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Abstract
Background Current automated planning solutions are calibrated using trial and error or machine learning on 
historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, 
which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this 
functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated 
radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two 
external institutions for prostate cancer.

Methods The implemented ‘Pareto Guided Automated Planning’ (PGAP) methodology was developed in RayStation 
using scripting and consisted of a Pareto navigation calibration interface built upon a ‘Protocol Based Automatic 
Iterative Optimisation’ planning framework. 30 previous patients were randomly selected by each institution (IA and IB), 
10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated 
to the institutions’ clinical preferences. A single automated plan (VMATAuto) was generated for each validation patient 
with plan quality compared against the previously treated clinical plan (VMATClinical) both quantitatively, using a range 
of DVH metrics, and qualitatively through blind review at the external institution.

Results PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean reduced by 
3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were mixed with low and intermediate 
dose metrics reduced for IB but increased for IA. Differences, whilst statistically significant (p < 0.05) were small and 
not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D98% was 
generally improved with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum 
over conformality was however aligned with preferences expressed during calibration and was a key driver in both 
institutions demonstrating a clear preference towards VMATAuto, with 31/40 considered superior to VMATClinical upon 
blind review.

Conclusions PGAP enabled intuitive adaptation of automated protocols to an institution’s planning aims and yielded 
plans more congruent with the institution’s clinical preference than the locally produced manual clinical plans.
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Background
Automated radiotherapy treatment planning (AP) is an 
innovation that improves the quality and efficiency of 
plan generation when compared to traditional manual 
trial-and-error techniques [1]. Within the literature AP 
solutions can be separated into 3 broad categories:

1. Knowledge based planning (KBP): utilise algorithms 
trained on databases of historical treatment plans 
to predict parameters (e.g. dose volume histograms) 
that inform the optimisation of novel patients [2–6].

2. Constrained hierarchal optimisation (CHO): 
minimise clinical objectives in strict sequential order 
according to a predefined clinical ‘wish list’ [7, 8].

3. Protocol-based automatic iterative optimisation 
(PBAIO): automatically adapt parameters during the 
plan generation process, tailoring the optimisation to 
the individual patient [9–13].

Prior to automated plan generation all methods must 
be calibrated; a process that is critical in ensuring solu-
tions are optimal and congruent with oncologists’ treat-
ment wishes. At present two calibration methods are 
commonly employed. Simple trial-and-error, where AP 
parameters are iteratively adjusted manually based on 
the AP output, and machine learning where AP param-
eters/algorithms are trained on historical patient datas-
ets. Trial-and-error is the predominant method used for 
PBAIO and CHO solutions, and machine learning for 
KBP solutions [1].

Whilst trial-and-error and machine learning yield 
clinically acceptable AP solutions, there are limitations 
of both approaches than can hinder the efficiency and 
optimality of the AP calibration. Machine learning gen-
erally requires large historical datasets (typically n = 100) 
[14], which may not be present for novel techniques or 
prescriptions, and calibrations are strongly dependent 
on the optimality and consistency of plans in the training 
dataset [15], which is not guaranteed. Additionally KBP 
trained with machine learning may still require consider-
able ‘tuning’ to deliver suitable solutions [16]. For trial-
and-error, a key issue is that due to the high number of 
calibration variables and their possible permutations, 
efficient and intuitive exploration of different treatment 
options is not possible. Trial-and-error is analogous to 
traditional manual planning (albeit at the patient cohort 
level); an approach prone to inter-observer variabil-
ity [17] and yielding plans that may not fully align with 
oncologists’ clinical aims [18]. The process is also ineffi-
cient with any change in calibration parameter requiring 
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the generation of a new plan to assess the impact on the 
dose distribution.

We propose an alternative method for AP calibration, 
which utilises Pareto navigation techniques in place 
of trial-and-error or machine learning. The concept of 
Pareto navigation is as follows: (i) a plan is considered 
Pareto optimal when improvement of one objective/
trade-off can only be made at the detriment of another 
(ii) for a given optimisation problem there is an infinite 
set of Pareto optimal plans, which define the ‘Pareto 
front’ (iii) in Pareto navigation the Pareto front is sam-
pled (for all or a selected number of trade-offs) via gener-
ating a set of discrete Pareto optimal plans, the decision 
maker (e.g. oncologist or dosimetrist) then interactively 
explores the Pareto front using a navigation star [19] 
or sliders [20] to select the clinically optimum solution. 
When compared to traditional trial-and-error manual 
planning, on an individual patient basis Pareto naviga-
tion has been shown to improve planning efficiency by 
70–90% [18, 21, 22] and yield solutions more congruent 
with the oncologists’ treatment aims [18]. It is therefore 
hypothesised that Pareto navigation presents an effective 
AP calibration alternative.

Recently the methodology of a fully automated PBAIO 
solution that was calibrated using Pareto navigation tech-
niques (Pareto Guided Automated Planning (PGAP)) 
has been presented [23]. The solution was evaluated for 
prostate cancer patients with and without elective nodal 
irradiation at the local institution (Velindre Cancer Cen-
tre (VCC)), with results demonstrating superiority over 
manual planning [24]. However, in this initial imple-
mentation of PGAP, Pareto navigation was constrained 
to one trade-off (or dimension) at a time, which limited 
the effectiveness of the technique in exploring the Pareto 
surface.

The purpose of this work is to firstly present a new 
PGAP solution that implements a multi-dimensional 
Pareto navigation calibration interface and secondly to 
present results of a multi-centre validation of this solu-
tion in two external institutions.

Methods
Patient selection and planning protocol
For each institution (IA and IB) 30 patients (60 in total) 
treated with prostate only radiotherapy during the period 
of 1st April– 30th June 2017 were randomly selected, 
with 10 and 20 patients allocated to a calibration and 
validation dataset respectively. Patients with hip prosthe-
sis were excluded. Across both institutions patients were 
treated following the hypo-fractionated CHHIP trial 
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protocol [25]; a simultaneous integrated boost technique 
delivering 60 Gy in 20#. The clinical goals associated with 
this protocol are presented in Table 1.

