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Abstract
Background Xerostomia is one of the most common side effects in nasopharyngeal carcinoma (NPC) patients after 
chemoradiotherapy. To establish a Delta radiomics model for predicting xerostomia secondary to chemoradiotherapy 
for NPC based on magnetic resonance T1-weighted imaging (T1WI) sequence and evaluate its diagnostic efficacy.

Methods Clinical data and Magnetic resonance imaging (MRI) data before treatment and after induction 
chemotherapy (IC) of 255 NPC patients with stage III-IV were collected retrospectively. Within one week after CCRT, 
the patients were divided into mild (92 cases) and severe (163 cases) according to the grade of xerostomia. Parotid 
glands in T1WI sequence images before and after IC were delineated as regions of interest for radiomics feature 
extraction, and Delta radiomics feature values were calculated. Univariate logistic analysis, correlation, and Gradient 
Boosting Decision Tree (GBDT) methods were applied to reduce the dimension, select the best radiomics features, 
and establish pretreatment, post-IC, and Delta radiomics xerostomia grading predictive models. The receiver 
operating characteristic (ROC) curve and decision curve were drawn to evaluate the predictive efficacy of different 
models.

Results Finally, 15, 10, and 12 optimal features were selected from pretreatment, post-IC, and Delta radiomics 
features, respectively, and a xerostomia prediction model was constructed with AUC values of 0.738, 0.751, and 0.843 
in the training set, respectively. Only age was statistically significant in the clinical data of both groups (P < 0.05).

Conclusion Delta radiomics can predict the degree of xerostomia after chemoradiotherapy for NPC patients and it 
has certain guiding significance for clinical early intervention measures.
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Background
Nasopharyngeal carcinoma (NPC) is a malignant tumor 
arising from the epithelium of the nasopharyngeal 
mucosa. Most NPC cells are highly sensitive to ionizing 
radiation, and hence radiation therapy is currently the 
treatment of choice for NPC patients [1–2]. Due to the 
limitation of the anatomical location of NPC, the radia-
tion field area often involves the surrounding normal 
tissues. The radical dose exceeds the tumor tolerance; 
thus, the radiotherapy-induced damage to the tissues 
and organs in the radiation area is extensive and lasting 
[3]. Parapharyngeal space is the most common site of 
lymph node metastasis, and the parotid gland is adjacent 
to the parapharyngeal space, rendering it inevitable to be 
exposed to high-doses radiation during radiotherapy and 
one of the organs at risk of radiotherapy in NPC patients. 
Nonetheless, the three-dimensional conformal and inten-
sity-modulated radiotherapy techniques have advanced 
and are widely used. Although the survival prognosis of 
NPC patients has improved significantly [4–5], xerosto-
mia caused by parotid gland injury is still one of the most 
common long-term adverse reactions after radiotherapy 
for NPC, which has severely affected the quality of life of 
patients, including speech, swallowing, and overall oral 
problems [6–7].

Magnetic resonance imaging (MRI) is the primary 
imaging modality and diagnostic tool for NPC patients, 
routinely used for the development of radiotherapy plans 
and the evaluation of treatment efficacy. Previous stud-
ies have found that MRI can evaluate the morphological 
changes, volume reduction and signal intensity changes 
of parotid gland after radiotherapy [8–9], but traditional 
imaging techniques have limitations. As a rapidly devel-
oping disease diagnosis and auxiliary detection technol-
ogy, radiomics can quantify tissue heterogeneity and 
reveal texture features that cannot be fully recognized 
by qualitative MRI analysis. It has high clinical value in 
tumor staging [10], differential diagnosis [11], efficacy 
evaluation [12] and prognosis prediction [13] of naso-
pharyngeal carcinoma. It can also provide imaging bio-
markers for radiotherapy-related side effects [14–17]. 
In addition, radiomics has been applied to related stud-
ies of parotid gland. For example, MRI radiomics model 
based on texture analysis of T2 weighted sequence has 
improved the diagnostic performance of non-subspe-
cialty radiologist for the differential diagnosis between 
pleomorphic adenoma and Warthin tumor [18]. There-
fore, we hypothesize that radiomics analysis of the 
parotid gland can provide early prediction of xerostomia 
after chemoradiotherapy. Delta radiomics is a new form 
of radiomics, an analysis of changes in the features at 
different acquisition time points that can longitudinally 
reflect the treatment-induced changes. A previous study 
has combined the CT imaging changes of parotid gland 

and salivary volume during radiotherapy to predict radi-
ation-induced acute thirst levels early [19]. However, as 
far as we know, there are few MRI-based Delta radiomics 
studies on xerostomia after chemoradiotherapy. The pur-
pose of this study was to establish traditional radiomics 
model and Delta radiomics model based on MRI before 
treatment and after induction chemotherapy and observe 
the heterogeneity of the parotid gland, aiming to provide 
novel ideas for the early clinical prediction of xerostomia 
after chemoradiotherapy for NPC patients.

