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Abstract
Objectives  Stereotactic body radiotherapy (SBRT) is a treatment option for patients with early-stage non-small cell 
lung cancer (NSCLC) who are unfit for surgery. Some patients may experience distant metastasis. This study aimed to 
develop and validate a radiomics model for predicting distant metastasis in patients with early-stage NSCLC treated 
with SBRT.

Methods  Patients at five institutions were enrolled in this study. Radiomics features were extracted based on the 
PET/CT images. After feature selection in the training set (from Tianjin), CT-based and PET-based radiomics signatures 
were built. Models based on CT and PET signatures were built and validated using external datasets (from Zhejiang, 
Zhengzhou, Shandong, and Shanghai). An integrated model that included CT and PET radiomic signatures was 
developed. The performance of the proposed model was evaluated in terms of its discrimination, calibration, and 
clinical utility. Multivariate logistic regression was used to calculate the probability of distant metastases. The cutoff 
value was obtained using the receiver operator characteristic curve (ROC), and the patients were divided into 
high- and low-risk groups. Kaplan-Meier analysis was used to evaluate the distant metastasis-free survival (DMFS) of 
different risk groups.

Results  In total, 228 patients were enrolled. The median follow-up time was 31.4 (2.0-111.4) months. The model 
based on CT radiomics signatures had an area under the curve (AUC) of 0.819 in the training set (n = 139) and 0.786 
in the external dataset (n = 89). The PET radiomics model had an AUC of 0.763 for the training set and 0.804 for the 
external dataset. The model combining CT and PET radiomics had an AUC of 0.835 for the training set and 0.819 
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Introduction
Non-small-cell lung cancer (NSCLC) is the most com-
mon pathological type of lung cancer worldwide. 
Approximately 20% of NSCLC patients are in localized 
stages of disease (stages I and II) [1, 2]. Stereotactic body 
radiation therapy (SBRT), which delivers localized high 
doses in a few fractions, has become the standard of care 
for medically inoperable patients and early-stage NSCLC 
patients who do not wish to undergo surgery. It is well 
tolerated and provides high rates of local control [3, 4]. 
Nevertheless, distant metastasis is common in patients 
with early-stage disease. In the RTOG 0236 clinical trial, 
the distant metastasis rate was 27% in 55 patients with 
early-stage NSCLC [5]. Distant metastasis is highly cor-
related with poor prognosis, and the median survival of 
patients with metastatic NSCLC is only 6 months [6]. 
For these patients, chemotherapy, tyrosine kinase inhibi-
tor (TKI)-targeted therapy, or immunological therapy 
may help improve progression-free and overall survival 
[7]. Therefore, early prediction of distant metastasis is 
necessary.

Radiomics aims to reveal tumor environment hetero-
geneity by mining medical images using artificial intel-
ligence methods [8], which show great potential for 
predicting cancer prognosis [9]. Computed tomogra-
phy (CT) and Magnetic Resonance Imaging (MRI) are 
important tools for detecting, diagnosing, staging tumor 
lesions, and contributing to clinical decision-making, 
follow-up, and prediction of cancer prognosis [10–14]. 
Molecular imaging, particularly 18F-Fluorodeoxyglucose 
positron emission tomography/computed tomography 
(18F-FDG PET/CT), is valuable for the evaluation and 
prediction of response, and is superior to morphological 
assessment by CT or MRI [15, 16]. Models based on CT 
radiomics features showed moderate performance in pre-
dicting the prognosis of patients with early-stage NSCLC 
treated with SBRT [17–19]. However, a PEF/CT-based 
model that predicts the prognosis of early-stage NSCLC 
is still lacking. PET/CT radiomics has been reported to 
successfully predict local recurrence in 87 early-stage 

NSCLC patients treated with SBRT [20]. Therefore, it is 
promising to use PET/CT radiomics features to predict 
the prognosis of patients with early-stage NSCLC treated 
with SBRT.

The purpose of this study was to develop and validate a 
radiomics model that contains signatures from pretreat-
ment PET/CT for individualized prediction of distant 
metastasis in early-stage NSCLC patients treated with 
SBRT.