Patients were planned on a CT scan of 2  mm slice 
thickness, with prostate and up to 2  cm of proximal 
seminal vesicles (sv) delineated as targets; and rectum, 
bladder, femoral heads (IB only) and bowel (IB only) delin-
eated as organs at risk (OARs). As per the CHHIP pro-
tocol the following planning target volumes (PTV) were 
generated, with the PTV’s nominal prescription in Gy 
defined by the nomenclature’s suffix: prostate expanded 
by 5 mm (0 mm posteriorly) and 10 mm (5 mm posteri-
orly) to form PTV60 and PTV57.5 respectively; and pros-
tate + sv expanded by 10 mm to form PTV48.

The clinically delivered treatment plans (VMATClinical) 
were generated by the institutions using RayStation v5 
(RaySearch Laboratories, Stockholm). Treatments were 
delivered on a Varian TrueBeam STx (Varian Medical 
Systems, Palo Alto) and an Elekta Agility (Elekta Ltd, 
Crawley) linac for IA and IB respectively. Automated 
plans (VMATAuto) were generated at VCC using RaySta-
tion v4.99, a research release equivalent to v5. VMATAuto 
plans were generated using identical RayStation treat-
ment planning machine models and arc configurations 
to VMATClinical (single 6MV 360° VMAT arc). For IB, 
VMATAuto and VMATClinical were normalised such that 
PTV60’s median dose equalled 60.0 Gy.

Pareto guided automated planning
In this study PGAP was performed using EdgeVcc: a 
PBAIO automated planning solution developed at VCC 
and implemented in RayStation using python scripting. 

Full details of this PGAP solution are presented by 
Wheeler et al. [23], with the following providing a sum-
mary of the key aspects.

Prior to automated planning a site specific ‘AutoPlan 
protocol’ is created and a set of planning goals defined 
(Table  2). Planning goals are split into 3 priority levels: 
critical normal tissue goals (P1), target goals (P2) and nor-
mal tissue goals (P3). P1 and P2 generally represent a clini-
cal protocol’s mandatory dose constraints and P3 all other 
trade-offs which are to be minimised. This approach is 
analogous to using constraints and trade-offs in stan-
dard Pareto navigation applications. No weighting factors 
(WF) are specified by the user, instead they are generated 
through two processes. For P1 and P2, WF are defined by 
hard coded constants (1000 and 250 for P1 and P2 respec-
tively). For P3, balancing competing trade-offs is complex 
and difficult to define a priori. In this case WF are derived 
through the Pareto navigation calibration process.

Calibration is initially performed on a single patient. 
Firstly, a set of automated plans with differing P3 WF are 
generated using the PBAIO automated planning algo-
rithms. These plans represent different AutoPlan calibra-
tion options, each with a different balancing of competing 
trade-offs that constitute a point on the Pareto front. 
The operator then navigates through these differently 
weighted P3 treatment options via a sliding interface. The 
clinically optimum position on the Pareto front, deter-
mined qualitatively by the operator, is selected and the 
WF associated with this navigated position stored in the 
AutoPlan Protocol. The result is a calibrated AutoPlan 
protocol, which is ready for testing or further refinement.

The PGAP solution is built on a PBAIO automated 
planning framework, where during optimisation the 
position and weight of P3 related optimisation objec-
tives are iteratively updated. The position is adjusted to 
maintain a constant difference (δ) between the optimisa-
tion objective and its corresponding DVH parameter. For 
example, if a dose volume objective (DVO) of V23.4 Gy at 
10.0% volume is defined and the resultant optimised dose 
yields a V23.4  Gy equalling 9.0%, the DVO volume tar-
get will be set to [9.0% - δ]. In terms of objective weight, 
this is dynamically updated such that the objective 
function’s value trends towards a target objective value. 
Utilising these two mechanisms within a PBAIO frame-
work aims to both minimise OAR doses (via dynamic 
positioning) and ensure consistent trade-off balancing 
across all patients treated to the same clinical proto-
col (via dynamic weighting). This provides the potential 
for a Pareto navigation calibration on a single patient to 
yield a suitably calibrated AP solution for novel patients. 
In practice, especially for more complex sites with vari-
able anatomy, it may be necessary to perform additional 
Pareto navigation on outlier patients (with weights 

Table 1 CHHIP trial based clinical planning goals for IA and IB
ROI Name Dose Parameter Goal
Target and Max Dose Goals
All PTVs D99% ≥ 95% of PTV prescription

PTV57.5 - PTV60 D50% ≥ 57.5 Gy

PTV48 - PTV57.5 D50% ≥ 48 Gy

PTV60 D1% ≤ 63.0 Gy

Patient Outline D1.8 cm3 ≤ 63.0 Gy

OAR Goals
Rectum V24.3 Gy ≤ 80%

Rectum V32.4 Gy ≤ 70%

Rectum V40.5 Gy ≤ 60%

Rectum V48.6 Gy ≤ 50%

Rectum V52.7 Gy ≤ 30%

Rectum V56.8 Gy ≤ 15%

Rectum V60.0 Gy ≤ 3%

Bladder V40.5 Gy ≤ 50%

Bladder V48.6 Gy ≤ 25%

Bladder V60.0 Gy ≤ 5%

Femoral Heads V40.5 Gy ≤ 50%

Bowel V40.5 Gy ≤ 17 cm3
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typically averaged) to improve the solution’s robustness 
across the whole cohort.

In previous work, calibration via Pareto navigation 
was performed through sequential navigation of one 
trade-off (or Pareto dimension) at a time. In this regard 
a Pareto dataset (typically containing 5 plans) was gen-
erated with varying WF applied to the given trade-off 
and all other WF held constant (or set to zero if unnavi-
gated). The process was repeated until all trade-offs were 
navigated. In this work we present a fully customisable 

interface (Fig.  1), where any number of dimensions can 
be navigated in parallel, thereby providing the opportu-
nity for full Pareto navigation. Furthermore, dimensions 
are not limited to a planning goal’s WF, but rather any of 
its parameters, enabling navigation, for example, of indi-
vidual P2 target values such as PTV min dose.

