) had an average HD between 5.0  mm 
and 10.0 mm, and 3/48 (6.3%) had an average HD < 5 mm. 
When the HD for all structures are averaged MIM had an 
average of 22.7 mm, RAD had an average of 23.1 mm, and 
SIE had an average of 20.0 mm.

Table 4 and Fig. 1D show the average and standard devi-
ation of the MDA. The average MDA ranged from 0.6 mm 
(RAD: eye) to 26.1  mm (RAD: femoral head). A total of 
1/48 (2.1%) had an average MDA > 10.0  mm. A total of 
6/48 (12.5%) had an average MDA between 5.0  mm and 
10.0 mm. 21/48 (43.8%) of the MDA values were between 
2.5  mm and 5.0  mm, and 20/48 (41.7%) had an average 
MDA < 2.5 mm. When the MDA for all the structures are 
averaged MIM had an average of 3.0  mm, RAD had an 
average of 4.0 mm, and SIE had an average of 2.8 mm.

Table 2  Average Dice Similarity Coefficient with standard 
deviations for autocontours from MIM Software Inc. (MIM), 
RADformation Inc. (RAD) and Siemens Healthineers (SIE). One-
way ANOVA F and P values are also shown. Minimum values and 
statistically significant P values are shown in bold *Left or right
Organ MIM RAD SIE F value P value
Bladder 0.76 (0.24) 0.81 (0.31) 0.89 (0.09) 0.814 0.45
Bone_Man-
dible

0.90 (0.07) 0.89 (0.06) 0.86 (0.10) 0.557 0.58

Brain 0.98 (0.01) 0.98 (0.01) 0.97 (0.01) 2.502 0.10
Brainstem 0.72 (0.19) 0.73 (0.21) 0.67 (0.19) 0.302 0.74
Cavity_Oral 0.77 (0.10) 0.72 (0.14) 0.74 (0.14) 0.328 0.72
Esophagus 0.67 (0.14) 0.70 (0.11) 0.77 (0.10) 1.711 0.20
Eye* 0.89 (0.04) 0.90 (0.03) 0.90 (0.03) 0.269 0.77
Femur_Head* 0.84 (0.13) 0.37 (0.20) 0.75 (0.34) 10.95 < 0.001
Glnd_Sub-
mand*

0.60 (0.17) 0.64 (0.19) 0.63 (0.22) 0.088 0.92

Heart 0.83 (0.14) 0.90 (0.06) 0.86 (0.16) 0.685 0.51
Kidney* 0.83 (0.22) 0.87 (0.22) 0.86 (0.22) 0.081 0.92
Liver 0.92 (0.03) 0.93 (0.02) 0.94 (0.02) 0.566 0.57
Lung* 0.96 (0.01) 0.91 (0.19) 0.87 (0.30) 0.479 0.62
Parotid* 0.75 (0.10) 0.76 (0.10) 0.72 (0.12) 0.381 0.69
Rectum 0.79 (0.11) 0.82 (0.07) 0.83 (0.08) 0.468 0.63
SpinalCord 0.75 (0.24) 0.81 (0.11) 0.68 (0.10) 1.727 0.20

Fig. 1  A) Average physician score, B) average Dice similarity coefficient, C) average Hausdorff distance (mm) and D) average mean distance to agreement 
(mm). Contours are labeled as approved by physicians (AP), generated using ProtégéAI+ (MIM), AutoContour (RAD), and DirectORGANS (SIE). Larger than 
typical values are shown for the femoral head due to RAD contouring the femoral head where PA, MIM and SIE also include the femoral neck
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Discussion
All four investigated contouring solutions obtained com-
parable physician scores. However, there were notable 
exceptions for the three AI contouring solutions for the 
bladder, brain, femoral head, and spinal cord, as dis-
cussed in detail below.

