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Abstract
Background Magnetic resonance imaging (MRI) plays an increasingly important role in radiotherapy, enhancing 
the accuracy of target and organs at risk delineation, but the absence of electron density information limits its 
further clinical application. Therefore, the aim of this study is to develop and evaluate a novel unsupervised network 
(cycleSimulationGAN) for unpaired MR-to-CT synthesis.

Methods The proposed cycleSimulationGAN in this work integrates contour consistency loss function and channel-
wise attention mechanism to synthesize high-quality CT-like images. Specially, the proposed cycleSimulationGAN 
constrains the structural similarity between the synthetic and input images for better structural retention 
characteristics. Additionally, we propose to equip a novel channel-wise attention mechanism based on the traditional 
generator of GAN to enhance the feature representation capability of deep network and extract more effective 
features. The mean absolute error (MAE) of Hounsfield Units (HU), peak signal-to-noise ratio (PSNR), root-mean-square 
error (RMSE) and structural similarity index (SSIM) were calculated between synthetic CT (sCT) and ground truth (GT) 
CT images to quantify the overall sCT performance.

Results One hundred and sixty nasopharyngeal carcinoma (NPC) patients who underwent volumetric-modulated 
arc radiotherapy (VMAT) were enrolled in this study. The generated sCT of our method were more consistent with the 
GT compared with other methods in terms of visual inspection. The average MAE, RMSE, PSNR, and SSIM calculated 
over twenty patients were 61.88 ± 1.42, 116.85 ± 3.42, 36.23 ± 0.52 and 0.985 ± 0.002 for the proposed method. The four 
image quality assessment metrics were significantly improved by our approach compared to conventional cycleGAN, 
the proposed cycleSimulationGAN produces significantly better synthetic results except for SSIM in bone.

Conclusions We developed a novel cycleSimulationGAN model that can effectively create sCT images, making them 
comparable to GT images, which could potentially benefit the MRI-based treatment planning.
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Introduction
Magnetic resonance imaging (MRI) has become an 
essential imaging modality in both staging and targets 
volume (TV) delineation for head and neck (H&N) can-
cer radiotherapy (RT) owing to its intrinsically superior 
soft-tissue contrast, functional information, high resolu-
tion and non-radiation [1–3]. Precise contouring is cru-
cial when treating H&N cancer patients presenting with 
primary soft tissue invasion or subtle intra-cranial inva-
sion for accurate dose delivery to TV, and consequently 
improve the treatment outcomes [4–6]. Several studies 
have proven that MRI was more accurate than Computer 
Tomography (CT) and Positron Emission Tomography 
(PET) and was even closer to the pathological specimen 
measurements considered the “gold standard”, which 
can also substantially decrease the inter-observer vari-
ability of TV and organs at risks (OARs) delineation [1, 
2, 7]. Recently, the MRI-guided-radiotherapy has been 
implemented in clinical practice brought personalized 
medicine one step forward. The perfect combination of a 
Linac and the multifunctional imaging modality provides 
unique opportunities to adaptive RT [8–10]. However, 
due to the inherent limitations of physical imaging char-
acteristics, conventional MRI cannot provide bone infor-
mation and electron density information of the tissue like 
CT images, which are necessary for accurate dose cal-
culation in treatment planning, preventing further clini-
cal application of MR-only-radiotherapy [11, 12]. In the 
aggregate, CT is an indispensable imaging modality in 
the current RT workflow, and the acquisition of both CT 
and MR images increases cancer patient costs and addi-
tional irradiation [13]. Of particular importance is the 
introduction of MR-CT registration uncertainty could 
reduce the accuracy of delineation [14–16].