Materials and methods
Patients
This was a TRIPOD type 3 study. The external test sets 
were from several different hospitals, whereas the train-
ing set was from only one hospital (not included in the 
test set). In total, 139 patients with early-stage NSCLC 
treated with SBRT from the Tianjin Medical Univer-
sity Cancer Institute and Hospital were retrospectively 
included in the training set. For external validation, 20 
early-stage NSCLC patients treated with SBRT from 
Zhejiang Cancer Hospital, 27 from the Affiliated Tumor 
Hospital of Zhengzhou University, 19 from Fudan Uni-
versity Shanghai Cancer Center, and 23 from Shandong 
Cancer Hospital and Institute were enrolled in the study. 
Details of the start and end dates of patient recruitment 
at the five institutions are provided in Supplementary 
Table S1. All the patients were diagnosed with early-stage 
NSCLC by a multidisciplinary team (MDT) and were rec-
ommended for SBRT because of contraindications to sur-
gery. Surgical contraindications can be divided into two 
categories. First, patients were unable to tolerate surgery 
due to internal medical complications, including inad-
equate cardiopulmonary function, coagulation disorders, 
immunodeficiency, poor Eastern Cooperative Oncology 
Group (ECOG) performance status, severe systemic dis-
eases, etc. Second, the patient or his/her relatives refused 
surgery after surgical evaluation by the thoracic surgeon. 
The inclusion criteria were as follows: (A) following the 
eighth American Joint Committee on Cancer classifica-
tion, maximum tumor diameter less than 7 cm and stage 

for the external dataset. The combined model showed a moderate calibration and a positive net benefit. When the 
probability of distant metastasis was greater than 0.19, the patient was considered to be at high risk. The DMFS of 
patients with high- and low-risk was significantly stratified (P < 0.001).

Conclusions  The proposed PET/CT radiomics model can be used to predict distant metastasis in patients with early-
stage NSCLC treated with SBRT and provide a reference for clinical decision-making.

Plain language summary  In this study, the model was established by combining CT and PET radiomics signatures 
in a moderate-quantity training cohort of early-stage NSCLC patients treated with SBRT and was successfully validated 
in independent cohorts. Physicians could use this easy-to-use model to assess the risk of distant metastasis after SBRT. 
Identifying subgroups of patients with different risk factors for distant metastasis is useful for guiding personalized 
treatment approaches.
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I-II NSCLC; (B) pretreatment PET/CT imaging per-
formed; (C) pathological diagnosis was not mandatory 
if the patient was unable to undergo biopsy due to con-
traindications. The exclusion criteria were as follows: (A) 
pretreatment PET/CT was performed at other hospitals, 
(B) the quality of PET/CT images was poor, (C) incom-
plete clinical data, (D) prior to SBRT, and patients who 
received other anticancer treatments.

The overall design of this study is illustrated in Fig. 1A 
and Figure S1, respectively. Distant metastasis was 
defined as (a) lesions in extrapulmonary organs such 
as the brain and liver or (b) multiple lung metasta-
ses according to RECIST v1.1 [21]. All processes in this 
study, including human participants, followed the 1964 
Helsinki Declaration and its later amendments or compa-
rable ethical standards.

Before SBRT was performed, demographic and clinical 
data were collected (Table 1), including sex, age, diagno-
sis date, smoking history, Eastern Cooperative Oncology 
Group (ECOG) performance status, Maximum Standard-
ized Uptake Value (SUVmax), disease stage, lesion size 
measured on CT images, PET/CT diagnostic images, sta-
tus at last follow-up, date and site of distant metastasis, 
and histology when available. Patients who had smoked 
less than 100 cigarettes before SBRT were defined as 
never smokers. Patients were subjected to regular follow-
up following stereotactic body radiotherapy (SBRT), and 
the frequency of these examinations varied over time. In 
the initial 2 years post-SBRT, patients underwent follow-
up every 3 months, which was subsequently extended 
to a 6-month interval from 2 to 5 years post-SBRT. Five 

years after SBRT, patients were annually followed up. At 
each follow-up, we conducted medical records review, 
physical examination, tumor marker testing, and chest 
CT scans.

