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Abstract 

Background At present, the implementation of intensity-modulated radiation therapy (IMRT) treatment planning 
for geometrically complex nasopharyngeal carcinoma (NPC) through manual trial-and-error fashion presents chal-
lenges to the improvement of planning efficiency and the obtaining of high-consistency plan quality. This paper 
aims to propose an automatic IMRT plan generation method through fluence prediction and further plan fine-tuning 
for patients with NPC and evaluates the planning efficiency and plan quality.

Methods A total of 38 patients with NPC treated with nine-beam IMRT were enrolled in this study and automatically 
re-planned with the proposed method. A trained deep learning model was employed to generate static field fluence 
maps for each patient with 3D computed tomography images and structure contours as input. Automatic IMRT treat-
ment planning was achieved by using its generated dose with slight tightening for further plan fine-tuning. Lastly, 
the plan quality was compared between automatic plans and clinical plans.

Results The average time for automatic plan generation was less than 4 min, including fluence maps prediction 
with a python script and automated plan tuning with a C# script. Compared with clinical plans, automatic plans 
showed better conformity and homogeneity for planning target volumes (PTVs) except for the conformity of PTV-1. 
Meanwhile, the dosimetric metrics for most organs at risk (OARs) were ameliorated in the automatic plan, especially 
 Dmax of the brainstem and spinal cord, and  Dmean of the left and right parotid glands significantly decreased (P < 0.05).

Conclusion We have successfully implemented an automatic IMRT plan generation method for patients with NPC. 
This method shows high planning efficiency and comparable or superior plan quality than clinical plans. The qualita-
tive results before and after the plan fine-tuning indicates that further optimization using dose objectives generated 
by predicted fluence maps is crucial to obtain high-quality automatic plans.
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Background
Nasopharyngeal carcinoma (NPC) is one of the most 
common head and neck malignant tumors in East and 
Southeast Asia, and radiation therapy is the primary 
treatment modality for non-metastatic NPC because of 
its high sensitivity to ionizing radiation [1]. Intensity-
modulated radiation therapy (IMRT) can accurately 
deliver radiation dose to targets while sparing adjacent 
normal organs with intensity modulation of high-energy 
photon beams so that it has favorable treatment out-
comes for NPC [2, 3]. Nevertheless, serious complica-
tions frequently occur during or after IMRT, such as 
xerostomia [4], radiation caries [5], dysphagia [6], taste 
impairment [7], and radiation-induced brain injury [8]. 
Thus, balancing the high-dose coverage to targets and 
minimum-dose exposure to organs at risk (OARs) is cru-
cial. However, the completion of IMRT treatment plan-
ning for geometrically complex NPC involving multiple 
OARs and non-convex planning target volumes (PTVs) 
is extremely challenging [9]. In clinical practice, IMRT 
treatment planning is a time-consuming inverse planning 
process completed in a treatment planning system (TPS) 
with manual trial-and-error fashion [10]. As a result, the 
quality of plan is largely influenced by the planner’s expe-
rience and skills, which implies that patients may receive 
diverse quality of treatment. Therefore, many studies on 
automatic treatment planning have been conducted to 
enhance plan quality consistency and improve planning 
efficiency for IMRT [11–14].

Knowledge-based planning (KBP) is an automatic plan-
ning method that has been integrated into commercial 
TPS to accomplish dose volume histogram (DVH) esti-
mation using the built-in KBP model, and dose objec-
tives are generated to guide the follow-up optimization 
process [14–17]. However, DVH prediction can only 
provide the relative volume received doses of certain 
structures without dosimetric spatial information, which 
would result in inferior plan dose distribution and dose 
conformity [18, 19]. This issue was further solved by pre-
dicting the 3D dose distribution from anatomical infor-
mation of structures based on deep convolutional neural 
networks (CNNs), which showed fairly similar dosimet-
ric quality to those in deliverable plans [13, 20–23]. 
However, the predicted dose distribution cannot be eas-
ily converted into voxel-level optimization objectives in 
current commercial TPS to generate the corresponding 
deliverable plan. Recent advances bypassed inverse opti-
mization and directly predicted fluence maps to generate 
multi-leaf collimator (MLC) leaf sequence to obtain the 
final plan [24–28].