Materials and methods
Study subjects and groups
This study was approved by the Scientific Research Eth-
ics Committee of the Cancer Hospital of the University of 
Chinese Academy of Sciences (Zhejiang Cancer Hospital) 
and Affiliated Hangzhou First People’s Hospital, Zhejiang 
University School of Medicine. Because it is a retrospec-
tive study, patient consent is waived. The data of 517 pri-
mary NPC patients in the Zhejiang Cancer Hospital from 
2012 to 2016 were collected; the inclusion criteria were as 
follows: (1) patients with pathologically confirmed newly 
diagnosed NPC; (2) patients who received a complete 
course of concurrent chemoradiotherapy (CCRT) or radio-
therapy after 1–3 cycles of induction chemotherapy (IC); 
(3) MRI examinations were conducted before and after IC. 
The exclusion criteria were as follows: (1) previous or cur-
rent salivary gland-related diseases and surgery; (2) history 
of xerostomia symptoms, such as diabetes and diabetes 
insipidus; (3) history of head and neck radiotherapy; (4) data 
with incomplete MR images and unqualified image quality 
were excluded. The patient selection process is illustrated 
in Fig. 1. All patients were treated with intensity-modulated 
radiotherapy, with radiation doses ranging from 66.0 to 
71.0 Gy for primary gross tumor volume of NPC (PGTVnx) 
and 63.0–72.1 Gy for gross tumor volume of cervical lymph 
nodes (GTVnd) in 30–32 fractions.

Herein, we used the Chinese version of the European 
Organisation for.

Research and Treatment of Cancer (EORTC) Quality of 
Life Scale QLQ-HampN35 (V1.0) to assess the degree of 
xerostomia in NPC patients after chemoradiotherapy within 
one week. According to the acute radiation injury grad-
ing of the radiation therapy oncology group (RTOG), the 
patient’s salivary gland injury was categorized into: Grade 
0: no change from baseline; Grade 1: mild mouth dryness/
slightly thickened saliva/may have slightly altered taste such 
as metallic taste/these changes not reflected in alteration in 
baseline feeding behavior, such as increased use of liquids 
with meals; Grade 2: moderate to complete dryness/thick, 
sticky saliva/markedly altered taste; Grade 3: severe xerosto-
mia, no irritation, often waking up at night to drink water; 
Grade 4: acute salivary gland necrosis [20]. The salivary 
gland injury ≥ grade 2 was defined as severe xerostomia, 
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while grade 0 or 1 indicated mild xerostomia. The enrolled 
patients included nine factors of the clinical data, includ-
ing gender, age, T stage, N stage, induction chemotherapy 
course, induction chemotherapy regimen, CCRT course, 
and dose (PGTVnx and GTVnd).

MRI examination method
MR images were obtained from all patients using two 
different MRI scanners (Siemens Magnetom Symphony 
1.5T and Siemens SKyra 3.0T, Munich, Germany) before 
treatment and after IC, with an interval of 1–2 months. 
Standard head coil was used for scanning, Conventional 
MRI scans T1-weighted imaging (T1WI) were obtained 
at the following parameters: (1) 3.0T MRI scan parame-
ters: transverse T1WI repetition time (TR) 1800 ms, echo 
time (TE) 9.4 ms, 320*75 matrix, 1.0*0.7*5.0 mm; (2) 1.5T 
MRI scan parameters: transverse T1WI TR 380 ms, TE 
7.0 ms, 304*80 matrix, 1.07*0.86*5.0 mm. The remaining 
parameters were consistent for both instruments: slice 
thickness 5  mm, interslice distance 5  mm, field of view 
(FOV) = 240 × 230 mm, 90° flip angle.

Image segmentation
Each patient’s head and neck MRI examinations before 
and after induction chemotherapy were retrieved from the 
hospital’s PACS system, and the DICOM format images 
of all sequences were exported. The ITK-SNAP software 
(Fig. www.itksnap.org, Version3.8.0) imports the images 
and selects the transaxial T1WI sequence to store it as the 
original image. Since parotid segmentation needs to be 
repeated at different time points and manual segmentation 
is time-consuming, we developed a deep learning model 

for semi-automated segmentation of the parotid regions 
for efficient segmentation. The parotid gland was manu-
ally segmented layer-by-layer on the T1WI sequence before 
treatment, then stored as regions of interest (ROIs). A deep 
learning model was established on the U2 Netp network 
using the segmentation results before treatment as a refer-
ence (see the Supplementary Materials for specific meth-
ods) to segment the images after IC, followed by a further 
manual correction to obtain semi-automatic segmentation 
results. The final segmentation results were also verified by 
a senior head and neck radiologist.