To address the aforementioned limitations, estimat-
ing Hounsfield Unit (HU) and generating synthetic-CT 
(sCT) from MR images using artificial intelligence (AI) 
algorithms may be a potential and effective solution in 
clinical setting, which have gained significant attention 
for image-to-image translation [17–23]. In recent years, 
data-driven AI has made tremendous developments in 
image processing, computer vision and pattern recog-
nition. By providing new capabilities such as real-time 
guidance and personalized intervention, AI has upended 
conventional wisdom and has the power to improve the 
availability and efficiency of cancer treatment worldwide 
[24–26]. Deep learning (DL) with convolutional neural 
network (CNN) automatically abstracts the multiscale 
features and integrates them into an end-to-end net-
work for prediction, which contributes to eliminating 

the reliance on manual features [27–29]. Recently, many 
DL-based models have shown success when applied to 
image segmentation, dose prediction, patient-specific 
quality assurance, and have been introduced to the field 
of sCT generation from MRI [30–32]. By establishing 
the complex and nonlinear mapping mechanism from 
self-learning and self-optimizing strategies between two 
image domains, the feature information between MR/CT 
can be transferred, so as to solve the deficiencies of the 
single-modality imaging in clinical RT implementation 
[33–35]. Once the optimal DL parameters are estimated, 
sCT images can be easily obtained within a few seconds 
by feeding the new MR images into the trained model.

A variety of mature DL networks have been improved 
and applied to generate sCT from MRI images [36–40]. 
The deep CNN-based approaches improved the effi-
ciency and quality of sCT generation compared with 
traditional atlas-based and segmentation-based meth-
ods, while its performance is affected by the accuracy 
of MR-CT registration, and tiny voxel-wise misalign-
ments may lead to blurring of synthesized images [37]. 
Recently, increasing interest focused on generative 
adversarial network (GAN) and its variants, the GAN-
based architecture has been demonstrated to synthesize 
high-quality sCT images with less blurriness compared 
with the CNN approaches [38–44]. Unfortunately, the 
GAN-based models still require properly aligned paired 
dataset for training and some studies have also found 
that they cannot preserve details during transformation 
[38]. Since CNN and GAN training, models have high 
requirements for MRI-CT image registered, which is 
usually difficult for clinical practice. To solve this prob-
lem, CycleGAN proposed by Zhu et al. [45] is essentially 
a circular network composed of two mirror-symmetric 
GANs based on the principle of cycle-consistency, which 
not only does not require paired images but is also able 
to utilize different modality images. However, cycleGAN 
lacks a direct constraint between the input and synthetic 
images, which makes it unable to guarantee structural-
consistency between these two images, and thus gets 
an undesirable outcome in the given application. From 
the perspective of clinical application, the accuracy of 
pixel-wise HU and structural-consistency of the gener-
ated sCT directly determines the accuracy of subsequent 
radiotherapy. Furthermore, another major issue should 
be considered when building a machine learning (ML)/
DL model for sCT generation from MRI in clinical prac-
tice. In the current RT simulation process, big-aperture 
CT and RT dedicated MR-scanners are usually used to 
obtain anatomical images at complex positions, the field 
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of view of CT/MR scans is often too large, thus results in 
a large proportion of the acquired MR/CT images being 
background. In order to make the synthetic models focus 
on the human body region or the most critical part of the 
synthetic images, DL networks require additional par-
tial truncation of the input data to save computational 
resources and improve prediction accuracy.

In this study, we overcome the aforementioned issues 
by designing a novel channel-wise attention enhanced 
and structural similarity constrained cycleGAN called 
cycleSimulationGAN for unpaired MR-to-CT synthesis. 
Specifically, we introduce the contour mutual informa-
tion loss function to constrain the structural similarity 
between the original MR and the synthetic MR, such as 
contour shape and area, so as to constrain the synthetic 
CT to have better structural retention characteristics. 
Additionally, we propose to equip a novel channel-wise 
attention mechanism based on the traditional generator 
of GAN to enhance the feature representation capabil-
ity of deep network and extract more effective features. 
Extensive experiments show that our method outper-
forms state-of-the-art CT synthesis methods such as 
conventional and improved cycleGAN.

