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Abstract
Background This study aimed to investigate the value of clinical, radiomic features extracted from gross tumor 
volumes (GTVs) delineated on CT images, dose distributions (Dosiomics), and fusion of CT and dose distributions to 
predict outcomes in head and neck cancer (HNC) patients.

Methods A cohort of 240 HNC patients from five different centers was obtained from The Cancer Imaging Archive. 
Seven strategies, including four non-fusion (Clinical, CT, Dose, DualCT-Dose), and three fusion algorithms (latent 
low-rank representation referred (LLRR),Wavelet, weighted least square (WLS)) were applied. The fusion algorithms 
were used to fuse the pre-treatment CT images and 3-dimensional dose maps. Overall, 215 radiomics and Dosiomics 
features were extracted from the GTVs, alongside with seven clinical features incorporated. Five feature selection (FS) 
methods in combination with six machine learning (ML) models were implemented. The performance of the models 
was quantified using the concordance index (CI) in one-center-leave-out 5-fold cross-validation for overall survival 
(OS) prediction considering the time-to-event.

Results The mean CI and Kaplan-Meier curves were used for further comparisons. The CoxBoost ML model using the 
Minimal Depth (MD) FS method and the glmnet model using the Variable hunting (VH) FS method showed the best 
performance with CI = 0.73 ± 0.15 for features extracted from LLRR fused images. In addition, both glmnet-Cindex and 
Coxph-Cindex classifiers achieved a CI of 0.72 ± 0.14 by employing the dose images (+ incorporated clinical features) 
only.
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Introduction
Head and neck cancers (HNCs) account for around 5% 
of all malignancies, with 931,931 new cases and 467,125 
(almost half of the incidences) deaths worldwide reported 
in 2020 [1]. The standard recommended treatment for 
HNC patients includes surgery and radiation therapy 
(RT) as adjuvant or concurrent with chemotherapy [2–4]. 
These patients’ leading causes of treatment failure and 
death are locoregional recurrences and distant metas-
tasis [5, 6], which can affect overall survival. Although 
some prognostic factors, such as tumor location, age, 
stage, and human papillomavirus (HPV) status, are ben-
eficial for prognostication, these patients still present 
with very poor prognoses [7, 8]. Even patients with simi-
lar prognostic factors may have different ultimate out-
comes [9]. For those patients who undergo radiotherapy, 
dose delivery to the different parts of the tumor (necrotic 
and hypoxic) can be insufficient or non-uniform, which 
might influence tumor recurrence or residuals, leading 
to metastases and affecting patients’ outcomes. 3D dose 
maps obtained from treatment planning, contain infor-
mation about the uniformity or inhomogeneity of dose 
distribution which can be predictive. Traditionally, this 
information is summarized into dose-volume histograms 
(DVHs), which proved to have limited predictive value 
[10]. As such, developing a reliable prognostic analysis 
and outcome prediction algorithm based on information 
from dose distributions in more effective way is an essen-
tial step in assisting personalized decision-making and 
treatment strategies.

The use of radiomics analysis as a noninvasive, fast, and 
cost-efficient approach to extract various image-based 
quantitative features has proven to be valuable for patient 
prognosis and outcome prediction modeling [4, 11, 12]. 
Radiomics has played an essential role in characterizing 
the internal structures of tissues, e.g., intratumor inho-
mogeneities that are becoming more widely recognized 
as a related factor in HNC prognosis [13–15]. Several 
studies have shown that using multi-modality fusion-
based radiomic features from different medical imaging 
modalities, such as CT, MRI, and PET can significantly 
improve the predictive power of radiomics for other can-
cer types [16–19].

Implementing the radiomics concept on 3D dose distri-
butions (called Dosiomics [20]) provided an opportunity 
to use the valuable predictive information hidden in the 
3D dose distributions more effectively than DVHs.

While most studies investigated normal tissue com-
plication prediction ability of dosiomics [20–29], few of 
them used radiomics and dosiomics for prognosis or out-
come prediction [8, 30]. For instance, Lee et al. [30] used 
the Radiomic and Dosiomic features to predict weight 
loss in lung cancer patients after RT. They demonstrated 
that this analysis could improve the power of predicting 
weight loss as a prognostic factor and developing per-
sonalized treatment planning. Wu et al. [8] established a 
prediction model using radiomic and dosiomic features 
for locoregional recurrence in HNC patients who had 
received intensity-modulated radiation therapy (IMRT) 
and revealed that dosiomics improves the prognostic 
results.