Feature extraction and delta feature calculation

(1) Loading data and adding labels: First, all the original 
images and ROI data were imported into the joint 
shadow u AI Research Portal (Version 1.4) software 
[21]; Add Labels was selected to add labels to the 
subjects (set patients with severe xerostomia marked 
as “1”; patients with mild xerostomia, marked as “0”).

(2) MRI preprocessing: Resampling and normalization 
of the original data with the following parameters: 
Interpolator = NearestNeighbor, resampled Pixel 
Spacing = 1*1*1, bin Width = 25, label = 1, normalize 
Scale = 1, minimum ROI Dimensions = 2, minimum 
ROI Size = None, voxel Based = False. Wavelet = coif1, 
level = 1.

(3) Feature extraction: First select the following 
features: First Order, shape features (Shape), gray 
level co-occurrence matrix (GLCM), gray level 
dependence matrix (GLDM), gray level size zone 
matrix (GLSZM), gray level run length matrix 

Fig. 1 Case screening process. A total of 255 eligible cases were screened, including 92 patients with mild and 163 patients with severe xerostomia
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(GLRLM), and neighboring gray-tone difference 
matrix (NGTDM). Then select the filter type as 
follows: Original, BoxMean, AdditiveGaussianNoise, 
BinomialBlurImage, BinomialBlurImage, 
BoxsigmaImage, LoG, wavelet, Normalize, 
LaplacianSharpening, DiscreteGaussian, Mean, 
SpeckleNoise, RecursiveGaussian, and ShotNoise. 
Finally, the radiomics profiles for 255 patients before 
treatment and after IC were extracted.

(4) For Delta radiology profile estimation, the change 
in each radiology profile was calculated using the 
following equation:

 Delta feature value = (Feature value 2 - Feature value 
1).

 Herein, feature value 2 represents the post-IC 
MRI value, and feature value 1 represents the 
pretreatment MRI value. This formula has been 
applied previously for calculating the Delta feature 
value [12].

Feature selection, model establishment, and Evaluation
Statistical analyses were carried out using R 3.5.1 and 
Python 3.5.6 software. P < 0.05 indicating statistical signifi-
cance. All patients were randomly were randomly divided 
into training, and test sets at a ratio of 7:3, and the data 
were normalized. Pretreatment radiomics features, post-
IC radiomics features, and Delta features were sequentially 
screened using univariate logistic analysis, correlation, 

and GBDT methods to select the optimal feature subset. 
Logistic regression models were built based on the optimal 
feature subset of the training set. The receiver operating 
characteristic (ROC) curve was used to evaluate the perfor-
mance of the machine learning model. The area under curve 
(AUC), diagnostic accuracy (ACC), sensitivity (SENS), 
specificity (SPEC), F1 score, positive predictive value (PPV), 
and negative predictive value (NPV) of the training and the 
test sets were calculated, respectively. The flow chart of the 
radiomics is illustrated in Fig. 2.

Statistical methods of clinical data
Statistical analyses were conducted using SPSS 23.0 soft-
ware. Nine clinical factors in 255 patients were first included 
in the influencing factors, which were then divided into 
two groups according to mild and severe xerostomia, fol-
lowed by a comparison between the two groups. Data that 
fit a normal distribution were presented as mean and stan-
dard deviation, while data that were not normally distrib-
uted were presented as medians and interquartile ranges. 
Continuous variables were tested for normality. T-test was 
used to compare the normal distribution variable, Mann–
Whitney U test for non-normal distribution, and chi-square 
test for categorical variables. P < 0.05 indicated a statistical 
significance.

Fig. 2 Flow chart of radiomics: feature value 2 represents radiomics feature value after IC, feature value 1 represents radiomics feature value before 
treatment
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Results
Comparison of clinical baseline data between groups
A total of 255 patients were enrolled and divided into 
mild (n = 92) and severe (n = 163) groups according to the 
degree of xerostomia. Age differed significantly in the 
clinical data of the two groups (P < 0.05), but not gender, 
IC course, CCRT course, IC regimen, T stage, N stage, 
and dose (PGTVnx and GTVnd) (Table 1).