For a given navigation the operator defines (via a config 
file) the dimensions to be explored and for each dimen-
sion the trade-off parameter values to be sampled during 
creation of the Pareto surface. Typically 3–5 parameter 

Table 2 Final planning goals and weighting factors for both institutions
Priority 1: Primary Conformality Goals (WF = 1000)
ROI Name Dose Parameter Target (Gy) Distance (cm)

PTV48 Dmax 46.8 1.5

Priority 2: Target Goals (WF = 250)
ROI Name Dose Parameter Target

(%Presc,PTV)

PTV60 Dmin 98.7

PTV60 Dmax 101.7

PTV60 D50% max 99.5

PTV57.5 Dmin 98.7

PTV57.5 Dmax 102.5

PTV48 Dmin 97.3

PTV48 Dmax 104.9

Priority 3: Trade-off Goals (Standard)
ROI Name Dose Parameter Target

(Gy or %Vol)
WF (IA) WF (IB)

Rectum V23.4 Gy (%) 0.0 3.5 3.5

Rectum V31.5 Gy (%) 0.0 3.5 3.5

Rectum V39.6 Gy (%) 0.0 0.044 -
Rectum V47.7 Gy (%) 0.0 0.088 -
Rectum V51.8 Gy (%) 0.0 29.9 29.9

Rectum V55.9 Gy (%) 0.0 3.5 -
Rectum Dmax (Gy) 60.0 0.586 0.586

Rectum Dmean (Gy) 5.0 5.84 5.84

Bladder V30.0 Gy (%) 0.0 0.316 0.316

Bladder V39.6 Gy (%) 0.0 0.316 0.316

Bladder V47.7 Gy (%) 0.0 0.316 0.316

Bladder V51.8 Gy (%) 0.0 0.316 0.316

Bladder V55.9 Gy (%) 0.0 0.316 -
Bladder Dmax (Gy) 54.0 0.316 0.316

Bladder Dmean (Gy) 5.0 3.73 3.73

Bowel V36.0 Gy (%) 0.0 - 0.413
Bowel V45.6 Gy (%) 0.0 - 0.413
Priority 3: Trade-off Goals (Dose Fall Off)
ROI Name Fall Off Type High Dose Level (Gy) Low Dose Level (Gy) Dose Gradient

(%Presccm− 1)
WF (IA) WF (IB)

External Normal Tissue Falloff 60.0 30.0 50% 204 204

PTV57.5 Intra PTV Falloff 54.0 54.0 75% 10.7 29.8
PTV48 Intra PTV Falloff 54.6 (54.0)* 45.6 75% 29.8 29.8
Abbreviations: %Presc, PTV = % of individual PTV prescription dose; %Presc = % of overall treatment prescription; %Vol = % volume of ROI, WF = weighting factor

Notes: Differences between IA and IB AutoPlan protocols are highlighted in bold. WF = ‘-’ indicates the planning goal was removed for the institution specific protocol. 
Priority 3 targets = 0.0 by default, but can be specified if desired. The target is dynamically adjusted during optimisation and therefore initial values have negligible 
impact plan quality, but may decrease planning time if correctly defined

*Value outside and inside parenthesis correspond to IA and IB respectively
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values are specified for each dimension. To populate the 
Pareto navigation dataset, a fully segmented treatment 
plan is generated (using the PBAIO framework) for all 
possible parameter value permutations across the differ-
ent dimensions. The dataset is navigated in ‘parameter 
space’ using a slider interface with the navigated dose 
distribution estimated though linear interpolation of the 
neighbouring discrete Pareto plans using the navigated 
parameter values as the interpolation coefficients (see 
Wheeler et al. [23]). Whilst the interface allows for any 
number of dimensions to be navigated in parallel, there 
are computational limitations as the number of plans in 
the navigation dataset increases to the power of the num-
ber of dimensions. Pareto navigation is therefore typically 
limited to < 5 dimensions, with additional navigations 
performed sequentially until all trade-offs have been 
navigated.

AutoPlan protocol calibration
Separate calibrations for both IA and IB were performed 
by VCC using the institution’s calibration patient cohort. 
Planning goals (Table  2) were based on CHHIP clini-
cal goals (Table  1) and during calibration the balanc-
ing of trade-offs was informed by the corresponding 

VMATClinical plan and collaborative discussions with the 
external institution.

Demonstrating the utility of PGAP
To demonstrate the potential utility of PGAP, using the 
calibrated IA protocol as a base, a multidimensional navi-
gation consisting of the following four dimensions was 
generated for the first IA calibration patient: PTV60 Dmin 
(target parameter), PTV60 Dmax (target parameter), rec-
tum Dmean (WF parameter) and external normal tissue 
fall off (WF parameter). Using the navigation interface 
two different calibrations were selected (Fig.  1): Cal1, 
where the rectum was spared at the expense of homo-
geneity and conformality, and Cal2, where parameter 
values were set to nominally equal the final calibrated 
IA protocol. For both Cal1 and Cal2 an automated plan 
was generated for all IA calibration patients. Pareto front 
representations of PTV60 homogeneity index (HIPTV60), 
PTV48 Paddick’s conformity index (CIPTV48) [26] and 
rectum DMean were generated to demonstrate the prop-
agation of differing calibrations to novel patients. This 
evaluation was undertaken at VCC after the multi-insti-
tutional study proper using an upgraded version of Ray-
Station (8b research).

Fig. 1 Pareto navigation calibration interface. Navigation is performed using the slider bars (top left), with the dose distribution (top centre) and DVH 
(top right– solid line) updated in real time within RayStation’s evaluation module. During navigation the operator can set the navigated distribution as a 
reference distribution (bottom centre) and DVH (top right– dotted line) to aid in the decision making. In this example the navigated position represents 
a solution where the rectum is spared at the expense of homogeneity and conformality (Cal1) with the reference distribution representative of the final 
calibration for IA (Cal2). The corresponding Cal2 slider positions are provided for reference (bottom left) and isodose legends have been enhanced for clar-
ity. ROIs: rectum (brown), bladder (yellow), external (blue), PTV60 (pink), PTV57.5 (red) and PTV48 (orange)
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Evaluative study design
For the evaluative study, VMATAuto plans were gener-
ated for all validation patients using the institution’s 
calibrated AutoPlan Protocol. Plan quality was quanti-
tatively compared to VMATClinical using: CHHIP dose 
metrics; PTV D98%, D2%, HI and CI; and OAR mean 
doses. Higher prescription PTVs were subtracted from 
lower prescription PTVs when reporting D98%, D2% and 
HI. Differences were assessed for statistical significance 
using a two-sided Wilcoxon signed rank test. Statistical 
testing was not performed where, following omission 
of tied values (i.e. where metrics equalled zero for both 
VMATAuto and VMATClinical), sample size was < 10. In 
addition, a blind qualitative comparison of VMATAuto 
and VMATClinical was performed on-site at each external 
institution by a team consisting of a single oncologist and 
dosimetrist. During review the team would discuss the 
two plans under blind conditions and rank them in order 
of preference. Whilst the discussions were collaborative, 
it was permissible for the oncologist and dosimetrist to 
disagree on the final ranking.