PET/CT images acquirement, volumes of interest 
segmentation, feature extraction
The radiomics workflow is shown in Fig. 1B. PET/CT was 
performed in all patients within 45 days before the start 
of SBRT. Digital Imaging and Communications in Medi-
cine (DICOM) data from pretreatment PET/CT were 
used for analysis. Images were segmented using the 3D 
Slicer software (version 4.13.0). Radiomics features were 
extracted using Pyradiomics package based on Python 
(version 3.7). In total, 103 CT radiomic features and 103 
PET radiomic features of each lung lesion were extracted 
from the PET/CT images. Details regarding PET/CT 
acquisition and reconstruction, radiomics procedure, and 
radiomics features are described in Supplementary Mate-
rial A1 and Tables S2 and S3.

Feature selection, signature construction and performance 
assessment
Feature selection for the radiomics model was adapted 
from the feature pooling and signature pooling methods 
used by Compter et al. [22]. Briefly, the selection process 
was as follows:

(i)	One thousand unique bootstrap samples (with 
replacement) were drawn from the training cohort. 
Within each bootstrap sample, we first minimized 

Fig. 1  Study flowchart and radiomic workflow. (A) Study flowchart. (B) Radiomics workflow
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the number of strong pairwise normalized [Z-score, 
(original value-mean value)/(standard deviation)] 
feature correlations greater than 0.90 or less than 
− 0.90. A least absolute shrinkage (LASSO) loop with 
20-times repeated 5-fold cross-validation embedded 
with a logistic regression (LR) supervised classifier 
was used to select the features. From each of the 
1000 bootstraps, we ranked each individual feature 
according to how frequently it was retained by 
LASSO-LR.

(ii)	Some of the most frequently appearing individual 
features were arbitrarily selected from the above 
table. From this small subset of selected features, 
we built a multivariable LR model for each of the 
aforementioned bootstrap samples with stepwise 
backward elimination using the Akaike information 
criterion (AIC) as a metric. From each of these 1000 
bootstraps, we tabulated the number of times each 
combination of one or more features (i.e., potential 
signatures) was retained by the stepwise LR.

(iii)	 We arbitrarily selected the top most frequently 
appearing signature to build the final multivariable 
LR model. The coefficients of the final model 
were fitted using the original non-bootstrapped 
development cohort [23, 24].

Radiomics scores were calculated as linear combinations 
of the selected features weighted by the respective coef-
ficients. Feature selection and radiomic score calculations 
were performed for the CT and PET scans, respec-
tively. The Mann-Whitney U test was used to evaluate 
the differences in scores between the different patient 
subgroups.

Model internal validation
We estimated over-optimism in the model development 
using the method recommended by the TRIPOD guide-
lines. For each of the 1000 abovementioned predefined 
bootstraps, we fitted the LR model coefficients on each 
bootstrap and then computed the Area under the curve 
(AUC) of the receiver operating characteristic curve 

Table 1  Baseline characteristics of the patients
Variables Training set

(n = 139)
External validation set
(n = 89)

P value

Age(years) 72(46–89) 75(51–95) 0.577

Sex 0.090

  Female 56(40.2) 26(29.2)

  Male 83(59.7) 63(70.7)

Smoke 0.237

  Yes 92(66.1) 52(58.4)

  No 47(33.8) 37(41.5)

ECOG 0.020

  0 72(51.7) 60(67.4)

  1 67(48.2) 29(32.5)

T stage 0.183

  T1 109(78.4) 74(83.1)

  T2 25(17.9) 15(16.8)

  T3 5(3.5) 0(0.0)

Tumor size(cm) 2.2(1.0-6.1) 2.1(0.9–4.6) 0.124

Tumor location 0.293

  Peripheral 132(94.9) 87(97.7)

  Central 7(5.0) 2(2.2)

Histology < 0.001

  Adenocarcinoma 29(20.8) 42(47.1)

  Squamous cell carcinoma 22(15.8) 10(11.2)

  Undifferentiated NSCLC 8(5.8) 6(6.7)

  No pathology 80(57.5) 31(34.8)

SUVmax 8.7(2.8–28.8) 6.2(2.9–21.8) 0.009

Radiation dose per fraction (Gy) 12(7–20) 10(5-12.5) < 0.001

Total radiation dose (Gy) 60(48–60) 50(48–70) < 0.001

BED10(Gy) 132(83.3–180) 105(75–119) < 0.001

Distant metastasis 0.133

  Yes 37(26.6) 16(17.9)

  No 102(73.3) 73(82.0)
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(ROC) using the original non-bootstrapped development 
cohort. From these 1000 bootstraps, we computed the 
average AUC and 95% confidence interval (CI).