Although the KBP method based on fluence prediction 
can directly generate plans in TPS without inverse opti-
mization, there is no guarantee that the resulting plan is 

optimal because any fluence prediction error, fluence loss 
during leaf motion calculation, and patient heterogene-
ity would result in plan quality degradation. In this study, 
we combined CNN-based fluence map prediction with 
script-based plan fine-tuning to automatically generate 
IMRT treatment plans for 38 patients with NPC. The 
plans were first generated by predicted fluence maps, and 
then further fine-tuned with dose objectives provided 
from the predicted fluence generated dose. Finally, we 
evaluated both the plan quality and planning efficiency 
for the proposed automatic planning method.

Methods
Patient collection
The ethics committee of Sun Yat-sen University Cancer 
Center approved the retrospective use of clinical treat-
ment plans for patients in this study. A cohort of 38 
patients with NPC treated with IMRT at Sun Yat-sen 
University Cancer Center between March 2015 and Feb-
ruary 2016 was collected. Among these 38 patients, 30 
(79%) were males and 8 (21%) were females, with an age 
range of 22–79 years (median age of 49 years). All IMRT 
plans were generated in the same treatment machine of 
Varian Trilogy system (Varian Medical Systems, Palo 
Alto, CA, USA) with Millennium 120 MLC, using nine 
equally spaced beams (beam angles at 0°, 40°, 80°, 120°, 
160°, 200°, 240°, 280°, and 320°) and 6 MV photon beam 
energy in flattening filter mode.

All patients with NPC had multiple radiation tar-
gets, and five PTVs named “PTV-GTV,” “PTV-1,” 
“PTV-2,” “PTV-LN(L)” (PTV of left lymphonodus), and 
“PTV-LN(R)” (PTV of right lymphonodus) were consid-
ered. The prescription doses for PTV-GTV, PTV-1, PTV-
2, PTV-LN(L), and PTV-LN(R) were 70, 60 or 64, 54 or 
58, 60–70, and 60–70 Gy, respectively, in 30–33 fractions. 
Seventeen OARs used in this study were body, brainstem, 
spinal cord, chiasm, tongue, left and right optic nerves, 
left and right lens, left and right temporal lobes, left and 
right mandibles, left and right temporomandibular joints, 
and left and right parotid glands.

Fluence prediction
A customized CNN model named “shared encoder net-
work” proposed in our previous study was used for 
fluence prediction [29]. The shared encoder network con-
structed by one encoding path and two decoding paths 
was exploited to simultaneously generate dose distribu-
tion and fluence maps with structure contours and CT 
images as input. The contour of PTV was converted to 
a 3D mask according to the prescription dose, and the 
maximum prescription dose of PTVs where the voxel 
belonged was set to each voxel of the PTV mask and 
every non-PTV voxel was assigned zero. Each OAR was 
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expressed as a binary mask with one set inside the con-
tour and zero set outside the contour. We extracted CT 
image, PTV mask, and 17 OAR masks from each patient 
as input data, and we utilized the trained model to gen-
erate fluence maps with resolution of 2.5  mm × 2.5  mm 
and size of 160 × 160 at nine beam directions. The pre-
dicted fluence maps were saved in a file storage format 
with header information and pixel values before import-
ing into TPS.

Automatic plan generation
The automatic planning process was accomplished in 
a research-only Eclipse TPS (version 15.6). Using the 
Eclipse Scripting Application Programming Interface 
script to assist radiotherapy planning and plan quality 
assessment [30–32], we integrated all manual planning 
operations into a compiled C#-based script to achieve 
a fully automated planning process. With the custom-
ized C#-based script, the predicted fluence maps were 
imported into Eclipse to generate an initial plan, the aux-
iliary target structures were produced and dose objec-
tives and priorities were set according to prescription and 
predicted fluence generated dose, the optimization and 
leaf motion and final dose calculations were also com-
pleted automatically. An approved binary plugin can be 
executed with one click to automatically generate a plan 
in the Eclipse system. Figure  1 demonstrates the proce-
dure of an automatic IMRT plan generation.

Step 1: Importing predicted fluence and calculating 
dose distribution

After creating a new course and new plan for a selected 
patient, the predicted fluence maps for each beam were 
imported into Eclipse and then converted to MLC 
sequences with MLC leaf motion calculations (Varian 
LMC 15.6.03). The predicted fluence generated plan was 

obtained after calculating the resulted dose distribution 
with Anisotropic Analytic algorithm (AAA 15.6.03).