Results
AutoPlan protocol calibration
Details of the calibrated AutoPlan Protocols are provided 
in Table 2. The final IA protocol was used as a base for IB 
following simplification (low weighted and similar plan-
ning goals removed). Due to substantial similarities in 
clinical preference between the two institutions only two 
key changes were made for the final IB protocol: the addi-
tion of bowel goals and an increased intra-PTV dose fall-
off WF.

Demonstrating the utility of PGAP
The Pareto front representations in Fig.  2 demonstrate 
how the two different calibrations propagated to novel 
patients. Across patients 2–10 there was a clear and 
consistent change in the balancing of automated plans 
between Cal1 and Cal2 with changes in rectum Dmean, 
CIPTV48 and HIPTV60 of 8.7 Gy, 0.068, and − 0.031 respec-
tively. This compares with changes of 7.4  Gy, 0.073 and 
− 0.034 respectively for the calibration patient (patient 1).

Evaluative study
Results of the evaluative study on the validation patient 
cohort are presented in Table  3, with Fig.  3 providing 
1–1 plots comparing VMATAuto with VMATClinical across 
a range of key OAR and PTV dose metrics. Across both 
institutions VMATAuto led to a statistically significant 
(p < 0.05) improvement across all but two rectal dose 
metrics (V48.6 Gy, V52.7 Gy). For IA, several reductions were 
substantial, with Dmean and V24.3  Gy reduced by 3.7  Gy 
and 15.1% respectively. For IB improvements were more 
modest [ΔDmean = -1.8 Gy, ΔV24Gy = -8.4%]. For bladder, 
VMATAuto led to a small but statistically significant det-
riment in low and intermediate dose level metrics for 
IA [ΔV40.5  Gy = + 1.3%, ΔV48.6  Gy = + 0.6%] with the situa-
tion reversed for IB [ΔV40.5 Gy = -1.0%, ΔV48.6 Gy = -0.7%]. 
VMATAuto led to a moderate reduction in bladder Dmean 
for IB [ΔDmean = -1.3 Gy].

VMATAuto yielded moderate improvements in D98% for 
PTV57.5 [IB only, ΔD98% = +1.0 Gy] and PTV48 [IA ΔD98% 
= +0.7  Gy, IB ΔD98% = +1.0  Gy], which did not result in 
a detriment in rectal doses. Significant but small dif-
ferences were also observed for PTV60 D98% [IA ΔD98% 
= -0.2  Gy, IB ΔD98% = +0.3  Gy]. D2% was significantly 
increased for PTV60 [IA only, ΔD2% = +0.4  Gy], PTV48 
[IB only, ΔD2% = +0.6 Gy] and deceased for PTV57.5 [IA 

Fig. 2 Pareto front representations of the three navigated trade-offs (rectum Dmean, HIPTV60 and CIPTV48) demonstrating the dosimetric impact of two 
differently balanced calibrations (Cal1 & Cal2) on novel patients in the IA calibration dataset. Data from the navigation patient (Patient 1) is presented for 
reference, with Cal1 and Cal2 data points encompassed by the red and blue boxes respectively
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only ΔD2% = -0.3 Gy]. Worthy of note was the reduction 
in the variation of HI across all study patients when plan-
ning with VMATAuto, which was for all PTVs across both 
institutions (Fig. 3). In terms of conformality, VMATAuto 
led to moderate reductions in the CI index for IA 
[ΔCIPTV57.5 = -0.035, ΔCIPTV48 = -0.039] and IB [ΔCIPTV60 
= -0.035, ΔCIPTV57.5 = -0.019]. This degradation was 
attributed to a higher prioritisation being placed on rec-
tum dose reduction during calibration when compared 
with VMATClinical.

Upon blind review all plans were considered clinically 
acceptable. For IA there was a clear preference towards 
VMATAuto with 90% considered superior to VMATClinical. 
For IB this percentage dropped to 65% but the overall 
preference towards VMATAuto was maintained. Agree-
ment between the oncologist and dosimetrist was very 
good with only one plan without a consensus deci-
sion. MU for VMATAuto was 12% and 15% higher than 
VMATClinical for IA and IB respectively. This increase was 
not of concern to either institution.

Table 3 Dosimetric comparison of VMATAuto and VMATClinical for institution A and B (mean ± standard deviation)
Institution A Institution B

Metric VMATAuto VMATClinical p value VMATAuto VMATClinical p value
PTV60 D98% (Gy) 58.8 ± 0.1 59.0 ± 0.2 0.00 59.0 ± 0.1 58.7 ± 0.3 0.00

D99% (Gy) 58.7 ± 0.1 58.8 ± 0.3 0.03 58.9 ± 0.1 58.5 ± 0.4 0.00
D2% (Gy) 61.3 ± 0.1 60.8 ± 0.3 0.00 61.0 ± 0.1 60.9 ± 0.4 0.68

CI 0.562 ± 0.027 0.570 ± 0.041 0.31 0.601 ± 0.031 0.636 ± 0.042 0.00
HI 0.041 ± 0.002 0.030 ± 0.007 0.00 0.032 ± 0.002 0.037 ± 0.009 0.03

PTV57.5 D98% (Gy)* 55.9 ± 0.1 55.5 ± 0.9 0.06 55.7 ± 0.2 54.7 ± 0.2 0.00
D99% (Gy) 56.0 ± 0.2 55.6 ± 0.9 0.07 55.9 ± 0.2 54.9 ± 0.2 0.00
D2% (Gy)* 59.9 ± 0.1 60.2 ± 0.4 0.02 60.3 ± 0.1 60.1 ± 0.5 0.18

CI 0.827 ± 0.013 0.862 ± 0.043 0.00 0.845 ± 0.013 0.863 ± 0.040 0.02
HI* 0.068 ± 0.004 0.080 ± 0.014 0.00 0.077 ± 0.004 0.093 ± 0.009 0.00

PTV48 D98% (Gy)* 46.5 ± 0.3 45.8 ± 0.5 0.00 46.5 ± 0.2 45.5 ± 0.7 0.00
D99% (Gy) 47.1 ± 0.7 46.5 ± 0.9 0.00 47.1 ± 0.8 46.4 ± 1.0 0.00
D2% (Gy)* 57.0 ± 0.4 57.3 ± 0.9 0.37 57.2 ± 0.3 56.5 ± 0.9 0.01
CI 0.707 ± 0.017 0.745 ± 0.033 0.00 0.698 ± 0.021 0.683 ± 0.044 0.23