Although SIE scored slightly higher (worse) physician 
scores than MIM or RAD for the brain contours, this 
can be explained by stylistic differences: SIE subtracts 
the brainstem from the brain contour, which is not con-
sistent with our clinical practice and hence has higher 
(worse) physician scores. Similarly, for the femoral head 
contours, RAD contours just the femoral head and do not 
include the neck of the femoral head, which is included 
in the physician contours, MIM and SIE. Finally, for 
the spinal cord, SIE contours the supposed true spinal 
cord, whereas the AP, MIM and RAD contour the spinal 
canal (or thecal sac) as a surrogate for the cord, which is 
in concordance with our clinical practice, as shown in 
Fig.  2. For the spinal cord contour, while similar DSCs 
were found (0.75 - MIM, 0.81 - RAD, 0.68 - SIE), MIM 
showed a larger average HD (18.3 mm - MIM, 6.0 mm - 
RAD, 7.2 mm - SIE) and MDA (3.6 mm - MIM, 1.0 mm 
- RAD, 1.6 mm - SIE). Closer investigation revealed that 
these larger distances were found only in abdominal/pel-
vic patients where MIM contoured the spinal cord to the 
level of the L2 vertebra, whereas the physician and other 
contouring solutions included the cauda equina in the 
spinal cord structure, as shown in Fig. 2B.

When examining the bladder contours, poor scores 
were found for some or all vendors when unusual anat-
omy was encountered. MIM, RAD and SIE all received 
average scores > 4.5 for one patient where a contrast agent 
was placed within the bladder. Both MIM and RAD had 
average scores > 4.5, or “unusable”, for one female patient 
with advanced gynecological cancer for whom SIE had 
an average score of 2.67, as shown in Fig. 2C. One male 
patient with metastatic prostate disease and an enlarged, 
trabeculated bladder also received average scores > 4.5 for 
MIM and SIE, whereas RAD received an average score 
of 3.00. When these three examples of unusual anatomy 
were excluded, the average physician scores improved by 
0.70, 0.79 and 0.73 for MIM, RAD and SIE, respectively.

An example of potential errors introduced by auto-
contouring solutions for patients with abnormal or non-
standard anatomy is shown in Fig. 2D. Here, the patient’s 
right lung was typical, while the left lung had partially 
collapsed. For the right lung, all autocontouring solutions 
performed well, with PS values between 1.67 and 2.56, 
DSC values ≥ 0.92 and MDA values ≤ 2.4 mm. For the left 
lung, however, only MIM matches the AP contour well, 
with a PS of 2.33, DSC of 0.93 and MDA of 1.1 mm, while 
both RAD and SIE produce unusable contours with DSCs 
of 0.38 and 0.02, respectively, and PS > 4.

These examples highlight some of the challenges faced 
by vendors as contouring atlases used in the definitions of 
specific organs may vary between research studies, inter-
nationally and over time, which can lead to the stylistic 
difference noted. Collaboration with users at a range of 
clinical practices is important to allow for improvements 

Table 3  Average Hausdorff Distance with standard deviations 
(mm) for autocontours from MIM Software Inc. (MIM), 
RADformation Inc. (RAD) and Siemens Healthineers (SIE). One-
way ANOVA F and P values are also shown. Minimum values and 
statistically significant P values are shown in bold *Left or right
Organ MIM RAD SIE F value P value
Bladder 29.4 (30.0) 18.8 (25.3) 11.1 (10.9) 1.539 0.23
Bone_Man-
dible

9.9 (8.1) 9.8 (7.3) 14.5 (12.2) 0.795 0.46

Brain 25.5 (12.9) 25.4 (13.2) 25.0 (8.6) 0.004 1.00
Brainstem 17.4 (13.8) 16.3 (14.3) 19.4 (10.0) 0.151 0.86
Cavity_Oral 18.5 (7.1) 18.9 (7.6) 21.4 (10.1) 0.344 0.71
Esophagus 35.9 (43.2) 22.5 (26.7) 11.6 (7.6) 1.689 0.20
Eye* 3.3 (0.9) 2.9 (1.0) 3.5 (2.1) 1.036 0.37
Femur_Head* 26.6 (26.6) 81.5 (19.9) 30.0 (30.2) 14.13 < 0.001
Glnd_Sub-
mand*