Radiomics feature selection results
A total of 2600 filtered features were extracted from T1WI 
sequences before and after IC, and Delta features were 
assessed. After univariate logistic analysis, the number of 
features remaining before treatment, after IC, and Delta fea-
tures were 141, 133, and 159, respectively. After correlation 
analysis and screening, the number of remaining features 
was 34, 23, and 25, respectively. Finally, the GBDT method 
was used to select 15, 10, and 12 optimal radiomics features, 
respectively. Among these, the optimal subset before treat-
ment included first-order features (5) and texture features 
(10), the optimal subset after IC included first-order features 
(4) and texture features (6), and the optimal subset of Delta 
included first-order features (2), shape features (1) and tex-
ture features (9), as shown in Fig. 3.

Model predictive power analysis
The AUC values, ACC, SENS, SPEC, F1 score, PPV, and 
NPV of the pretreatment, post-IC, and Delta radiomics 

logistic regression models in the training and test sets, 
respectively, are summarized in Table 2. ROC curves and 
Decision curves of the training and test sets of all mod-
els are shown in Fig. 4 and Fig. 5. All three models have 
certain predictive value, while Delta radiomics model 
has better predictive performance compared to both 
parameters.

Discussion
In this study, the MR images before and after IC were 
used to extract radiomics features, and the change in 
radiomics features before and after chemotherapy was 
calculated. After three feature selections, two traditional 
radiomics and one Delta dynamic radiomics models were 
constructed to predict the severity of xerostomia after 
chemoradiotherapy for NPC patients. Delta radiomics 
models had a better predictive performance compared to 
the two traditional radiomics models.

In recent years, the increasing survival of NPC patients 
has raised the demand of the patients for quality of life. 
Therefore, it is of great clinical significance to make early 
predictions of xerostomia after chemoradiotherapy in NPC 
patients, timely adjust the treatment regimen, and minimize 
parotid gland function impairment [4]. Both conventional 
xerostomia assessment systems [22] and traditional imag-
ing [23–24] studies are based on subjective assessment and 
measurement, lacking accurate quantification. A traditional 
radiomics studies based on imaging biomarkers of CT [14–
15], MR [16], or positron emission tomography (PET) [17] 

Table 1 Comparison of clinical baseline data between mild and severe xerostomia groups
Clinical Mild xerostomia (n = 92) Severe xerostomia (n = 163) P
Sex Man 67 (72.8%) 109 (66.9%) > 0.05

Woman 25 (27.2%) 54 (33.1%)
Age (years) 48.11 ± 9.58 50.64 ± 9.62 < 0.05
Induction chemotherapy course 1 1 1 > 0.05

2 2 4
3 89 158

Concurrent chemotherapy course 0 2 3 > 0.05
1 6 10
2 84 150

Chemotherapy protocol 1 41 86 > 0.05
2 51 77

T stage 1 3 6 > 0.05
2 7 14
3 58 95
4 24 48

N stage 0 4 4 > 0.05
1 34 71
2 44 71
3 10 17

Stage III 59 104 > 0.05
IV 33 59

Dose PGTVnx (Gy) 69.59 ± 0.98 69.75 ± 0.92 > 0.05
GTVnd (Gy) 67.53 ± 2.00 67.21 ± 5.24 > 0.05
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can predict late xerostomia after radiotherapy, while some 
studies have used texture analysis to evaluate the structural 
changes in the parotid gland tissue during radiotherapy and 
established prediction models for acute xerostomia after 
radiotherapy [25]. Most of these studies are based on the 
features of static radiomics; however, the course of treat-
ment and the occurrence and development of xerostomia 
are dynamic. Interestingly, dynamic radiomics studies are 

associated with side effects after radiotherapy for NPC 
patients, except for predicting radiation-induced tempo-
ral lobe injury based on MR images [26]; most of these use 
CT images [19, 27]. Repeated use of CT examination may 
cause ionizing radiation hazard to human body while we 
use the most commonly used images of conventional MRI 
examination, and MRI has obvious advantages in soft tissue 
resolution compared to CT and PET images. In addition, 

Fig. 3 15, 10, and 12 optimal subsets selected in pretreatment (A), after IC (B), and Delta (C) radiomics features, respectively
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the current study predicted chemoradiotherapy-induced 
xerostomia using images before treatment and after IC, i.e., 
images before radiotherapy.