HI* 0.206 ± 0.007 0.224 ± 0.015 0.00 0.211 ± 0.005 0.219 ± 0.020 0.17

Rectum V24.3Gy (%) 47.2 ± 13.0 62.3 ± 10.4 0.00 51.9 ± 11.6 60.3 ± 10.3 0.00
V32.4Gy (%) 32.9 ± 12.1 44.1 ± 11.5 0.00 38.6 ± 10.9 43.6 ± 9.9 0.00
V40.5Gy (%) 23.0 ± 9.1 26.5 ± 8.9 0.00 28.2 ± 8.8 29.7 ± 8.4 0.05
V48.6Gy (%) 13.6 ± 4.3 14.5 ± 5.3 0.17 15.9 ± 4.4 15.8 ± 5.0 0.79

V52.7Gy (%) 9.5 ± 2.8 10.4 ± 3.8 0.16 10.1 ± 3.0 10.4 ± 3.9 0.50

V56.8Gy (%) 3.9 ± 1.6 6.4 ± 2.6 0.00 4.8 ± 2.0 5.5 ± 2.3 0.00
V60.0Gy (%) 0.0 ± 0.0 0.3 ± 0.4 0.00 0.0 ± 0.1 0.3 ± 0.4 0.00
DMean (Gy) 25.3 ± 4.7 29.0 ± 4.3 0.00 28.3 ± 4.1 30.1 ± 3.3 0.00

Bladder V40.5Gy (%) 25.3 ± 14.7 24.0 ± 14.1 0.00 15.5 ± 7.4 16.4 ± 7.4 0.01
V48.6Gy (%) 18.5 ± 11.3 17.9 ± 11.1 0.02 10.7 ± 5.9 11.4 ± 5.6 0.02
V60.0Gy (%) 1.8 ± 1.6 2.3 ± 1.7 0.07 1.2 ± 0.9 1.1 ± 0.8 0.65

DMean (Gy) 24.3 ± 9.3 23.8 ± 9.2 0.20 17.4 ± 5.3 18.7 ± 5.7 0.00
Bowel V40.5Gy (cm3) 0.8 ± 1.8 0.8 ± 1.6 n < 10

Femoral Head (Lt) V40.5Gy (%) 0.0 ± 0.0 0.0 ± 0.1 n < 10

Femoral Head (Rt) V40.5Gy (%) 0.0 ± 0.0 0.0 ± 0.0 n < 10

External D1.8cm3 (Gy) 61.2 ± 0.1 60.8 ± 0.2 0.00 61.0 ± 0.1 61.0 ± 0.4 0.88

External V5.0Gy (%) 34.8 ± 6.1 32.5 ± 6.0 0.00 27.2 ± 2.7 27.4 ± 2.8 0.17

Beam MU MU 637 ± 36 570 ± 37 0.00 739 ± 53 640 ± 118 0.01
Plan Ranking vs VMATClinical Plans Superior (%) 90% 65%

Plans Equivalent (%) 0% 30% (35%)

Plans Inferior (%) 10% 5% (0%)
Results in bold indicate statistically significant differences (p < = 0.05). Dosimetrist plan rankings are provided in parenthesis where preference differs from the 
oncologist

CI: Paddick’s Conformity Index for the specified PTV.

HI: homogeneity index for the specified PTV

*Higher prescription PTV(s) subtracted from PTV when reporting
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Fig. 3 1–1 plots comparing VMATAuto and VMATClinical across a range of OAR and PTV dose metrics for both institutions. Unity line is presented for refer-
ence and represents equivalence between the two techniques
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Discussion
In this study a PBAIO automated solution with a novel 
multi-dimensional Pareto navigation calibration method-
ology has been evaluated for prostate cancer in a multi-
centre context. Results from the study demonstrated a 
clear clinical preference towards VMATAuto and provides 
supportive evidence on both the calibration method and 
underlying PBAIO framework that together form the 
PGAP solution.

This work builds upon the previous single institu-
tion study (performed at VCC [24]) in three key ways. 
Firstly, the updated calibration interface enabled multi-
dimensional Pareto navigation, whereas the initial study 
was limited to a single dimensional proof of principle 
approach. This new method was fully congruent with the 
principles of Pareto navigation; enabling intuitive explo-
ration of multiple competing trade-offs simultaneously. 
Secondly, the previous study provided no demonstra-
tion of the utility of PGAP; only presenting comparison 
of a single calibrated automated solution against manual 
planning. In this work a clear presentation of how dif-
ferent calibration choices propagate to novel patients 
via the PBAIO framework is provided (Fig. 2). Finally, a 
key challenge of any automated solution is demonstrat-
ing adaptability to the clinical requirements, techniques, 
and delivery machines of differing institutions. This study 
provides clear evidence that PGAP is a versatile solu-
tion, which can be successfully translated to independent 
external centres. Furthermore, with the vast majority of 
published studies being single institutional [1], this work 
helps to strengthen the evidence base on multi-institu-
tional validations of automated solutions.

Within the literature there are limited examples on 
the utilisation of Pareto navigation to calibrate AP solu-
tions and to our knowledge this work presents the first 
example where Pareto navigation is incorporated natively 
into the calibration process. The most relevant exam-
ple is for KBP, where Pareto navigation was utilised 
by Miguel-Chumacero et al. [27] and Wall et al. [28] to 
improve the quality of the training dataset for head and 
neck, and prostate cancer respectively. This led to sub-
stantial reductions in OAR doses compared to a KBP 
model trained on the original manual planning based 
dataset. It is unclear if this is due to a conscious change 
in trade-off prioritisation or improving the optimality of 
the original manual plans. This approach, whilst promis-
ing, requires all training patients to be replanned, which 
is time consuming and presents a key barrier for practi-
cal implementation in the clinic. This is especially true 
for state-of-the-art dose distribution prediction solutions 
where training datasets are of the order of 100 patients 
[5]. In contrast the PGAP approach we developed can 
be calibrated through Pareto navigation on more limited 

patient datasets and is therefore ideal for rapid imple-
mentation of novel protocols or changes to clinical pri-
orities due to emerging evidence.