Construction of the combined radiomics model
In the training set, PET score and CT score, of which 
P-values from univariable logistic regression analyses 
were less than 0.1, were subjected to consecutive multi-
variable analysis via the likelihood ratio test with entering 
selection. Based on the results of multivariable logistic 
analyses, a combined radiomics model was developed.

Performance evaluation of the combined radiomics model 
and external validation
The discrimination performance of the radiomics model 
was quantified and visualized using AUC analysis. The 
radiomics scores for every lung lesion in the validation 
set were calculated using the formula constructed in the 
training set. To evaluate the goodness-of-fit of the model, 
calibration of the model was measured using a calibra-
tion curve accompanied by the Hosmer–Lemeshow test 
in both the training and external validation sets [25].

Clinical validity of the combined radiomics model and risk 
grouping
To evaluate the improvement of performance by the 
radiomics signature, ROC analyses were performed in all 
cases to determine the contrast between the discriminant 
efficacy of the radiomics model and that of certain clini-
cal parameters. Decision curve analysis (DCA) was con-
ducted to identify the clinical usefulness of the combined 
radiomics model by measuring the net benefits at differ-
ent threshold probabilities [26]. For clinical relevance, 
the dividing cutoff of distant metastasis probability was 
calculated using logistic regression, which was used to 
divide the patients into two risk groups. Survival curves 
for the risk groups are presented as Kaplan-Meier plots.

Results
Patient clinical characteristics
Table  1 shows the clinical information of patients in 
the training and external validation sets. In the training 
set, the median total radiation dose was 60  Gy (range, 
48–60 Gy), the median fraction was 5 Gy (range, 3–8 Gy), 
and the median biologically equivalent dose (BED) was 
132  Gy (range, 83.3–180  Gy). The median follow-up 
was 30.3 (range, 2.0-114.0) month. Distant metastasis 

occurred in 37 patients (26.6%) after a median follow-up 
of 21.9 (range, 2.0-83.9) months.

In the external validation set, the median total radia-
tion dose was 50 Gy (range, 48–70 Gy), the median frac-
tion was 5  Gy (range, 4–14  Gy), and the median BED 
was 105  Gy (range, 75–119  Gy). The median follow-up 
was 31.8 (range, 2.8–69.3) months. Distant metastasis 
occurred in 16 (17.9%) patients after a median follow-
up of 18.7 (range, 2.8–62.8) months. The ECOG perfor-
mance status, SUVmax, and histology were statistically 
significant between the training and external validation 
sets.

Feature selection, radiomics signature selection and 
evaluation of model performance
For CT radiomics, the top 11 features were selected 
according to a frequency scatter plot (Table S4A, Figure 
S2A). Among the top 11 features, the most frequent sig-
nature was selected as the CT score model (Table S5A). 
For PET radiomics, the top 9 features were selected 
(Table S4B, Fig. S2B). The most frequent signature was 
the PET score model (Table S5B). Radiomics scores were 
calculated by screening the coefficients of features and 
intercepts, which are shown in Supplementary Material 
A2. Mann-Whitney U tests showed that patients with 
distant metastasis had higher CT scores than those with-
out distant metastasis (Table S5).

The CT radiomics signature had moderate discrimina-
tion, with an AUC of 0.819 (95% CI, 0.745–0.892] in the 
training set and 0.786 (95% CI, 0.641–0.931) in the exter-
nal validation set (Table 2). The PET radiomics signature 
had moderate discrimination, with an AUC of 0.763 (95% 
CI, 0.678–0.848) in the training set and 0.804 (95% CI 
0.681–0.927) in the external validation set.