However, to the best of our knowledge, previous stud-
ies barely integrated the dose distribution with one of 
the imaging modalities to predict prognosis or treat-
ment outcome for HNCs using fusion-based features. In 
a recent study by Cai et al. [31], they trained a model for 
overall survival prediction and used different fusions of 
CT and dose distributions, reporting that fusion models 
outperformed single-modality models.

This study aimed to investigate the value of radiomic 
and dosiomic features extracted from GTVs on CT 
images as the primary modality used in RT treatment 
planning and dose distributions, in addition to image 
fusion of CT and absorbed doses for the prediction of 
survival in HNC patients who received IMRT. Moreover, 
utilizing multiple combinations of machine learning algo-
rithms and feature selection methods, we explored the 
optimal combination suitable for our purposes. We con-
sidered the prediction of the overall survival of patients 
after treatment as the endpoint.

Materials and methods
The overall workflow of the current study is shown in 
Fig. 1.

Study population
A total of 240 patients with HNC obtained from the 
“Head-Neck-PET-CT” [32–34] and “HNSCC [35, 36]” 
databases archived in The Cancer Imaging Archive 
(TCIA) open access repository [32]. The “Head-Neck-
PET-CT” database included data from four different 
centers, i.e., CHUM, CHUS, HGJ, and HMR, with 298 
patients, whereas “HNSCC” included 627 patients. After 
excluding patients with incomplete data in terms of pre-
treatment CT images, radiotherapy planning dose and 

Conclusion Our results demonstrated that clinical features, Dosiomics and fusion of dose and CT images by specific 
ML-FS models could predict the overall survival of HNC patients with acceptable accuracy. Besides, the performance 
of ML methods among the three different strategies was almost comparable.
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outcome data, especially vital status, only 183 patients 
(54 CHUM, 50 CHUS, 49 HGJ, and 30 HMR) along with 
the other 57 patients were collected from “Head-Neck-
PET-CT” and “HNSCC,” respectively, (in total 238 cases). 
The clinical characteristics of the analyzed patients are 
listed in Table  1. Overall survival of patients is defined 
as the time from diagnosis to the date of the last follow-
up considered as the endpoint of this study. As evident 
in Table  1, the range of time from diagnosis to the last 
follow-up was 350–1806 days (average 1190 days), 245–
2001 days (average 1189 days), 361–2119 days (average 
1277 days), 194–2136 days (average 1195 days), 193–
3542 days (average 2235 days) for CHUM, CHUS, HGJ, 
HMR and, HNSCC, respectively. For overall survival, our 
observation object was GTV which was contoured on 
CT images and stored in DICOM format retrieved from 
online datasets.

The metrics of age, sex, T-Stage, N-Stage, and TNM-
group, primary tumor site, treatment type, and out-
come were compared between the datasets with one way 

ANOVA test. P-values less than 0.05 were considered 
statistically significant.

Preprocessing
All preprocessing procedures were performed in MatLab 
IBM (The Math Works Inc, MATLAB. Version 2020b) 
software. The dose distributions were registered on the 
axial CT images according to the location tag stored in 
the DICOM header. Then the GTV area was extracted 
and utilized for the next steps.

Image fusion
To suppress any plausible bias in the results due to the 
selection of a specific image fusion model, three differ-
ent publicly available algorithms were utilized to fuse CT 
images and dose maps. These included a technique based 
on 3D discrete wavelet transform, referred to as wavelet 
fusion (WF), one using visual saliency map (VSM) and 
weighted least square optimization, referred to as WLS, 

Fig. 1 The flowchart adopted in this study protocol (radiomics, dosiomics, and three different fusion algorithms) combines dose and CT information to 
predict vital status and overall survival (time to event) for head and neck cancer patients
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Table 1 Characteristics of patients included in this study protocols
Characteristics CHUM CHUS HGJ HMR HNSCC p-value
Total patients 54 50 49 30 57 -
Sex (M/F No.)
(%)