The process of effective calibration is non-trivial; it 
requires an assessment of not only the clinical acceptabil-
ity of a given calibration, but also the rate of change of 
competing dose metrics as the balancing of parameters is 
adjusted. For example, a detriment in CI of 0.05 may be 
acceptable if rectum Dmean reduces by 0.5 Gy but unac-
ceptable for a 0.05 Gy reduction. It is our view that Pareto 
navigation is currently the only method that provides the 
operator with live access to this key information when 
calibrating an automated solution (via both the DVH and 
whole 3D dose distribution) and offers a clear alternative 
to machine learning and trial-and-error. Figure  1 illus-
trates the benefits of this approach, demonstrating how 
different treatment options can be interactively explored 
to identify the solution which best aligns with clinical 
preferences of the institution.

Successful PGAP implementation requires trade-off 
balancing of novel patients to be consistent with that 
selected during calibration. In our implementation, this 
function was fulfilled through building the solution on 
a PBAIO framework. This study provides evidence sup-
porting this approach, firstly by demonstrating how 
trade-off balancing during calibration propagates effec-
tively to novel patients (Fig.  2) and secondly through 
results of the blind review, which showed that PGAP 
yielded plans of high congruence with the institutions’ 
clinical preferences. Importantly, it is our view that a 
broad spectrum of PBAIO and CHO solutions presented 
in the literature also fulfil this requirement and therefore 
could benefit from integration of Pareto navigation into 
their calibration process.

The implemented approach does have limitations. 
Firstly, sampling the Pareto front using a simple exhaus-
tive approach (plans generated for all parameter permu-
tations) was computationally expensive and limited the 
practical number of Pareto dimensions per navigation to 
≈ 4. Whilst, in this study it was not considered a signifi-
cant constraint as many trade-offs were observed to be 
uncorrelated (e.g. CIPTV48 and rectum Dmax), it reduced 
the efficiency and elegance of the calibration process. 
Utilisation of more sophisticated sampling strategies [29] 
to reduce the computational burden would help increase 
the number of dimensions possible per navigation. Sec-
ondly, as is the case with all CHO and PBAIO solutions 
presented in the literature, a single AutoPlan Protocol 
was used across all study patients. Whilst resultant plans 
were on average superior to VMATClinical, utilisation of 
a single AutoPlan protocol assumes the clinically opti-
mum balancing of competing trade-offs is consistent 
across individual patients, which may not be the case. It 
is recommended that further work evaluating per patient 
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Pareto navigation vs. AP should be performed to explore 
the validity of this assumption.

In terms of the multi-centre evaluation a key obser-
vation during calibration was that, whilst the Pareto 
navigation interface enabled navigation of a wide range 
of differing trade-off options (Fig.  1), a solution which 
aligned reasonably closely to local clinical practice in 
terms of HIPTV60, CIPTV48 and modulation was selected 
by each institution. This was at the expense of further 
potential reductions in rectum DMean and reflected the 
institutions’ measured and proportional caution in select-
ing a solution, which if implemented would substantially 
change not only the planning method (automated from 
manual) but also the plan distribution and modulation 
for the whole treatment site. This trade-off prioritisation 
differed to VCC (where rectum DMean is prioritised over 
HIPTV60 & CIPTV48) and highlighted the importance of AP 
solutions having the functionality to allow full customi-
sation of protocols to suit local requirements such that 
potential implementation barriers can be reduced.

As with the previously reported single institutional 
study of PGAP, this multicentre evaluation demonstrates 
superiority of automated planning over manual planning, 
both in terms of reduced rectum doses and clinical pref-
erence. This superiority was attributed to the improved 
alignment of trade-off balancing with clinical preference 
(particularly for CI vs. rectum Dmean), and the PBAIO 
framework dynamically adjusting objectives to drive 
plans towards Pareto optimality. For IA, reductions in 
rectum Dmean were more substantial than IB (3.7  Gy vs. 
1.8 Gy respectively) due to their increased prioritisation 
of CIPTV48 for VMATClinical. This prioritisation was not 
congruent with the institution’s clinical preferences and 
was reflected in 90% of VMATAuto plans being preferred 
to VMATClinical (compared to 65% for IB). Results (Fig. 3; 
Table  3) also highlighted a wide variation in the differ-
ences between VMATAuto and VMATClinical both at an 
inter-patient and inter-institutional level. This was attrib-
uted to the inconsistencies associated with manual plan-
ning that have been widely reported in the literature [17, 
30]. In comparison to a similar study [31] that evaluated 
a CHO approach across 4 institutions for prostate can-
cer our results are aligned, with that work also demon-
strating overall superiority of VMATAuto, with a median 
reduction in rectum DMean of 3.4  Gy (range [-4,12] Gy) 
as compared to 2.8  Gy (range [-1,7] Gy) in this study. 
Whilst direct comparison of the two approaches (PGAP/
PBAIO vs. CHO) is not appropriate due to confounding 
factors such as differing planning systems, clinical pro-
tocols and the underlying quality of the manual com-
parators, this alignment adds strength to the findings by 
both authors that: (1) wide variations in the differences 
between VMATAuto and VMATClinical are suggestive of 
inconsistencies in manual planning; and (2) AP solutions 

that seek Pareto optimality can yield substantial improve-
ments in plan quality.

Finally, an interesting and unexpected outcome from 
this study was that once presented with results from both 
institutions, IA adapted their manual planning practice to 
align closer with clinical preferences (i.e. prioritise rec-
tum at the expense of CIPTV48). This led to a sustained 
reduction in rectum doses for clinical patients and high-
lighted the potential in utilising AP for cross-institutional 
audits to improve practice.

Conclusions
A novel PGAP solution has been successfully validated 
against clinical practice for two external institutions. The 
multi-dimensional Pareto navigation calibration method-
ology enabled intuitive adaptation of automated proto-
cols to an institutions’ individual planning aims without 
the requirement of large training datasets. Automated 
plans were more congruent with the institutions’ clinical 
preferences than manual plans and considered to repre-
sent a higher quality, more consistent and more efficient 
plan generation method.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13014-024-02404-x.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
Conceptualisation, PW, RM, MC, DL, JS, ES, AM; Methodology PW, RM, MC, 
DL, JS, ES, AM; Software development PW, MC; Data curation, NSW, RP; PGAP 
calibration, NSW, RP, RAP, NW, BK, KR, PW; Blind Review, RAP, NW, BK, KR; Data 
analysis, PW; Writing manuscript - draft, PW; Writing manuscript - review and 
editing, All Authors; Supervision, DL, JS, ES, AM. All authors read and approved 
the final manuscript.