Construction of the combined radiomics model and 
assessment of performance
CT and PET scores were identified as independent pre-
dictors of distant metastasis after multivariable logistic 
regression analysis (Table  3). Therefore, the final pre-
diction model for distant metastasis was established 
by combining CT and PET scores. The distant metas-
tasis score of each patient was calculated according 
to the logistic regression formula: distant metastasis 
score = 0.474 + 0.891 × CT score + 0.570 × PET score. The 
probability of predicted distant metastasis was calculated 
using 1/ [1 + exp (distant metastasis score)].

Table 2  Discrimination ability of radiomics signatures
Model Training set (95%CI) Over-optimistic correction (95%CI) External validation set (95%CI)
CT score 0.819 (0.745–0.892) 0.804 (0.728–0.880) 0.786 (0.641–0.931)

PET score 0.763 (0.678–0.848) 0.735 (0.646–0.824) 0.804 (0.681–0.927)

CT score + PET score 0.835 (0.780–0.891) 0.828 (0.757–0.898) 0.819 (0.692–0.947)
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In the training set, the combined radiomics model had 
favorable calibration (Fig. 2A) and discrimination perfor-
mance with an AUC of 0.835 [95% CI, 0.780–0.891]. The 
Hosmer–Lemeshow test was not statistically significant 
(P = 0.148).

External validation of the combined radiomics model
In the external validation sets, the combined radiomics 
model had favorable calibration (Fig. 2B) and discrimina-
tion performance with an AUC of 0.819 [95% CI, 0.692–
0.947] (Table  2). The Hosmer–Lemeshow test was not 
statistically significant (P = 0.219). The satisfactory results 
for the external validation set indicate that the model is 
universal.

Clinical usefulness of the combined radiomics model
ROC curve analysis showed that the model combining 
PET signature with CT signature had better predictive 
performance than conventional clinical parameters, such 
as tumor size and SUVmax (Figure S3). In both the train-
ing and external validation sets, decision curve analyses 
showed that the use of the combined radiomics model to 
predict distant metastasis added more net benefits than 
the all-distant or non-distant metastasis regimens (Figure 
S4).

Risk grouping
In the training set, patients were divided into high- and 
low-risk groups according to the optimal cut-off value 
(0.19). The Kaplan-Meier plots suggested that the DMFS 
of patients in the training set (P < 0.001, Hazard ratio, 
HR = 4.855, 95% CI, 2.537–9.293) and the external vali-
dation set (P < 0.001, HR = 13.021, 95% CI, 4.189–40.474) 
were significantly stratified by risk grouping (Fig. 3).

Discussion
In this research, the model was established through com-
bining CT and PET radiomics in a moderate quantity 
training cohort of early-stage NSCLC patients treated 
with SBRT, and successfully validated in an independent 

Table 3  Potential predictors of distant metastasis in patients 
with early-stage NSCLC treated with SBRT

Univariable logistic 
regression

Multivariable lo-
gistic regression

Variables OR (95%CI) P OR 
(95%CI)

P

CT score 2.526 (1.544–4.131) < 0.001 2.435 
(1.549–
3.829)

< 0.001

PET score 1.929 (1.056–3.522) 0.033 1.769 
(1.094–
2.860)

0.020

Age(years) 0.979 (0.918–1.044) 0.523 - -

Sex (female vs. 
male)

2.505 (0.779–8.054) 0.123 - -

Smoke (no vs. yes) 0.852 (0.241–3.009) 0.804 - -

ECOG (0 vs. 1) 0.749 (0.278–2.020) 0.569 - -

Tumor size (cm) 0.896 (0.495–1.621) 0.716 - -

Localization (cen-
tral vs. peripheral)

2.037 
(0.238–17.462)

0.516 - -

Pathological diag-
nosis (yes vs. no)

1.608 (0.837–3.092) 0.154 - -

SUVmax 1.010 (0.909–1.121) 0.855 - -

BED10 (Gy) 1.001 (0.972–1.030) 0.961 - -
SBRT, Stereotactic body radiotherapy; NSCLC, non-small cell lung cancer; ECOG, 
Eastern Cooperative Oncology Group; OR, odds ratio; CI, confidence interval; 
BED, biological equivalent dose, α/β = 10