38/16
70/30

32/18
64/36

40/9
82/18

24/6
80/20

48/9
84/16

0.089

Average Age (year) 62.1 ± 8.5 63.2 ± 11.6 62.2 ± 9.9 67.9 ± 9.9 56.7 ± 8.7 < 0.001
No. of patients
>=60 years
< 60

34
20

33
17

30
19

24
6

20
37

T stage (No.)
T1
T2
T3
T4
T4a
T4b
Tx

8
22
15
5
0
0
4

4
20
17
1
6
2
0

9
13
20
5
0
0
2

1
14
5
6
1
2
1

11
19
16
4
0
0
0

0.046

N stage
N0
N1
N2
N2a
N2b
N2c
N3
N3a
N3b

3
7
38
0
0
0
6
0
0

18
4
25
0
0
0
3
0
0

10
10
0
6
15
7
1
0
0

5
4
0
0
10
9
1
0
1

10
9
2
2
24
8
2
0
0

< 0.001

TNM stage
I
II
III
IV
V
VI
IVA
IVB
IIB
IV1A

0
1
52
0
0
0
0
0
0
1

2
7
9
0
0
0
27
5
0
0

1
2
19
0
0
0
25
1
1
0

0
2
5
0
0
0
17
5
1
0

2
2
13
0
0
0
38
2
0
0

< 0.001

Primary site
Unknown
Oropharynx
Nasopharynx
Larynx
Hypopharynx

4
47
2
0
1

0
36
3
10
1

2
34
5
6
2

0
14
4
7
5

2
47
2
4
2

< 0.001

Therapy
Radiation only
CHRT
Surgery + RT
Surgery + CHRT

3
51
0
0

15
35
0
0

3
46
0
0

5
25
0
0

9
26
5
17

< 0.001

RT modality IMRT/TOMO IMRT VMAT IMRT IMRT
Total prescribed dose (Gy, (median ± SD) 70 ± 1.6 69 ± 21 71 ± 2 68 ± 3.1 70 ± 2.3
Outcome
VS(alive/dead)

50/4 41/9 44/5 16/14 40/17 < 0.001

Time (days)*
Average
Min
Max

1190
350
1806

1189
245
2001

1277
361
2119

1195
194
2136

2235
193
3542

CHRT: Chemoradiation, VS: Vital Status, *diagnosis to last follow-up
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and finally, a fusion method based on latent low-rank 
representation referred as LLRR.

For the wavelet fusion [19], volumes (3D CT and dose 
maps) were first decomposed up to one level utilizing 
the wavelet basis function symlet8 as a 3D discrete wave-
let transform. Following the decomposition of volumes, 
which led to eight wavelet coefficient sub-bands for 
each volume, corresponding sub-bands were averaged 
to obtain a single set of fused sub-bands. Finally, fused 
wavelet coefficients underwent inverse 3D discrete wave-
let transform to reconstruct the fused images.

For WLS fusion [37], first, a unique multi-scale decom-
position (MSD) technique, including two filters, namely, 
a Gaussian filter and a rolling guidance filter (RGF), were 
applied to input images to decompose them into base and 
detail layers. With this specific MSD, information of the 
specific scales is maintained, and the voids near the edges 
reduce. For the fusion of the based layers, an enhanced 
VSM-based technique is used that suppresses the resid-
ual low-frequency information in based layers leading 
to better contrast and improved general visual appear-
ance of the fused images. Detailed layers are merged by 
the state-of-the-art WLS optimization method, which 
captures more details and less noise. In the final step, 
fused, based and detailed layers are integrated to achieve 
the fused scan. The default parameters used by [37] were 
adopted in our study.

For LLRR fusion [38], input scans were first fed into 
latent low-rank representation to decompose into two 
parts: the low-rank part, i.e., global structure, and the 
saliency part, i.e., detailed local structures. A weighted 
average strategy was used to fuse the corresponding low-
rank parts to capture more edge information. Saliency 
parts were simply summed. The final step included the 
integration of the fused low-rank and saliency parts. 
In this fusion also, we used the default parameters pre-
sented by [38]. All image processing and image fusions 
were performed in Matlab®.