Funding
This research was funded by Velindre Cancer Centre’s Advancing Radiotherapy 
Fund.

Data availability
Evaluative study data is provided as a supplementary file. In addition, the 
datasets used and/or analysed during the current study are available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All work was performed on fully anonymised datasets in accordance with 
institutional good practice.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

AQ3

https://doi.org/10.1186/s13014-024-02404-x
https://doi.org/10.1186/s13014-024-02404-x


Page 11 of 11Wheeler et al. Radiation Oncology           (2024) 19:45 

Author details
1Radiotherapy Physics Department, Velindre Cancer Centre,  
CF14 2TL Cardiff, Wales, UK
2Northern Centre for Cancer Care, Cancer Services and Clinical 
Haematology, Newcastle upon Tyne, UK
3Worcester Oncology Centre, Worcestershire Acute Hospitals NHS Trust, 
Worcester, UK
4Translational and Clinical Research Institute, Faculty of Medical Sciences, 
Newcastle University Centre for Cancer, Newcastle University, Newcastle 
upon Tyne, UK
5School of Medicine, Cardiff University, Cardiff, Wales, UK
6Velindre Cancer Centre, Medical Directorate, Cardiff, Wales, UK
7School of Engineering, Cardiff University, Cardiff, Wales, UK

Received: 6 December 2022 / Accepted: 15 January 2024

References
1. Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity modu-

lated radiotherapy treatment planning—a review of recent innovations. Br J 
Radiol. 2018;91:20180270. https://doi.org/10.1259/bjr.20180270.

2. Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the 
factors which affect the interpatient organ-at-risk dose sparing variation in 
IMRT plans. Med Phys. 2012;39:6868. https://doi.org/10.1118/1.4757927.

3. Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL. Predicting 
dose-volume histograms for organs-at-risk in IMRT planning. Med Phys. 
2012;39:7446–61. https://doi.org/10.1118/1.4761864.

4. Babier A, Boutilier JJ, McNiven AL, Chan TCY. Knowledge-based automated 
planning for oropharyngeal cancer. Med Phys. 2018;45:2875–83. https://doi.
org/10.1002/mp.12930.

5. McIntosh C, Purdie TG. Voxel-based dose prediction with multi-patient atlas 
selection for automated radiotherapy treatment planning. Phys Med Biol. 
2017;62:415–31. https://doi.org/10.1088/1361-6560/62/2/415.

6. Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment planning 
based on three-dimensional dose distribution predicted from deep learning 
technique. Med Phys. 2018. https://doi.org/10.1002/mp.13271.

7. Breedveld S, Storchi PRM, Voet PWJ, Heijmen BJM, iCycle. Integrated, mul-
ticriterial beam angle, and profile optimization for generation of coplanar 
and noncoplanar IMRT plans. Med Phys. 2012;39:951–63. https://doi.
org/10.1118/1.3676689.

8. Zarepisheh M, Hong L, Zhou Y, Hun Oh J, Mechalakos JG, Hunt MA, et al. 
Automated intensity modulated treatment planning: the expedited con-
strained hierarchical optimization (ECHO) system. Med Phys. 2019;46:2944–
54. https://doi.org/10.1002/mp.13572.

9. Xhaferllari I, Wong E, Bzdusek K, Lock M, Chen J. Automated IMRT planning 
with regional optimization using planning scripts. J Appl Clin Med Phys. 
2013;14:4052. https://doi.org/10.1120/jacmp.v14i1.4052.

10. Winkel D, Bol GH, van Asselen B, Hes J, Scholten V, Kerkmeijer LGW, et al. 
Development and clinical introduction of automated radiotherapy treatment 
planning for prostate cancer. Phys Med Biol. 2016;61:8587–95. https://doi.
org/10.1088/1361-6560/61/24/8587.

11. Guo C, Zhang P, Gui Z, Shu H, Zhai L, Xu J. Prescription value-based 
automatic optimization of importance factors in Inverse Planning. 
Technol Cancer Res Treat. 2019;18:1533033819892259. https://doi.
org/10.1177/1533033819892259.

12. Tol JP, Dahele M, Peltola J, Nord J, Slotman BJ, Verbakel WFAR. Automatic 
interactive optimization for volumetric modulated arc therapy planning. 
Radiat Oncol. 2015;10:75. https://doi.org/10.1186/s13014-015-0388-6.

13. Zhang X, Li X, Quan EM, Pan X, Li Y. A methodology for automatic intensity-
modulated radiation treatment planning for lung cancer. Phys Med Biol. 
2011;56:3873–93. https://doi.org/10.1088/0031-9155/56/13/009.

14. Ge Y, Wu QJ. Knowledge-based planning for intensity‐modulated radiation 
therapy: a review of data‐driven approaches. Med Phys. 2019;46:2760–75. 
https://doi.org/10.1002/mp.13526.

15. Wang Y, Heijmen BJM, Petit SF. Knowledge-based dose prediction models for 
head and neck cancer are strongly affected by interorgan dependency and 

dataset inconsistency. Med Phys. 2019;46:934–43. https://doi.org/10.1002/
mp.13316.

16. Hussein M, South CP, Barry Ma, Adams EJ, Jordan TJ, Stewart AJ, et al. Clinical 
validation and benchmarking of knowledge-based IMRT and VMAT treat-
ment planning in pelvic anatomy. Radiother Oncol. 2016;120:473–9. https://
doi.org/10.1016/j.radonc.2016.06.022.

17. Nelms BE, Robinson G, Markham J, Velasco K, Boyd S, Narayan S, et al. Varia-
tion in external beam treatment plan quality: an inter-institutional study of 
planners and planning systems. Pract Radiat Oncol. 2012;2:296–305. https://
doi.org/10.1016/j.prro.2011.11.012.

18. Craft DL, Hong TS, Shih HA, Bortfeld TR. Improved planning time and plan 
quality through multicriteria optimization for intensity-modulated radio-
therapy. Int J Radiat Oncol Biol Phys. 2012;82:83–90. https://doi.org/10.1016/j.
ijrobp.2010.12.007.

19. Thieke C, Küfer KH, Monz M, Scherrer A, Alonso F, Oelfke U, et al. A new 
concept for interactive radiotherapy planning with multicriteria optimiza-
tion: first clinical evaluation. Radiother Oncol. 2007;85:292–8. https://doi.
org/10.1016/j.radonc.2007.06.020.