12.3 (4.6) 12.5 (5.4) 11.9 (5.7) 0.035 0.97

Heart 33.5 (24.2) 17.3 (7.0) 25.8 (28.0) 1.375 0.27
Kidney* 23.6 (26.9) 21.8 (25.5) 20.9 (25.1) 0.029 0.97
Liver 34.4 (16.4) 37.3 (27.7) 31.0 (17.6) 0.216 0.81
Lung* 32.5 (16.7) 38.4 (18.5) 43.3 (28.7) 0.613 0.55
Parotid* 13.1 (3.4) 13.6 (5.8) 17.1 (7.8) 1.312 0.29
Rectum 29.3 (12.0) 25.7 (12.7) 26.4 (15.9) 0.241 0.79
SpinalCord 18.3 (23.3) 6.0 (2.2) 7.2 (6.2) 2.376 0.11

Table 4  Average Mean Distance to Agreement with standard 
deviations (mm) for autocontours from MIM Software Inc. (MIM), 
RADformation Inc. (RAD) and Siemens Healthineers (SIE). One-
way ANOVA F and P values are also shown. Minimum values and 
statistically significant P values are shown in bold *Left or right
Organ MIM RAD SIE F value P value
Bladder 5.3 (6.5) 6.0 (14.4) 1.8 (1.9) 0.588 0.56
Bone_Mandible 0.7 (0.8) 0.8 (0.6) 1.1 (1.5) 0.514 0.60
Brain 0.8 (0.2) 0.7 (0.3) 0.9 (0.3) 1.632 0.21
Brainstem 3.2 (3.5) 3.3 (3.8) 3.6 (2.9) 0.027 0.97
Cavity_Oral 3.8 (2.1) 4.4 (2.5) 4.4 (2.6) 0.200 0.82
Esophagus 5.5 (6.9) 2.8 (4.2) 1.2 (0.6) 2.087 0.14
Eye* 0.7 (0.3) 0.6 (0.2) 0.7 (0.2) 0.274 0.76
Femur_Head* 3.0 (3.9) 26.1 (16.4) 5.8 (9.7) 12.65 < 0.001
Glnd_Sub-
mand*

2.7 (1.5) 2.6 (1.8) 2.7 (1.9) 0.005 1.00

Heart 5.4 (5.8) 2.7 (1.3) 4.5 (6.7) 0.729 0.49
Kidney* 4.3 (8.7) 3.6 (8.2) 3.8 (8.1) 0.017 0.98
Liver 2.5 (1.3) 2.5 (1.6) 2.1 (0.9) 0.435 0.65
Lung* 1.2 (0.4) 2.4 (4.2) 6.0 (15.5) 0.743 0.49
Parotid* 2.0 (0.8) 2.0 (0.8) 2.5 (1.0) 0.941 0.40
Rectum 3.0 (1.7) 2.5 (1.2) 2.4 (1.4) 0.587 0.56
SpinalCord 3.6 (7.1) 1.0 (0.6) 1.6 (0.7) 1.057 0.36
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in these autocontouring solutions. Since we began this 
evaluation there have already been updates to the avail-
able models from Radformation that allow for users to 
select femoral head models that match the RTOG guide-
lines, which would theoretically improve the physician 
scores for this structure. There are also new female pelvis 
atlases which may improve bladder contouring.

DSCs greater than 0.5 were found when comparing 
AI-generated structures to the AP structure, with the 
exception of RAD femoral head owing to the contour-
ing differences outlined above. Most structures had aver-
age DSC scores between 0.7 and 0.9, indicating good 
agreement in the bulk of the structure but with room 
for improvement, especially at the periphery. Doolan et 
al. investigated five autocontouring solutions, including 
RAD, using volumetric methods [26]. Their work found 
similar DSC scores when averaged across all volumes for 
the various contouring solutions. They also investigated 
the time savings and found that between 14 and 93 min 
could be saved based on the number and complexity of 
the contoured organs. The average HD and MDA were 
similar between the autocontouring solutions, with the 

exceptions noted above. 41 out of 48 structures had an 
average MDA < 5 mm.