Methods
Data acquisition and processing
One hundred and sixty nasopharyngeal carcinoma 
(NPC) patients underwent volumetric-modulated arc 
radiotherapy (VMAT) between Dec 2020 and Dec 2021 
in our hospital were enrolled in this study. The planning 
CT (pCT) images and simulated MRI were acquired from 

a CT (SOMATOM Definition AS, Siemens Medical Sys-
tems) and MRI (Ingenia 3.0T, Philips Medical Systems), 
respectively. This study was approved by the medical eth-
ics committee of our hospital (2022ky298). The original 
dataset is split into training (120), validation (20), and test 
set (20), which contain 5734, 954 and 935 images, respec-
tively. Both the dimension of CT and MR images were 
512 × 512 on the axial plane, while the spatial resolution 
was 1.27  mm × 1.27  mm × 3.00  mm for CT scans, and 
0.729 mm × 0.729 mm × 3 mm for MR scans. All images 
were preprocessed with in-house developed software in 
the following ways. First, all the MR and CT images are 
normalized to have a resolution of 1 mm ×1 mm ×1 mm, 
and then CT and MRI were rigidly registered to align 
them. After that, deformable registration from CT to 
MRI was performed. Afterward, the pCT images were 
used as a benchmark for the sCTs during training and 
testing.

Architecture of cycleSimulationGAN
Figure  1 illustrates the overall workflow of our method. 
The original MRI is output through the generator to sCT 
images, and the sCT images are then used to reconstruct 
the original MR images through the generator, thus form-
ing a cycle. The original cycleGAN learns to discrimi-
nate between sCT and real CT (unpaired data) by using 
the discriminator of the generative adversarial network 
under the constraint of the corresponding loss function, 
and the generator gradually learns to synthesize CT with 
better quality. In addition, cycleGAN also constrains the 
reconstructed MR to be as similar to the original MR 

Fig. 1 The overall process of this study

 



Page 4 of 11Gong et al. Radiation Oncology           (2024) 19:37 

as possible by applying an L1 loss function between the 
original MR and the reconstructed MR as a cycle loss 
[45]. On this basis, our method makes the following two 
innovations, which can effectively improve the struc-
tural retention characteristics, and the degree of detail 
recovery of synthetic CT results. Moreover, background 
interference is also effectively suppressed. The cycleSim-
ulationGAN architecture is shown in Fig. 2.

Structural similarity constraint based on contour mutual 
information loss
The contours of the original MRI and the synthesized CT 
are first extracted, and then the contours of the synthe-
sized CT are more similar to those of the original MRI 
constrained by the mutual information loss function. In 
order to extract the contours of the original MRI and syn-
thetic CT effectively, the pixel value of the original MR 
and synthetic CT greater than a certain threshold value is 
set to 1, and the pixel value less than the threshold value 
is set to 0, so that the body region segmentation results 
of the two different modal images can be obtained, and 
the body contour results can be effectively preserved. 
Later, in order to effectively measure the similarity of 
the regional contours of MRI and CT images, a contour 
loss calculation method based on mutual information 
was proposed. For the regional contours extracted from 
the original MRI and synthetic CT images, the following 
mutual information method is used to calculate contour 
similarity.

 
LMI =

∑
y∈G(IMR)

∑
x∈IMR

p(x, y)log(
p(x, y)

p (x) p (y)
) (1)

P (x) and P (y) represent the probability distribution of 
the contour extracted from the original MR image IMR  
and the synthesized CT image G (IMR) , respectively. And 
p(x, y) represents the joint probability distribution of 
p (x) and p (y). It can be observed that when calculating 
the loss of contours of different modes, the above formula 
no longer pays attention to the difference of pixel value 
per pixel at the bottom level, but to the data distribution 
characteristics of contours of different modes, thus pay-
ing more attention to the similarity of overall contours of 
higher levels.