Fig. 2  Calibration efficiency of the combined radiomics model. (A) In the training set. (B) In the external validation set
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cohort, thereby improving the generalizability and cred-
ibility. Physicians could utilize this easy-to-use model 
to assess the risk of distant metastasis after SBRT. Iden-
tifying subgroups of patients at different risk for distant 
metastasis is useful in guiding personalized treatment 
approaches. Patients at high risk of distant metastasis 
should be closely followed up or applied adjuvant therapy 
after SBRT. In addition, this model could provide infor-
mation for patient stratification in the design of clinical 
study.

The AUC for the CT radiomics model was 0.819 for 
the training cohort and 0.786 for the external cohort. 
The AUC for the PET radiomics model was 0.763 for 
the training cohort and 0.804 for the external cohort. 
The discrepancy in AUC values between the two groups 
can be attributed to several factors, including variations 
in the data distribution, differences in image acquisition 
equipment, minor model overfitting, and the limited 
size of the external dataset. Despite these variations, the 
AUC values for the training and external datasets were 
remarkably similar, suggesting that the features learned 
by the model are likely to have good generalizability and 
are not specific to the training data. The high AUC val-
ues for both datasets indicate that the model success-
fully learned robust radiomics features from the images, 
which were associated with distant metastases and can 
be effectively generalized to new data. However, to thor-
oughly assess the model’s real-world clinical generaliz-
ability, more comprehensive validation on larger and 
more diverse datasets is needed. The coefficient of the 
CT score (0.891) was found to be greater than that of the 
PET score (0.570) when calculating the distant metasta-
sis score. This suggested that the ability of CT to predict 
distant metastasis was superior to that of PET alone. This 
could be attributed to the higher resolution and clarity of 
lung tissue and lesions provided by CT images than by 
PET. Furthermore, CT imaging can offer a more detailed 
description of morphological features, particularly in 

the early stages of lung cancer. Additionally, CT imag-
ing is capable of capturing tumor features such as den-
sity and texture, which are closely associated with tumor 
heterogeneity and aggressiveness, whereas PET primarily 
reflects tumor metabolic activity.

Gao et al. [27] established a nomogram for predicting 
distant metastasis within 1 year after SBRT by including 
1280 patients from multiple centers. Despite the large 
number of enrolled patients, only clinical characteristics 
were considered. The AUC of predicting distant metas-
tasis was 0.714 in the training set and 0.698 in the vali-
dation set, which was limited. Wu et al. [28] predicted 
distant metastases based on PET images by using 70 
patients as the training set and 31 patients as the vali-
dation set. The consistency index of the PET radiomics 
model was 0.71. Li et al. [29] found that, among vari-
ous radiomics methods based on machine learning 
algorithms, the model using the kernel-backed tensor 
machine (KSTM) algorithm had the highest predictive 
value (AUC = 0.84). However, the sample sizes of both 
studies were less than 150, and external validation was 
lacking. Whether these models can be applied to other 
institutions requires further exploration. This study pos-
sesses the advantage of utilizing radiomics features from 
both CT and PET scans, providing complementary infor-
mation, unlike some other studies that rely solely on CT 
imaging. Moreover, the AUC of this study for predicting 
metastasis ranged from 0.819 to 0.835, demonstrating 
better discrimination performance than previous stud-
ies. Furthermore, the study proposed different criteria 
for high- and low-risk patients, distinguishing them from 
several other studies that developed models without spe-
cific risk stratification [29–31]. In future research, we will 
increase the sample size and incorporate methods such 
as deep learning. Additionally, integrating additional 
clinical parameters, genomic data, and radiomics features 
will enhance the accuracy of the model.