20. Craft D, Halabi T, Shih HA, Bortfeld T. An Approach for practical Multiobjec-
tive IMRT Treatment Planning. Int J Radiat Oncol Biol Phys. 2007;69:1600–7. 
https://doi.org/10.1016/j.ijrobp.2007.08.019.

21. Kierkels RG, Visser R, Bijl HP, Langendijk JA, van ‘t Veld AA, Steenbakkers RJ, et 
al. Multicriteria optimization enables less experienced planners to efficiently 
produce high quality treatment plans in head and neck cancer radiotherapy. 
Radiat Oncol. 2015;10. https://doi.org/10.1186/s13014-015-0385-9.

22. Xiao J, Li Y, Shi H, Chang T, Luo Y, Wang X, et al. Multi-criteria optimization 
achieves superior normal tissue sparing in intensity-modulated radiation 
therapy for oropharyngeal cancer patients. Oral Oncol. 2018;80:74–81. 
https://doi.org/10.1016/j.oraloncology.2018.03.020.

23. Wheeler PA, Chu M, Holmes R, Smyth M, Maggs R, Spezi E, et al. Utilisation 
of Pareto navigation techniques to calibrate a fully automated radiotherapy 
treatment planning solution. Phys Imaging Radiat Oncol. 2019;10:41–8. 
https://doi.org/10.1016/j.phro.2019.04.005.

24. Wheeler PA, Chu M, Holmes R, Woodley OW, Jones CS, Maggs R, et al. Evaluat-
ing the application of Pareto navigation guided automated radiotherapy 
treatment planning to prostate cancer. Radiother Oncol. 2019;141:220–6. 
https://doi.org/10.1016/j.radonc.2019.08.001.

25. Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. 
Conventional versus hypofractionated high-dose intensity-modulated 
radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-
inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17:1047–60. https://doi.
org/10.1016/S1470-2045(16)30102-4.

26. Paddick I. A simple scoring ratio to index the conformity of radiosurgical 
treatment plans. J Neurosurg. 2000;93:219–22.

27. Miguel-Chumacero E, Currie G, Johnston A, Currie S. Effectiveness of Multi-
criteria Optimization- based Trade-Off exploration in combination with 
RapidPlan for head & neck radiotherapy planning. Radiat Oncol. 2018;13:1–
13. https://doi.org/10.1186/s13014-018-1175-y.

28. Wall PDH, Carver RL, Fontenot JD. An improved distance-to-dose correla-
tion for predicting bladder and rectum dose-volumes in knowledge-based 
VMAT planning for prostate cancer. Phys Med Biol. 2018;63:15035. https://doi.
org/10.1088/1361-6560/aa9a30.

29. Craft DL, Halabi TF, Shih Ha, Bortfeld TR. Approximating convex pareto sur-
faces in multiobjective radiotherapy planning. Med Phys. 2006;33:3399–407. 
https://doi.org/10.1118/1.2335486.

30. Moore KL, Schmidt R, Moiseenko V, Olsen LA, Tan J, Xiao Y, et al. Quantifying 
unnecessary normal tissue complication risks due to Suboptimal Planning: 
a secondary study of RTOG 0126. Radiat Oncol Biol. 2015;92:228–35. https://
doi.org/10.1016/j.ijrobp.2015.01.046.

31. Heijmen B, Voet P, Fransen D, Penninkhof J, Milder M, Akhiat H, et al. Fully 
automated, multi-criterial planning for Volumetric Modulated Arc Therapy– 
An international multi-center validation for prostate cancer. Radiother Oncol. 
2018;128:343–8. https://doi.org/10.1016/j.radonc.2018.06.023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1259/bjr.20180270
https://doi.org/10.1118/1.4757927
https://doi.org/10.1118/1.4761864
https://doi.org/10.1002/mp.12930
https://doi.org/10.1002/mp.12930
https://doi.org/10.1088/1361-6560/62/2/415
https://doi.org/10.1002/mp.13271
https://doi.org/10.1118/1.3676689
https://doi.org/10.1118/1.3676689
https://doi.org/10.1002/mp.13572
https://doi.org/10.1120/jacmp.v14i1.4052
https://doi.org/10.1088/1361-6560/61/24/8587
https://doi.org/10.1088/1361-6560/61/24/8587
https://doi.org/10.1177/1533033819892259
https://doi.org/10.1177/1533033819892259
https://doi.org/10.1186/s13014-015-0388-6
https://doi.org/10.1088/0031-9155/56/13/009
https://doi.org/10.1002/mp.13526
https://doi.org/10.1002/mp.13316
https://doi.org/10.1002/mp.13316
https://doi.org/10.1016/j.radonc.2016.06.022
https://doi.org/10.1016/j.radonc.2016.06.022
https://doi.org/10.1016/j.prro.2011.11.012
https://doi.org/10.1016/j.prro.2011.11.012
https://doi.org/10.1016/j.ijrobp.2010.12.007
https://doi.org/10.1016/j.ijrobp.2010.12.007
https://doi.org/10.1016/j.radonc.2007.06.020
https://doi.org/10.1016/j.radonc.2007.06.020
https://doi.org/10.1016/j.ijrobp.2007.08.019
https://doi.org/10.1186/s13014-015-0385-9
https://doi.org/10.1016/j.oraloncology.2018.03.020
https://doi.org/10.1016/j.phro.2019.04.005
https://doi.org/10.1016/j.radonc.2019.08.001
https://doi.org/10.1016/S1470-2045(16)30102-4
https://doi.org/10.1016/S1470-2045(16)30102-4
https://doi.org/10.1186/s13014-018-1175-y
https://doi.org/10.1088/1361-6560/aa9a30
https://doi.org/10.1088/1361-6560/aa9a30
https://doi.org/10.1118/1.2335486
https://doi.org/10.1016/j.ijrobp.2015.01.046
https://doi.org/10.1016/j.ijrobp.2015.01.046
https://doi.org/10.1016/j.radonc.2018.06.023

	Multi-institutional evaluation of a Pareto navigation guided automated radiotherapy planning solution for prostate cancer
	Abstract
	Background
	Methods
	Patient selection and planning protocol
	Pareto guided automated planning
	AutoPlan protocol calibration
	Demonstrating the utility of PGAP
	Evaluative study design

	Results
	Evaluative study

	Discussion
	Conclusions
	References