Feature extraction
All images were interpolated to an isotropic voxel spac-
ing of 1 × 1 × 1 mm3 prior to feature extraction, first to 
standardize the voxel size over images from different 
scanners/centers and second to preserve the rotational 
invariance characteristic of the texture features. In addi-
tion, the intensity levels inside ROIs were discretized to 
a 64-level grayscale to make the feature calculation trac-
table. A feature extraction package based on MATLAB®, 
known as the Standardized Environment for Radiomics 
Analysis (SERA)1 [39], was used for feature calculation. 
SERA agrees with guidelines from Image Biomarker 
Standardization Initiative (IBSI) [40]. This package was 

1 https://github.com/ashrafinia/SERA.

previously evaluated in multi-center standardization 
studies for improved feature reproducibility and robust-
ness [40, 41]. Overall, 215 features per modality were 
extracted, i.e. 215 for CT, 215 for dose, and 215 for each 
fusion method. The feature set included 29 shape (namely 
morphological), 50 first-order (namely statistical, his-
togram and intensity histogram) and 136 three-dimen-
sional texture features calculated using GLCM, GLRLM, 
GLSZM, GLDZM, NGTDM, and NGLDM matrices. 
Besides, 7 clinical features (age, sex, primary tumor site, 
T staging, N staging, TNM staging, treatment modali-
ties) were also included alongside the other features to 
construct the prediction models. Noteworthy, one of the 
implemented strategies (Dual-CT-Dose) involved concat-
enating the radiomic (n = 215) and dosiomic (n = 215) fea-
tures. This concatenated group, along with the inclusion 
of 7 clinical features, yielded a total of 437 features. Sub-
sequently, feature selection was performed as described 
below. The details of the extracted features can be found 
in Supplementary Table 1.

Feature selection
We utilized five distinct feature selection (FS) algorithms, 
namely C-Index, Minimal Depth (MD) [42, 43], Variable 
hunting (VH) [42, 43], Variable Importance (VH. VIMP) 
[42, 43], and Mutual Information (MI) [44] to identify 
appropriate features. The Concordance index for each fea-
ture was calculated using the C-Index FS method—a hybrid 
approach employing a filter and a wrapper based on uni-
variate Cox proportional hazard regression. This calcula-
tion was performed after eliminating features in pairs with 
a Spearman’s rank correlation coefficient (rho) less than 0.9. 
Features with rho greater than 0.9 were retained for further 
analysis and subjected to a univariate Cox proportional 
hazard model. The top ten features demonstrating optimal 
performance (highest mean C-index) were selected through 
100 repetitions using bootstrap resampling.

In MD, a method based on random survival forest, the 
features were sorted by depth, and those closer to the root 
node, indicating higher predictive power, were chosen. The 
top 10 features with minimal depth were selected. Notably, 
the number of features equal to 10 was an arbitrary choice 
based on the most predictive features (depending on the 
feature selection approach).

For other FS methods, such as VH and VH.VIMP, both 
model-based FS techniques utilizing the Random Survival 
Forest (RSF) model, the data were randomly divided into 
train and test sets. RSF was applied to the train set, and 
random features were selected based on the minimal depth 
threshold. The initial model was constructed using these 
selected features, with continiously adding the features until 
the importance of the joint variable is stabilized. This pro-
cess was iterated 50 times, and the features with the highest 
frequency of occurrence were selected. It is noteworthy that 

https://github.com/ashrafinia/SERA
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the process for VH and VH.VIMP is identical, except for 
VH.VIMP, where variable importance is utilized for feature 
ordering, whereas VH relies on the minimal depth thresh-
old—a method slower than VH.VIMP [42, 43, 45]. MI repre-
sents a completely parallelized implementation designed for 
computing the Mutual Information Matrix. The calculation 
of MI involved a linear approximation based on Pearson’s or 
Spearman’s correlation between two columns. To assess the 
correlation between survival data, Somers’ Dxy index was 
employed [44].

In supplementary Table 2, we provide detailed 
names of the features selected throughout the five-fold 
cross-validation.