When examining physician scores between contour-
ing modalities, 11/16 (68.8%) of the manually generated 
approved physician contours had average scores ≤ 2.5. 
MIM showed slightly worse results, with 10/16 (62.5%) 
with average scores ≤ 2.5, while both RAD and SIE 
achieved better results, with 14/16 (87.5%) of contours 
receiving average scores ≤ 2.5. Bustos et al. compared one 
autocontouring solution to manually generated and atlas-
based contours [27]. Their work also included a review of 
the AI-generated contours by a single radiation oncolo-
gist and found that of the 140 contours evaluated, only 
5 (3.6%) required major edits or were completely redone. 
A total of 95 (67.9%) were judged to be clinically use-
able with no edits necessary, similar to the results of this 
study. We deemed contours with average physician scores 
less than 2.5 be clinically usable, with only minor or sty-
listic differences. With most of the AI-generated contours 
achieving these scores, all investigated products can 
be deemed to be at least as good as physician contours 
for a subset of contours. This underscores the potential 

Fig. 2  A) Transverse and B) sagittal views with a “soft tissue” window/level, showing spinal cord contours. C) Sagittal view with a “soft tissue” window/
level, showing bladder contours. D) Coronal view with a “lung” window/level showing left and right lung contours. Contours are labeled as approved by 
physicians (AP), generated using ProtégéAI+ (MIM), AutoContour (RAD), and DirectORGANS (SIE)
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of AI-generated contours to simplify and streamline the 
contouring and treatment planning process.

As a result of this work, it was decided to implement 
AutoContour (RAD) at all our clinical sites spanning five 
facilities, four CT simulators, eight LINACs and three 
HDR treatment units. Whilst similar physician scores 
and similarity metrics were found with all vendors, at the 
time of this work, RAD had the largest number of avail-
able organ contours.

Conclusion
The results of our comparison demonstrated that each 
vendor’s AI contouring solution exhibited similar capa-
bilities, with no striking differences in contouring accu-
racy or efficiency. The consistency and comparable 
performance of all three vendors’ solutions suggest that 
radiation oncology centers can confidently choose any of 
the evaluated solutions based on individual preferences, 
resource availability, and compatibility with their existing 
clinical workflows.

Notably, physician-generated contours received an 
average physician score of 2.02, which was worse than 
that of two of the AI contouring solutions, highlighting 
the variability among physicians in manual contouring 
and the potential of standardization that AI tools may 
offer. The accuracy of AI contouring is heavily reliant on 
the quality and diversity of the training data, as well as the 
robustness of the underlying deep learning algorithms. 
This is highlighted with examples of unusual anatomy 
presented and the corresponding poor physician scores 
and volumetric metrics. Although AI-based contouring 
may result in high-quality contours for most patients, a 
minority of patients require manual contouring and more 
in-depth physician review. Ensuring the adaptability of 
the AI model to diverse patient populations and anatomi-
cal variations remains a crucial challenge that demands 
further research and development.

The continued advancement of AI technologies in 
radiation oncology holds promising potential for further 
enhancing treatment planning precision and efficiency, 
especially with the increasing utilization of adaptive radi-
ation therapy (ART). For ART, a patient’s treatment plan 
is modified over the course of treatment based on the 
observed changes in the tumor and surrounding normal 
tissues, which is an area of increased interest as depart-
ments strive to offer improved and individualized treat-
ments to patients. As the field progresses, it is crucial for 
researchers, clinicians, and vendors to collaborate closely, 
continually refine, and validate AI contouring algorithms 
to ensure the highest level of clinical accuracy and patient 
care.
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