Fig. 3  Kaplan-Meier analysis of distant metastasis free survival (DMFS) of the data set. (A) In the training set. (B) In the external validation set
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The quality of image resolution can vary tremendously 
from institution to institution [32]. To reduce the influ-
ence of the different PET/CT instruments of the five 
institutions, we used the Combat method to remove 
the batch effect, and the results showed that the per-
formances of the models before and after Combat were 
similar [33]. This further supports the stability of our 
study. Local recurrence that may be influenced by fac-
tors related to the therapy itself will ultimately drive 
distant metastases [34]. Therefore, we excluded patients 
who had local recurrences from enrollment. Metachro-
nous primary tumors can arise in up to 20% of patients 
with early-stage lung cancer. To exclude metachronous 
primary tumors, two radiologists with 10 years of expe-
rience determined the endpoint of distant metastasis. 
Intrapulmonary metastasis should be considered when 
two suspected malignant lesions show solid predominant 
lesions without spiculation or air bronchogram on CT 
[35].

Radiomics features are derived from medical images 
using specific algorithms, including intensity-based mea-
sures, first-order statistics, and heterogeneity and texture 
features [36]. Intensity measures and first-order statistics 
features were direct physical or functional measures from 
fully quantitative modalities and basic statistical mea-
sures characterizing the distribution of intensity values 
within an area, such as the mean of the image intensity 
values. The first-order statistic describes the distribution 
of the voxel intensities within the image region defined 
by the mask. The original _firstorder_RootMeanSquared 
(RMS) in the PET score is the square root of the squared 
mean of all intensity values. This is a measure of the 
image value size [37]. The smaller the RMS, the smaller 
the squared mean of all intensity values and the more 
homogeneous the intensity. The more homogeneous the 
composition of the tumor region, the less heterogeneous 
it is, and the less prone it is to distant metastasis. How-
ever, the definition of radiomics features is still vague, 
and many studies are still being conducted [38]. The val-
ues of texture features can reflect the heterogeneity of 
signal intensity within the lesion (e.g., GLCM, GLRLM, 
NGTDM, and GLSZM). Derived from the GLRLM in 
the CT score, original_glrlm_LowGrayLevelRunEm-
phasis reflects the connectivity of low gray-level regions 
within the image. The presence of more low-gray con-
nected regions in an image is indicated by higher LGRE 
values. On CT images, regions of low density often indi-
cate necrotic tissue or cystic degeneration. A low LGRE 
value suggested a shorter run length with a low gray level 
within the tumor tissue, indicating that necrotic and 
cystic areas may be more dispersed rather than continu-
ous. This dispersion may reflect greater tumor hetero-
geneity, suggesting that the cell population within the 
tumor exhibits greater variability. It is important to note 

that greater tumor heterogeneity is associated with an 
increased risk of tumor invasion and metastasis [8, 39].

Distant metastasis can significantly affect patient sur-
vival. The 5-year overall survival rate of metastatic lung 
cancer is approximately 7% [40], it is necessary to predict 
distant metastasis in advance. The National Comprehen-
sive Cancer Network (NCCN) guidelines recommend 
adjuvant systemic therapy in patients with early-stage 
NSCLC who have high-risk relapse factors after SBRT 
[41]. The definition of these high-risk relapse factors has 
yet to be explored. In our study, in the training cohort, 
patients were divided into high- and low-risk groups 
according to the optimal cutoff value (0.19). The Kaplan-
Meier plots suggested that the DMFS of patients in the 
training cohort (P < 0.001, hazard ratio (HR) = 4.855, 95% 
CI = 2.537–9.293) and the external validation cohort 
(P < 0.001, HR = 13.021, 95% CI = 4.189–40.474) were 
significantly stratified by risk grouping. The risk of dis-
tant metastasis in the high-risk group was 13.021 times 
greater than that in the low-risk group, as indicated by 
the HR of the validation set. This demonstrated that a 
probability of distant metastasis in patients exceeding 
0.19 significantly impacted DMFS and was considered a 
risk factor for distant metastasis, leading to a significantly 
increased risk. Figure 3 shows that the DMFS of the high-
risk group decreased from 78.4% at 1 year to 44.1% at 5 
years, while the DMFS of the low-risk group decreased 
from 96.8% at 1 year to 88.4% at 5 years. Patients at high 
risk of metastasis should receive closer follow-up and/or 
adjuvant systemic therapy.