Channel-wise attention enhanced mechanism
In order to enhance the feature representation capabil-
ity of deep network and effectively extract more effective 
features representing images, a channel-wise attention 
mechanism is used to selectively enhance the multi-
channel features (channel dimension is 256 in our experi-
ment) extracted from the encoder of U-NET structure 
generator in cycleGAN network architecture. The chan-
nel-wise attention operation flow chart is shown in Fig. 3. 
The attention mechanism of the feature channel dimen-
sion (selective enhancement) can be achieved through 
end-to-end learning of the feature channel with stronger 
information enhancement and the feature channel with 
suppression of information redundancy.

Fig. 2 Proposed cycleSimulationGAN architecture used to map a MRI image to a CT image

 



Page 5 of 11Gong et al. Radiation Oncology           (2024) 19:37 

The channel attention mapX ∈ RC×C  is directly cal-
culated from the original features A ∈ RC×H×W . Specifi-
cally, A  is reshaped to RC×C , and then perform a matrix 
multiplication between A  and the transpose of A . 
Finally, a softmax layer is applied to obtain the channel 
attention map ∈ RC×C :

 
xji =

exp(Ai · Aj)∑C
i=1 exp(Ai · Aj)

 (2)

where xji  measures the ith  channel’s impact on the jth

channel. In addition, we perform a matrix multiplication 
between the transpose of X  and A  and reshape their 
result to RC×H×W . Then we multiply the result by a scale 
parameter β and perform an element-wise sum operation 
with A to obtain the final output E ∈ RC×H×W :

 
Ej = β

C∑

i=1

(xjiAi) + Aj  (3)

where β gradually learns a weight from 0. Equation  3 
shows that the final feature of each channel is a weighted 
sum of the features of all channels and original features, 
which models the long-range semantic dependencies 
between feature maps. It helps to boost feature discrim-
inability. Note that we do not employ convolution layers 
to embed features before computing relationships of two 
channels, since it can maintain the relationship between 
different channel maps. In addition, we exploit spatial 
information at all corresponding positions to model 
channel correlations.

Experimental evaluation and statistical analysis
Four criteria including mean absolute error (MAE), 
root-mean-square error (RMSE), peak-signal-noise-ratio 
(PSNR), and structural similarity index (SSIM) were used 
to evaluate the performance of different synthetic image 
generators from pixel-wise HU accuracy, noise level, and 
structure similarity. The formula of MAE, RMSE, PSNR, 
and SSIM are shown in Eqs. 4, 5, 6, and 7, respectively.

 
MAE =

1
nxny

nxny∑

i,j

|sCT (i, j) − CT (i, j)|  (4)

 
RMSE =

√√√√ 1
nxny

nxny∑

i,j

(sCT (i, j) − CT (i, j))2  (5)

 
PSNR = 10 × log10

(
MAX2

1
nxny

∑nxny

i,j (sCT (i, j) − CT (i, j))2

)

 (6)

 
SSIM =

(2µsCTµCT + c1) (2σsCTCT + c2)
(µ2

sCT + µ2
CT + c1) (σ2

sCT + σ2
CT + c2)

 (7)

where sCT (i, j) is the value of the pixel at (i, j) in the 
sCT, CT (i, j)  is the value of the pixel at (i, j) in the pCT, 
nxny  is the total number of pixels in one slice, MAX is 
the maximum intensity in sCT,µsCT  is the mean of pixel 
values of sCT, µCT  is the mean of pixel values of pCT 
image, σsCT  is the standard deviation of sCT, σCT  is the 
standard deviation of pCT image. As described in the 
above formulas, MSE and RMSE calculate the difference 
between the generated image and the original image, and 
the larger the value, the worse the quality, and the smaller 
the value, indicating that the prediction model has bet-
ter accuracy. The denominator of PSNR is the energy 
difference between the generated image and the origi-
nal image, which is also equivalent to noise. The smaller 
the noise, the better PSNR. MAE, PSNR and RMSE 
are all based on gray values to calculate the differences, 
while SSIM mainly considers image contrast, bright-
ness and structure information. The larger the value, the 
more similar the SSIM is, and the maximum value is 1 
entropy: it reflects the amount of average information in 
the image.