Time-to-event survival models machine learning and 
hyperparameter optimization
In this study, we assessed the performance of six machine 
learning algorithms that can manage the continuous 
time-to-event survival data. The models are listed below:

1. Cox model fitted the by likelihood-based boosting 
(CoxBoost) [46];

2. Random survival forest (RSF) [47];
3. Cox proportional hazard (Cox PH) [48];
4. Gradient boosting with a component-wise linear 

model (glmboost) [49];
5. Lasso and Elastic-Net regularized generalized linear 

model (glmnet) [50];
6. Survival tree (ST) [51].

Feature selection, all ML model training, model evalu-
ation, and hyperparameters tuning were implemented 
in the MLR package in R programming language, ver-
sion 3.6.2. The hyperparameters were tuned for all ML 
methods (except Coxph) using grid search. The details 
of hyperparameter settings and the R packages used in 
this study are mentioned in supplementary Table 3. The 
hyperparameter setting was guided by the C-index as a 
performance metric, calculated by 3-fold cross-validation 
in the training dataset. Figure  2 describes the feature 
selection, model training, hyperparameters tuning, and 
model evaluation.

Model evaluation
This study used a one-leave-center-out strategy for model 
building and testing with a hold-out external validation 
set to build a generalizable model across the variabil-
ity of centers, scanners, acquisition, reconstruction and 
treatment parameters. The feature normalization func-
tion was transformed from the training to the test set, 
meaning that the same normalization was implemented 
for features in both train and test dataset. After selecting 
features and optimized hyperparameters for ML mod-
els, ML models were tested on the hold-out external test 
dataset utilizing bootstrapping resampling with 1000 
repetitions. This step was repeated five times, where in 
each time, one of the five centers selected as the test set 
and the remaining four centers as the training set. The 
results of the one-leave-center-out scheme were reported 
for all centers on average and for each center separately. 

Fig. 2 Flowchart describing feature selection, model training, model tuning, and model evaluation
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C-indices were reported along with the standard devia-
tions (± SD) among five scores from leave-one-center-out 
cross validation. With this methodology, we used all data 
sets as training and external hold-out test sets, which 
revealed model generalizability.

Kaplan-Meier curves were created for the best models, 
the cut-off criteria for risk stratification were the median 
of the risk scores calculated by the models, meaning the 
individuals witha risk score above or equal to and below 
the median were categorized into high-risk and low-risk 
groups, respectively. The log-rank test was used to calcu-
late the p-values.

Results
Study population Anova test results
The ANOVA p-values were less than 0.05 when compar-
ing all age, sex, T-Stage, N-Stage, and TNM-group, pri-
mary tumor site, treatment type, and outcome metrics 
among the five datasets, confirming that there is statis-
tically significant difference amongst the population 
included in the cohort in terms of the considered met-
rics. The p-values are indicated in Table 1.

Overall comparison between the different strategies
Figure  3 depicts the heat map of the mean C-index for 
each strategy of radiomics, dosiomics, and fusion-based 
methods amongst all 30 combinations of feature selec-
tion and ML models. More information is detailed in 
supplementary Fig.  1, where the heatmaps are denomi-
nated with the name of the hold-out center (selected as 
test set).

Figure 4 shows the median value of the CIs among all 
models and strategies. Moreover, The mean and SD of 
C-indices are also listed in Supplementary Table 4. The 
violon plots of Fig.  5 depict the distribution of mean 
C-indices for each strategy separately.

To evaluate the significance of differences among the 
different strategies, we performed Friedman test followed 
by Nemenyi post-hoc test as the P-value for the Friedman 
test was < 0.05. Supplementary Table 5 summarizes the 
results of Nemenyi post-hoc test, which showed signifi-
cant difference among the different strategies.