Step 2: Adding auxiliary structures and cropping 
targets

To improve target dose conformity and reduce the 
radiation dose to normal tissues, we added four auxil-
iary structures in optimization: “PTV-1-Crop,” “PTV-
2-Crop,” “Ring 2 cm,” and “40 Gy-PTV2”. “PTV-1-Crop” 
was defined as the region of 3 mm outward expansion of 
PTV-GTV subtracted from PTV-1. “PTV-2-Crop” was 
generated by subtracting the 3  mm outward expansion 
of PTV-1, PTV-LN (L), and PTV-LN (R) from the whole 
region of PTV-2. “Ring 2 cm” was defined as a 2 cm-wide 
ring between PTV-2 expanded by 0.2  cm and PTV-2 
expanded by 2.2  cm, and “40  Gy-PTV2” referred to the 
region between the isodose line of 40 Gy and the 0.3 cm 
extension of PTV-2. The Additional file 1 illustrates the 
definition of four auxiliary structures.

Step 3: Setting optimization objectives and priorities
The plan generated from predicted fluence maps 

already provided the achieved dose information, but the 
plan quality may need to be further improved. To ensure 
a plan quality improvement after plan fine-tuning, we 
set stringent optimization objectives (Table 1). The dosi-
metric values for key OARs were set 5%–25% lower than 
the achieved values from the predicted fluence generated 
plan.

Step 4: Further optimization and calculating final dose 
distribution

Plan optimization was completed with the Photon 
Optimizer algorithm (PO, version 15.6.03) with contin-
ued optimization, and the dose distribution calculated 
from the predicted fluence was set as the intermediate 
dose to reduce the optimization convergence time. Plan 
optimization was completed with the maximum number 
of 300 iterations. After optimization, the optimal fluence 

Fig. 1 The flowchart of automatic plan generation
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maps were converted to MLC leaf sequences with MLC 
leaf motion calculations, and the final dose distribution 
was calculated to generate the final deliverable plan.

Evaluation
The plan quality was quantitatively assessed between 
clinical plans, automatic plans with warm start (using 
predicted fluence as initial value for further optimiza-
tion) and cold start (optimization with no initial state) for 
all 38 patients. Dosimetric metrics, including  D2%,  D98%, 
conformity index (CI) [33], and homogeneity index (HI) 
[34], were reported for five PTVs. The CI is expressed as 
CI = TVRI

TV
 , where TVRI refers to target volume covered by 

the prescription dose, and TV is the target volume. The 
range of CI values is from 0 to 1, and high CI values indi-
cate good target conformity. The HI is defined as 
D5%−D95%

Dpx
 , where D5% and D95% are 5% and 95% of the 

PTV volume received dose, respectively, and Dpx is the 
prescription dose. In general, low HI values represent a 

homogeneous dose distribution inside the PTV. Maxi-
mum dose  (Dmax) and mean dose  (Dmean) were used to 
assess quantitative metrics for 17 OARs. All dosimetric 
comparisons were tested for statistical differences using 
the Wilcoxon signed-rank test with a significance level of 
0.05.

Results
The nine-field fluence maps predicted from the trained 
model took approximately 12 s for one patient. On aver-
age, the whole process of automatic planning in Eclipse 
using script per patient was completed in 199.8  s. Plan 
fine-tuning step with warm start didn’t show significant 
iteration number reduction and optimization efficiency 
improvement than cold start. The time cost of automatic 
planning for 38 patients ranged from 155.9 to 239.3  s, 
and the median time was 206.1 s. Figure 2 shows the time 
spent in each step of the automatic planning process for 
a randomly selected patient, and the total planning time 
was 185.7 s.

Table 1 Optimization objectives were set according to prescription dose and predicted fluence generated dose information