Several retrospective studies have sought to iden-
tify patients who would benefit from systemic adjuvant 
therapy. Using the National Cancer Database (n = 7042), 
Grinnell confirmed that adjuvant chemotherapy could 
improve OS in patients with a tumor diameter ≥ 4  cm 
[42]. Ernani et al. also analyzed the National Cancer Data-
base (n = 11,836) and obtained similar results [43]. How-
ever, distant metastasis can also occur in patients with a 
tumor diameter less than 4  cm. In these patients, adju-
vant chemotherapy may improve their OS. The results of 
our study can provide a reference for the consideration 
of adjuvant chemotherapy in high-risk patients with a 
probability of distant metastasis greater than 0.19. In this 
study, when the tumor diameter was between 1 and 2 cm, 
the DMFS of low-risk patients was significantly bet-
ter than that of high-risk patients (P < 0.001, HR = 8.158, 
95% CI, 2.473–26.916). When the tumor diameter was 
between 2 and 3 cm, the difference in DMFS between the 
high- and low-risk groups was still significant (P < 0.001, 
HR = 5.242, 95% CI, 2.306–11.916). These results verify 
the reliability of the risk grouping according to the model. 
An ongoing trial (NCT03833154) has compared SBRT 
with SBRT plus immunotherapy in early stage unresected 
NSCLC. The results of this clinical trial will provide clear 
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implications for the individualized treatment of early 
stage unresected NSCLC.

As a strength and innovation, the model presented in 
this study was validated in multiple institutions with a 
stable predictive value. A formula to calculate the prob-
ability of distant metastasis was proposed to assess the 
risk of distant metastasis. The adopted feature selec-
tion method was robust. In general, the most stable 
radiomics features were selected through 1000 bootstrap 
feature screenings, which was conducive to avoiding 
overly optimistic results. In addition, internal validation 
by the bootstrapping method could prevent overfitting, 
so that the results are representative [44]. Patients with 
or without pathological diagnoses were included in the 
study, which contributes to a more general prediction 
model that is potentially applicable to patients who can-
not undergo biopsy because of contraindications. Our 
radiomics model showed equally good discrimination 
in patients with (AUC 0.816) and without (AUC 0.836) 
pathological diagnosis (Figure S5). The Kaplan-Meier 
plots suggested that the DMFS of patients with (P < 0.001, 
HR = 4.515, 95% CI, 2.301–8.861) and without (P < 0.001, 
HR = 9.546, 95% CI, 3.477–26.213) pathological diagnosis 
were both significantly stratified by risk grouping (Figure 
S6).

The following limitations of this study must be 
acknowledged. First, this study was retrospective, and 
the distribution of certain clinical characteristics of the 
patients was significantly different between the train-
ing and external validation sets. Nevertheless, the con-
structed prognostic model had good predictive value for 
distant metastasis in all sets. Second, we resampled the 
PET images as spacings of 2 × 2 × 2 pixels; however, their 
effects on the features remained unknown. Because there 
was no definitive conclusion on the optimal parameters 
for radiomics research, we set the parameter settings 
for extracting features in the supplementary material 
A1 [45]. More basic research on radiomics is needed to 
determine the optimal parameter settings to improve 
the generalizability and stability of the radiomics model. 
To achieve successful multi-institutional validation of 
radiomics, several challenges must be addressed. These 
challenges include data heterogeneity across differ-
ent institutions, algorithm repeatability and reliability 
[46], data sharing and privacy protection, and biologi-
cal validation. To effectively overcome these challenges, 
several strategies can be employed. These include data 
standardization, strict quality control and validation of 
algorithms, data desensitization, and correlation analysis 
of radiomics with other biological data, such as genom-
ics, proteomics, or pathology data, which can be used for 
biological validation. Our research direction also aligns 
with these strategies, aiming to establish a model that can 

be widely applied to multi-institution prediction of dis-
tant metastasis in the future.

Conclusion
The combination of PET and CT radiomic features 
improves the prediction of distant metastasis in patients 
with early-stage NSCLC treated with SBRT. The pro-
posed radiomics model can be used for the prediction of 
distant metastasis and to guide the personalized treat-
ment of patients with different prognoses.
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