To validate and evaluate the performance of the present 
cycleSimulationGAN, two additional approaches were 
carried out for comparison purpose including the origi-
nal cycleGAN and the structural similarity constrained 
cycleGAN (SSC-cycleGAN). SSC-cycleGAN is derived 
from cycleGAN, which proposes a contour consistency 

Fig. 3 The channel-wise attention operation flow chart
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loss function that explicitly imposes structural con-
straints between the reconstructed MR and the original 
MR, aiming to effectively preserve structural features 
such as contour shape during sCT, as described above in 
our innovation 1 of cycleSimulationGAN. The three dif-
ferent networks (original cycleGAN, SSC-cycleGAN, and 
cycleSimulationGAN) were trained with the same train-
ing and validation dataset under the same environment.

Through a large number of experiments and quantita-
tive analysis, all the related parameters were appropri-
ately determined in the multiple tuning. The proposed 
deep network architecture was implemented in Pytorch 
and the training/validation was run on an Nvidia Geforce 
RTX 3090 GPU (24G memories) with CUDA accelera-
tion. An Adam algorithm was chosen as the optimizer 
to minimize the L1 loss function with a learning rate of 
1 × 10− 5, the maximum number of epochs is set as 200 
and the convolution block sizes was set to 3 × 3. With 
the trained generation model, which takes about 46 h of 
computation time, the sCT for a new case with MR data 
takes only a few tenths of a second. All statistical analy-
ses were performed to compare the three models using a 
paired t-test, a p-value ≤ 0.05 was considered statistically 
significant.

Results
The three models were trained in 23 (cycleGAN), 25 
(SSC-cycleGAN), and 26 (cycleSimulationGAN) hours, 
respectively. Once the models have been trained, it took 
a few seconds to generate sCT images from new MR 
volume image. Figure  4 shows the visual comparison at 
different anatomical locations of one test patient, which 
contains the axial view of the original MR, the cor-
responding real CT, and sCT images generated from 
original cycleGAN, the SSC-cycleGAN, the proposed 
cycleSimulationGAN. Maps in pseudo color represent 
the differences between the ground truth pCT and each 
sCT image. In the visual inspection, the generated results 
of our method are more consistent with the pCT com-
pared with other two methods in terms of global and 
local imaging regions. As can be seen from the difference 
maps, the sCT generated using cycleSimulationGAN 
showed sharper boundaries than the sCT generated 
using the original cycleGAN and SSC-cycleGAN. To 
further display the gains of the present cycleSimula-
tionGAN approach, we added the zoomed ROI images, 
the zoomed images of the ROI, as indicated by the blue 
dashed square in error images. From the zooming ROI 
images, the proposed approach was superior to the 
original cycleGAN and the SSC-cycleGAN approaches 

Fig. 4 Comparison of PCT and sCT images generated by different models. The first and third rows show the MR images (a1, c1), pCT (a2, c2) and the sCT 
images generated by the cycleGAN method (a3, c3), the SSC-cycleGAN method (a4, c4), and the proposed cycleSimulationGAN method (a5, c5). The 
second and fourth rows show the error images for each sCT.
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according to the boundary preservation and internal 
structural-consistency.

In order to further visualize the dose difference, two 
horizontal profiles of the resulting maps were drawn 
across the black line labeled in Fig. 5. The first and third 
rows show the pCT and the sCT images obtained by 
cycleGAN, SSC-cycleGAN, and cycleSimulationGAN. 
The second and fourth rows show the profiles along the 
black lines in pCT images. By observing the color curves, 
we see that cycleSimulationGAN is closer to the pCT, 
thus further demonstrating that the proposed models 
outperform the cycleGAN and SSC-cycleGAN, both in 
terms of definitive tissue/bone boundaries and accurate 
HU values.