Comparicon of different machine learning models
For survival prediction, two model and feature selection 
methods, i.e., CoxBoost-MD (C-index = 0.73 ± 0.15) and 
glmnet-VH (C-index = 0.73 ± 0.15) for LLRR, achieved 
the highest performance relative to other features. In 
a comparison of the top 10% C-indices among all non-
fusion strategies (Clinical, CT, Dose, and Dual-CT-Dose), 
the dose strategy (dosiomics) showed the highest values 
of C-indices (0.7–0.72). The comparison among fusion-
based strategies (LLRR, Wavelet, WLS) revealed the 
highest values for LLRR (0.7–0.73). The minimum CI 

Fig. 3 Heat map of C-index for each strategy and ML in combination with 
feature selection methods
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values among all models and all strategies were from ST_
MI (0.52–0.6), except for WLS, in which the minimum CI 
was from CoxBoost-MI (0.53) but still among the mini-
mum values, CI of ST-MI was significantly low (0.56).

Table  2 shows the highest mean C-index for the best 
machine learning and FS combinations and their corre-
sponding strategy. All models have been assessed in one 
leave center out cross-validation. The corresponding CI 

Fig. 5 The violon plots of mean C-index for radiomic and dosiomic and three different fusion-based strategies for survival prediction

 

Fig. 4 The median value of C-indices among all strategies and all models for CHUM (blue), CHUS (orange), HGJ (red), HMR (yellow), and HNSCC (Green)
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values for each center are reported in supplementary 
Fig. 2 in separate heat maps, and the top 10% C-indices 
for any strategy are reported in Supplementary Table 6. 
The models with the highest CI values were selected as 
more efficient models, and the K-M curves were applied 
to them for further comparison. Figure  6 illustrates the 
K-M curves for the best models, showing statistically sig-
nificant power in dividing groups into low and high risks. 
The other K-M curves for the best models for all strate-
gies are shown in Supplementary Fig. 3.

Comparison of different feature selection methods
A comparison between CI values in terms of evalu-
ation of the feature selection methods performance 
showed that the higher values of CIs obtained from MD 
(0.73 ± 0.15 and 0.71 ± 0.11 for LLRR and Dose, respec-
tively) and VH methods (0.73 ± 0.15 for LLRR). VH.VIMP 

method for dosiomics only (Dose) and radiomics only 
(CT) showed similar performance (0.71 ± 0.11). Among 
the fusion-based strategies, LLRR had the highest value 
(0.7 ± 0.12). In the C-index method, the most potent CI 
among non-fusion strategies belonged to dose image 
selected features, i.e., dosiomics (0.72 ± 0.14). In con-
trast, LLRR (0.69 ± 0.13) had the highest C-index value 
amongst the fusion-based methods.

Discussion
In this study, we considered the image-based fusion of 
CT images and 3D dose distributions and integrate the 
concepts of radiomics and dosiomics by comprehensively 
comparing different machine learning and feature selec-
tion combinations to predict the overall survival of HNC 
patients after radiotherapy treatment. For this purpose, 
we used three different fusion algorithms to fuse the CT 

Table 2 Best combinations of feature selection and machine learning methods (highest mean CIs) for each strategy. Standard 
deviations of CIs are also provided here and in the supplementary Table 3. Slash “/”separated SDs related to their corresponding feature 
selections
ML model Feature selection method Highest CI ± SD Strategy
Coxph CI/ MD/ VH 0.72 ± 0.14 / 0.15 / 0.15 DOSE/LLRR/LLRR
CoxBoost MD 0.73 ± 0.15 LLRR
glmnet VH 0.73 ± 0.15 LLRR
RSF MD 0.71 ± 0.11 DOSE
glmboost MD/ VH 0.72 ± 0.15 / 0.14 LLRR

Fig. 6 Kaplan-Meier curves of the high- and low-risk groups for the five best models by clinical, Dose and LLRR fusion strategy. The cut-off criteria for risk 
stratification were median. A log-rank test was used to calculate the p-values
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and dose maps. Then, corresponding extracted features 
were driven into the 30 different combinations of feature 
selections and machine learning algorithms to explore 
the value of dosiomics and fusion-based features. We 
also compared the results with single modality radiomics 
models. Our results demonstrated that the 3D dose dis-
tribution included valuable information highly correlated 
with overall survival prediction in HNC patients. More-
over, fusion (especially with the LLRR algorithm) of the 
dose distribution with CT images can improve some pre-
diction models’ performance and accuracy. However, the 
fusion approach provided a slightly more accurate per-
formance than the dosiomics approach alone.