There are two common formulas for calculating delta 
feature value, one of which is 100 x (post-treatment fea-
ture value - baseline feature value)/baseline feature value 
[28], and the other is Delta feature value = (Feature value 2 
- Feature value 1), the latter is adopted in this study. After 

dimensionality reduction of radiomics features the best 
radiomics feature sets were selected: including 15 before 
treatment, 10 after IC, and 12 Delta radiomics features, and 
prediction models were established respectively. Among 
these, Delta radiomics model has the best predictive power, 
and the five features with the highest coefficients among 
Delta radiomics features are texture features: ngtdmBusy-
ness, gldmDependenceNonUniformityNormalized (DNN), 

Table 2 Verification results corresponding to the training and test sets
AUC ACC SENS SPEC F1 NPV PPV

Before treatment Training set 0.738 0.674 0.649 0.719 0.718 0.535 0.804
Test set 0.684 0.636 0.612 0.679 0.682 0.500 0.769

After IC Training set 0.751 0.730 0.816 0.578 0.795 0.638 0.775
Test set 0.635 0.610 0.714 0.429 0.700 0.462 0.686

Delta Training set 0.843 0.719 0.596 0.938 0.731 0.566 0.944
Test set 0.702 0.649 0.531 0.857 0.658 0.511 0.867

Note: AUC, area under ROC curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value

Fig. 5 Decision curves of training set (A) and test set (B). The X-axis represents the model power, ranging from 0–100%, the Y-axis measures the net 
benefit, and purple, green, blue, and orange represent the decision curves of different models, respectively. None and ALL are two reference lines; the 
closer the other model curves are to the two reference lines, the less value is applied; the high ordinate in the case of the same abscissa represents the 
better model efficacy

 

Fig. 4 ROC curves for the clinical model, the traditional radiomics model of before treatment and after IC, and the Delta radiomics model in the training 
set (A) and the test set (B)
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ngtdm_log.sigma.1.0.mm 3D.Strength, glrlmLowGray-
LevelRunEmphasis (LGLRE), and glszmSizeZoneNon-
UniformityNormalized (SZNN). NGTDM represents the 
gray-tone difference between a voxel and its neighbors, 
wherein high values of busy indicate rapid changes in the 
intensity around local voxels. Strength indicates the sig-
nificance and uniqueness of changes around the voxel, an 
image with slow change in intensity but large differences 
in gray level intensities. DNN measures the similarity of 
dependencies in images, with lower values indicating a 
high homogeneity of dependency in parotid images. SZNN 
measures the variability of the volume of the size zone vol-
umes throughout the image, with lower values indicating a 
high homogeneity among zone size volumes in the image 
[29]. LGLRE measures the distribution of low gray-level 
values with high values indicating a significant proportion 
of low gray-level values in parotid images. Similar to previ-
ous reports, the current study suggested that patients who 
develop xerostomia may have heterogeneous salivary gland 
tissue [14, 30]. In addition, we found that variations around 
voxels may be associated with tolerance of the parotid gland 
following chemoradiation. The three features with the high-
est coefficients among pretreatment radiomics features 
were glcm-Correlation, firstorderLHH-Kurtosis, and fir-
storderRange, wherein correlations represent the rough-
ness of the image texture. Kurtosis and Range belong to the 
first-order feature; Kurtosis is a measure of the “peak” of the 
signal intensity distribution in the image ROI, while Range 
represents the range of gray values in the ROI. The three 
features with the highest coefficients among the radiomics 
features after induction chemotherapy were glcm-sigma-
2-mm-3D-ClusterProminence, firstorderKurtosis, and fir-
storder-LHH-Skewness. Cluster prominence and skewness 
measure the asymmetry of the distribution of values about 
the mean value; higher values represent asymmetry around 
the mean. In addition, We found that these three radiomics 
models have two common features, namely glszm_ZoneEn-
tropy and firstorder_Skewness. ZoneEntropy measures the 
uncertainty/randomness in the distribution of zone sizes 
and gray levels. The higher the value, the more heteroge-
neous the texture pattern. we also found that the first-order 
features accounted for about 66.7% of the three features 
with the highest coefficients of the two traditional radiomics 
features, while Delta radiomics features were concentrated 
in the high-order features and had the characteristics of 
accurate quantification images, further indicating that Delta 
radiomics model has the best prediction effect.

Limitations
The limitations of this study are as follows: Firstly, the 
study was retrospective, and hence, a selection bias 
is inevitable. Secondly, only a single T1WI sequence 
was used for prediction, and multisequence combina-
tion would be used for subsequent studies. Thirdly, we 

conducted only a short-term xerostomia study. Chemora-
diotherapy may have a long-term effect on parotid gland 
function in NPC patients; thus, the dynamic changes of 
xerostomia after chemoradiotherapy will be considered 
for future studies.

Conclusion
In conclusion, Delta radiomics based on MR images has 
high predictive power in predicting xerostomia caused 
by parotid gland injury after chemoradiotherapy for NPC 
patients and it has certain guiding significance for clinical 
early intervention measures.
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