The quantitative results of MAE, RMSE, SSIM, and 
PSNR for all test patients’ sCT images compared with 
pCT images are summarized in Table 1. It is found that 
sCT from cycleSimulationGAN had smaller errors (MAE 
and RMSE) and higher similarities (PSNR, SSIM) relative 
to pCT than sCT from cycleGAN and SSC-cycleGAN. 
The mean ± standard deviation (SD) of MAE between the 
sCT and pCT images within the body were (71.32 ± 1.37) 
HU, (63.18 ± 1.80) HU, and (61.88 ± 1.42) HU for the 
cycleGAN, SSC-cycleGAN and cycleSimulationGAN, 
respectively. The details of the corresponding MAE and 
RMSE in different tissues are listed in Table  1. Com-
pared with the conventional cycleGAN, the cycleGAN 
with an extra contour consistency loss (denoted as “SSC-
cycleGAN”) produces better synthetic results (p <.001) 
except for PSNR (0.877) and SSIM (0.742) in bone. In 
terms of SSC-cycleGAN and cycleSimulationGAN, a 
slight improvement in all structures was observed for our 
model. Additionally, Table S1 lists the characteristics of 
median and range for the four metrics included in this 
study (supplementary material).

Discussion
CT synthesis from MRI can be seen as a style conver-
sion problem from a macro point of view. With the rapid 
development of promising data-to-data translation in 
the generative frameworks in recent years, a large num-
ber of studies have focused on improving sCT image 
quality through GAN or its variants. Existing methods 
can be roughly divided into three categories: segmenta-
tion-based, atlas-based, and DL-based method [7]. The 
segmentation-based methods generate sCT images by 
predelineating the tissue types on the MR images and 
assigning uniform bulk densities to each segmented 
structure. However, these methods are limited by the 
requirement to predetermine tissue types and heavily 
rely on the accuracy of organ segmentation and further 
fail to account for heterogeneity within each structure 
[46]. Besides, atlas-based methods are limited by heavy 
computational burden, the accuracy of deformable image 

registration, and lack robustness when there are large 
anatomical variations [38]. In recent years, DL meth-
ods, especially for GAN-based methods have attracted 
significant attention in the medical image generation 
field. Nevertheless, the only sigmoid cross-entropy loss 
function often causes unstable training in the original 
GAN. Although the unpaired cycleGAN owns supe-
rior performance and a better visual effect, the obtained 
sCT images exist certain differences between the pCT 
images in terms of local imaging details. Furthermore, 
for the current sCT generation from mismatched MRI 
images by cycleGAN, the L1 loss function is widely 
used to constrain the similarity between the original 
MR and reconstructed images. However, the L1-based 
loss function only imposes pixel-level constraints and 
calculates the loss values of the reconstructed MR pixel 
by pixel, which makes it difficult to accurately measure 
the structural similarity in terms of global structural 
cues, such as contour or shape consistency, thus leads 
to many shortcomings in the sCT images, especially in 
air-bearing bone structures. For example, Peng et al. 
showed that for patients with NPC, the mean absolute 
error (MAE, the lower the value the more accurate) of 
sCT images was higher in the cycleGAN than that of 
the cGAN, with 69.67 ± 9.27 HU and 100.62 ± 7.9 HU 
in body, 170.62 ± 36.38 HU and 201.89 ± 34.11HU in air, 
203.71 ± 28.22HU and 288.17 ± 17.22 HU in bone, respec-
tively [20]. Kang et al. concluded that the mean SSIM and 
PSNR used cycleGAN was only 0.90 ± 0.03 and 26.3 ± 0.7 
in pelvic, thoracic and abdominal tumor patients 
[22]. All these deficiencies can lead to inaccurate dose 
calculations.