This study was conducted under the assumption that 
in image-level fusion, the incorporation of neighbor-
ing voxel values in the fused images creates a novel tex-
ture that offers increased prognostic value compared to 
the interpretation of voxel values in an individual image 
alone (e.g. HU in CT or Gy in dose map), which may lack 
a clear physical or biological meaning.

Five independent datasets were used in this study. We 
carried out a one-way ANOVA statistical test on our 
cohort. According to the p-values reported in Table  1, 
there is a significant heterogeneity in population char-
acteristics, such as sex and TNM staging, indicating that 
our models presented a robust behavior against the het-
erogeneity of characteristics in the cohort, indicating 
the generizability of the models. Moreover, the effect of 
cycling in hold-out dataset on the performance of the 
models was investigated during the one-center-leave-out 
procedure. It is worth emphasizing that our models were 
consistently trained incorporating clinical features. Spe-
cifically, the features derived from CT, Dose, Dual-CT-
Dose, and fusion-based strategies were not exclusively 
image- or dose-based. Instead, clinical features were con-
sistently integrated. In addition, we conducted analyses 
with models utilizing only clinical features to establish 
a baseline assessment. The results indicated that clinical 
strategies achieved a performance comparable to Dose 
and fusion levels in terms of the C-index. However, as 
depicted in Fig. 4, the median values of Dose and LLRR 
in the folds exhibited superior performance compared 
to the clinical approach. Furthermore, the clinical strat-
egy did not perform effectively in stratifying high and 
low-risk cases based on the survival curves illustrated in 
Fig. 6.

It should be noted that we compared our results with 
models established by Wu et al. [8]. However, they inves-
tigated local recurrence prognostic models, whereas our 
models predicted the overall survival (OS), and as such, 
the results are not directly comparable. Still, this was 
the most similar study involving Dosiomics results in 
HNC patients. By comparing our results to Wu et al. [8] 
models, our established models outperformed (CI = 0.66 

vs. 0.54) for CT with the Coxph-Cindex model and 
(CI = 0.72 vs. 0.66) with Coxph-CIndex for Dose. How-
ever, we implemented much more comprehensive ML-FS 
(6 × 5) methods and models evaluated in the multi-center 
strategy. The VIMP model for CT has shown an even 
higher CI (0.71). We also achieved a CI of 0.72 for the 
Dose model with glmnet-Cindex. Our training method 
has benefited from the one-leave-center-out scheme. 
However, Wu et al. [8] used the data from two centers 
for training and the other two centers for testing their 
models.

Moreover, in this study, we fused CT images and Dose 
distributions. By combining the radiomics and dosiomics 
data into a single fused image, the performance of spe-
cific models could be improved (CI increasing to 0.73 
in glmnet-VH and CoxBoost-MD for the LLRR fusion 
method). Compared with a fusion-based radiomics study 
by Lv et al. [18], our results have shown a higher prognos-
tic performance for OS (CI = 0.67 vs. 0.64) in the wavelet 
fusion strategy. They only implemented the Coxph-Cin-
dex model with different fusion strategies. In contrast, 
our results for the same fusion strategy demonstrated 
that other ML-FS models have even better performance 
(the highest CI of 0.69 was achieved for the Coxph-VH. 
VIMP model in the wavelet fusion strategy). Besides, 
they fused PET and CT images of HNC patients. While 
in this study, we fused CT images and 3D dose distri-
butions to combine their information in a single image. 
The average CI for the “CT only” strategy in this study 
with the Coxph-Cindex model was 0.66, whereas the CI 
of 0.71 was the highest prognostic performance using 
the Coxph-VH. VIMP model. However, the established 
model by Lv et al. [18] study achieved a CI of 0.59 ± 0.5.