In this study, the improved unsupervised network 
based on cycleGAN framework that integrates novel con-
tour consistency loss function and channel-wise atten-
tion mechanism was proposed to synthesize high-quality 
CT-like images from H&N MRI. We aimed at training 
our cycleSimulationGAN model to effectively eliminate 
the redundant background information and capture 
the critical information of the untruncated area dur-
ing the sCT generation process. The proposed method 
innovatively incorporated both channel-wise attention 
enhanced and structural similarity constrained cycle-
GAN to address the information redundancy and L1 loss 
function issues for effective sCT generation. The result-
ing sCT images are visually similar to pCT images, espe-
cially for high-density bony tissues, thus it will be capable 
of being directly used for quantitative applications, such 
as dose calculation and adaptive treatment planning 
(shown in Figs.  4 and 5). Recently, various efforts with 
different capabilities on modified-cycleGAN have been 
proposed to improve the accuracy and efficiency of sCT 
generation from MRI. For instance, Yang et al. developed 
an extra structure-consistency loss based on the modality 
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Fig. 5 Visualization results of the pseudo-CT images based on different models. The first row shows the pCT and the sCT images generated by other three 
methods. The second and fourth rows show the profiles along the black lines in pCT images
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independent neighborhood descriptor for unsupervised 
MR-to-CT synthesis [47]. They found that their method 
produces better synthetic CT images in terms of accu-
racy and visual quality compared to original cycleGAN. 
By modifying the cycle-consistency loss in the traditional 
cycleGAN, a novel compensation-cycleGAN was pro-
posed to simultaneously create sCT images and com-
pensate the missing anatomy from the truncated MR 
images [7]. Focusing on cervical cancer patients, Sun et 
al. used the multiple discriminator-based cycle generative 
adversarial network to synthesize sCT images from the 
MRI images of patients with pelvic tumors from global 
and local aspects [40]. Another previous study used 23 
MR-CT pairs from NPC patients to train a U-net [22] 
and reported a MAE (131 ± 24) HU within the body. Their 
results indicated the feasibility of reducing the training 
samples for traditional GAN or U-net while achieving 
a reasonable sCT image estimation accuracy. The geo-
metrical and structural precision of the sCT is especially 
important for radiotherapy, which help in planning accu-
rate radiation dose. Subtle compromises in anatomical 
accuracy could lead to serious radiation outcomes. With 
the aim of effectively maintain the structural character-
istics and focus on the human body region or the most 
critical part of the sCT, in this work, we proposed the 
cycleSimulationGAN to constrain the sCT images for 
better structural preserving property and evaluated our 
cycleSimulationGAN on 20 independent test patients 
(as shown in Table 1); the results also demonstrated that 
although cycleGAN and SSC-cycleGAN can generate 
real-looking CT images, regions with low MR signals, 
such as bone/air interfaces, can cause uncertainties.

Compared with the other two methods, in terms of 
MAE, RMSE and SSIM of bone, the sCT image generated 

by cycleSimulationGAN achieves better image quality 
possibly due to the design of this network that retains 
the advantages of cycleGAN and incorporates the fea-
tures of channel-wise attention mechanism (as shown in 
Table 1). In terms of MAE, RMSE and SSIM of soft tis-
sue, SSC-cycleGAN and cycleSimulationGAN showed 
similar results, while cycleSimulationGAN was supe-
rior to cycleGAN. One main disadvantage of MR-to-
CT is HU tends to be less accurate compared with the 
pCT images, the three methods implemented in this 
work have a good ability to rectify the CT value of MRI, 
among them, cycleSimulationGAN gives the best results, 
SSC-cycleGAN the second, and original cycleGAN the 
worst. The cycleGAN requires the fake image to keep 
all the information in the original image, as a result, its 
CT correction ability was reduced in some degree. Com-
pared with previous studies, the results of Zhao et al. [6] 
showed the average MAE, PSNR, and SSIM calculated 
over test patients were 91.3 HU, 27.4 dB, and 0.94 for the 
proposed Comp-cycleGAN models trained with body-
contour information. However, our cycleSimulationGAN 
model scored better on the three quantitative metrics 
with MAE (60.88), PSNR (36.23), and SSIM (0.985). 
Wang et al. [48] found that the results based on cycle-
contrastive unpaired translation network (cycleCUT) 
can be decreased from 78.05 HU to 69.62 HU. For com-
parison, our model generated comparable MAE, SSIM 
and even better pCTs visually. For the U-Net method, 
it uses paired data for training, which can obtain more 
information about the corresponding CT, including HU 
values. Furthermore, the above accurate sCT generation 
of our model helps oncologists to contour accurate tar-
gets, resulting in precise radiotherapy plans for cancer 
patients, which benefits the survival.