In comparison with Vallières et al. [33] results, who 
used a random forest model, our RFS models showed a 
lower CI for OS (0.7 for CT Via RSF-VH. VIMP and 0.71 
for Dose Via RSF-MD vs. 0.75 for CT and 0.76 for PET). 
It should be noted that the larger number of extracted 
features in their study (1615 vs. 215 + 7 in our study) may 
have influenced their results. In a CT-based radiomics 
study by Sun et al. [52] in which the effect of ML meth-
ods on lung OS was investigated, the highest reported CI 
for some ML models were similar to some of ours, i.e., 
0.674, 0.627, and 0.646 for CoxBoost-Cindex, RSF-PCC 
and Cox-MI, respectively. By including the dose infor-
mation (dosiomics) and fusing the dose with CT images, 
the performance improved compared with the dose and 
CT-only approach (0.7 for Dose via CoxBoost-Cindex, 
0.71, 0.69, for Dose, and LLRR, respectively, via RSF-MD, 
0.68 via RSF Cindex and RSF-VH for WLS and Wavelet 
respectively and 0.68 via Coxph-MI for Dose strategy).

In a study by Lee et al. [30], the authors considered a 
radiomics and dosiomics strategy to predict the weight 
loss of lung cancer patients after radiotherapy. To 
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summarize, a review of the dosiomics results demon-
strated that our most robust dosiomics models (CI of 
0.72, Coxph-Cindex, and glmnet-Cindex) are as predic-
tive as theirs (AUC = 0.71). It should be noted that AUC 
and CI are not directly comparable, and the subjects used 
in these studies are different.

In general, our models showed a good performance, 
particularly when using features derived from 3D dose 
distributions (Dosiomics). According to our findings, the 
combination of radiomics and Dosiomics into a single 
fused image (particularly employing the LLRR approach) 
yielded comparable results to those achieved with 
Dosiomics alone. However, Dosiomics remains unaf-
fected by differences in CT characteristics. Moreover, the 
approach is both methodologically and conceptually sim-
pler, requiring less data for collection.On the other hand, 
an investigation involving larger cohorts may reveal an 
increased discrimination between Dosiomics and fusion-
based models as the hypothesis is that such models 
would derive greater benefits from a large-scale dataset.

The combination of LLRR fusion and specific fea-
ture selection and machine achieved the highest aver-
age C-Index. However, this doesn’t mean that LLRR 
fusion always performs better with all feature selections/
machines. We suggest that the model achieving the best 
performance be used. However, if there is a desire to test 
the model with limited inputs, such as clinical only, CT 
only or Dose only inputs, the best model according to 
supplementary Table 6 should be selected and used.

A radiotherapy 3D dose map contains by nature infor-
mation correlated to outcome prediction. Although 
dose-volume histograms are the most common tools to 
display this information, this information is accumulated 
in existing DVHs, and DVHs are deficient in showing the 
spatial information [53–55]. Using the DVH-based met-
rics may even over/underestimate the prediction of ther-
apeutic toxicity in head and neck cancer radiotherapy by 
up to 50% [56].

This study provided information to tailor a subset of 
feature selection and ML algorithms for overall survival 
prediction modeling in HNC patients. While this study 
involved five independent centers and multiple treatment 
modalities, a major limitation was the limited sample size 
and the usage of non-harmonized feature-sets. To miti-
gate the limited size, we utilized a one center leave-out 
strategy and averaged the results to enhance the repro-
ducibility across different centers. However, further stud-
ies using larger databases and implementing more robust 
harmonization methods are still required. We showed 
that Dosiomics could more robustly explain the features 
within the 3D dose maps. Moreover, the results were 
extended to the fusion of treatment planning CT and 
radiotherapy dose distributions. Overall survival predic-
tion based on radiomics and dosiomics and the fusion of 

these two images can be helpful in the decision-making 
process and personalized treatment.

Conclusion
We proposed a comprehensive framework for the devel-
opment and validation of time-to-event overall survival 
models (cross-combination of feature selection and ML) 
for clinical as baseline, single (CT, Dose), multi-modality 
(CT-dose) and fusion models (Wavelet, LLRR, WLS). We 
also investigated the best combination of feature selec-
tion and machine learning model reported for each strat-
egy. Our results demonstrated the potential of clinical, 
radiomics applied on CT, dosiomics derived from radio-
therapy 3D dose distributions, and three different fusion 
strategies in overall survival prediction of head and neck 
cancer patients. Our results support the superiority of 
dosiomics in identifying prognoses associated with over-
all survival. The fusion-based models showed a compa-
rable result to dosimics tending to improve the results of 
overall survival prediction probably by training models 
with large-scale datasets.
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