Table 1 CT synthesis accuracies for different synthesis methods
Range Parameter cycleGAN SSC-cycleGAN cycleSimulationGAN P1 P2 P3
Body MAE 71.32 ± 1.37 63.18 ± 1.80 61.88 ± 1.42 < 0.001 < 0.001 0.077

RMSE 126.05 ± 2.94 120.03 ± 3.70 116.85 ± 3.42 < 0.001 < 0.001 < 0.001
PSNR 34.95 ± 0.380 35.76 ± 0.50 36.23 ± 0.52 < 0.001 < 0.001 < 0.001
SSIM 0.975 ± 0.002 0.982 ± 0.002 0.985 ± 0.002 < 0.001 < 0.001 0.953

Air
(HU<-100)

MAE 128.97 ± 6.58 114.48 ± 6.03 111.41 ± 4.78 < 0.001 < 0.001 < 0.001
RMSE 199.64 ± 11.31 176.97 ± 11.76 174.71 ± 9.26 < 0.001 < 0.001 0.023
PSNR 31.11 ± 1.27 33.23 ± 0.98 33.00 ± 1.11 < 0.001 < 0.001 < 0.001
SSIM 0.982 ± 0.004 0.987 ± 0.002 0.987 ± 0.003 < 0.001 < 0.001 0.126

Soft-tissue
(150 > HU≥-100)

MAE 39.08 ± 1.32 32.22 ± 1.60 31.99 ± 1.11 < 0.001 < 0.001 < 0.001
RMSE 65.38 ± 3.58 59.68 ± 4.17 59.51 ± 3.61 < 0.001 < 0.001 0.256
PSNR 26.19 ± 0.68 27.00 ± 0.49 27.01 ± 0.54 < 0.001 < 0.001 0.637
SSIM 0.954 ± 0.005 0.962 ± 0.005 0.962 ± 0.005 < 0.001 < 0.001 0.087

Bone
(HU ≥ 150)

MAE 170.71 ± 8.36 166.35 ± 9.17 160.69 ± 9.42 < 0.001 < 0.001 < 0.001
RMSE 222.02 ± 11.50 218.30 ± 12.96 210.92 ± 12.47 0.001 < 0.001 < 0.001
PSNR 27.27 ± 0.39 27.37 ± 0.37 27.44 ± 0.38 0.877 < 0.001 < 0.001
SSIM 0.980 ± 0.001 0.982 ± 0.001 0.985 ± 0.001 0.742 0.592 0.830

Notes P1 = cycleGAN vs. SSC-cycleGAN, P2 = cycleGAN vs. cycleSimulationGAN, P3 = SSC-cycleGAN vs. cycleSimulationGAN.
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CycleSimulationGAN with the framework that inte-
grates novel contour consistency loss function and chan-
nel-wise attention mechanism also has limitations. In 
this work, we only concentrated on the H&N Cancer. The 
applicability of our proposed model other disease sites 
would be considered and plan to collect more patients 
to train and test our method in the future. In addition, 
dosimetric evaluation of our sCT not be analyzed in the 
current work, using the sCT for quantitative applications 
such as multicenter testing, dose calculation, adaptive 
treatment planning is the focus of our future studies.

Conclusions
A novel unsupervised method for synthesizing sCT 
images from MRI scans based on cycleSimulationGAN 
was investigated in this study. Qualitative and quantita-
tive experiments revealed that our approach outper-
formed both cycleGAN and SSC-cycleGAN in terms of 
both structural preserving and HU accuracy. The dif-
ference between the sCT and the pCT images obtained 
by our method is small and the visual effect is also bet-
ter than other two cycleGAN models. In general, the 
cycleSimulationGAN is a promising method to facilitate 
adaptive radiotherapy treatments.
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