Px-dose prescription dose, gEUD generalized equivalent uniform dose

ROI name Objective type Objective dose (Gy) Priority

PTV-GTV Maximum  D0% 73.5 70

Minimum  D100% 71.5 150

PTV-1-Crop Maximum  D0% PTV-1’ Px-dose + 3 70

PTV-1 Minimum  D100% PTV-1’ Px-dose 150

PTV-2-Crop Maximum  D0% PTV-2’ Px-dose + 6 70

PTV-2 Minimum  D100% PTV-2’ Px-dose 150

PTV-LN(L) Maximum  D0% PTV-LN(L)’ Px-dose + 3 70

Minimum  D100% PTV-LN(L)’ Px-dose + 1.5 150

PTV-LN(R) Maximum  D0% PTV-LN(R)’ Px-dose + 3 70

Minimum  D100% PTV-LN(R)’ Px-dose + 1.5 150

Brainstem Maximum gEUD, a = 20 Predicted gEUD × 0.85 50

Brainstem 3 mm Maximum gEUD, a = 20 Predicted gEUD × 0.85 50

Spinal cord Maximum gEUD, a = 20 Predicted gEUD × 0.85 50

Spinal cord 3 mm Maximum gEUD, a = 20 Predicted gEUD × 0.85 50

Left normal parotid Maximum gEUD, a = 3 Predicted gEUD × 0.75 50

Right normal parotid Maximum gEUD, a = 3 Predicted gEUD × 0.75 50

Left optic nerve Maximum gEUD, a = 1 Predicted gEUD 50

Right optic nerve Maximum gEUD, a = 1 Predicted gEUD 50

Chiasm Maximum gEUD, a = 1 Predicted gEUD 50

Ring 2 cm Maximum  D1% Predicted dose × 0.95 50

Maximum  D20% Predicted dose × 0.95 50

Maximum  D50% Predicted dose × 0.95 50

Maximum gEUD, a = 15 Predicted gEUD × 0.95 50

40 Gy-PTV2 Maximum  D1% Predicted dose × 0.95 50

Maximum  D20% Predicted dose × 0.95 50

Maximum  D50% Predicted dose × 0.95 50

Maximum gEUD, a = 10 Predicted gEUD × 0.95 50
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Fig. 2 The time breakdown of automatic planning process for a randomly selected patient

Fig. 3 The comparison of dose distributions between clinical plan, predicted fluence generated plan and automatic plan for patient A. The first 
column is clinical result, the second column is predicted fluence generated result and the third column is automatic fine-tuning result
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The dose distribution comparison among clinical plan, 
predicted fluence generated plan, and automatic plan 
for two representative patients (patient A and patient 
B) on three axial sections is illustrated in Figs. 3 and 4, 
respectively. In general, all three plans achieved compa-
rable dose coverage on both PTV-GTV (red segments) 
and PTV-1 (orange segments), but the automatic plan 
further improved the target dose homogeneity and con-
formity as indicated by the arrows compared with the 
clinic plan and predicted fluence generated plan.

Figures  5 and 6 show the DVH comparison of five 
PTVs and   seventeen OARs for the two patients, 
respectively. No significant difference was found in 
the target curves between the clinical plan (solid line) 
and automatic plan (dashed line). The predicted flu-
ence generated plan (dash-dotted line) showed an 
obviously inadequate dose coverage for PTV-2, PTV-
LN(L), and PTV-LN(R), whereas the automatic plan 
successfully recovered the target dose coverage after 

plan fine-tuning. For OARs, both the predicted fluence 
generated plan and automatic plan showed better dose 
sparing than the clinical plan.

Figures  7 and 8 showed the comparison of major 
dosimetric results between clinical plans and automatic 
plans using box plots for 38 patients. Compared to 
automatic plans, the dosimetric parameters for the five 
targets in clinical plans generated using conventional 
planning methods exhibited a relatively more dispersed 
distribution range and worse plan quality consistency. 
In addition, automatic plans produced better target 
dose with lower  D2%, higher  D98%, higher CI, and lower 
HI except for  D98% and CI of PTV-1. For most OARs, 
automatic plans also showed lower dosimetric values 
than clinical plans, especially  Dmax of brainstem, spinal 
cord, left and right optic nerves, and chiasm and  Dmean 
of left and right parotid glands.

Table 2 summarizes the comparison results of dosimet-
ric metrics and corresponding p-values between clinical 

Fig. 4 The comparison of dose distributions between clinical plan, predicted fluence generated plan and automatic plan for patient B. The first 
column is clinical result, the second column is predicted fluence generated result and the third column is automatic fine-tuning result
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Fig. 5 The comparison of DVH curves between clinical plan (solid line), predicted fluence generated plan (dash-dotted line) and automatic plan 
(dashed line) for patient A

Fig. 6 The comparison of DVH curves between clinical plan (solid line), predicted fluence generated plan (dash-dotted line) and automatic plan 
(dashed line) for patient B
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Fig. 7 The box plot comparisons of  D98%, CI and HI between clinical and automatic plans for five targets\
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Fig. 8 The box plot comparisons of dosimetric results between clinical and automatic plans for fifteen OARs
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Table 2 The comparison of dosimetric metrics for thirty-eight patients in the unit of Gy (mean ± standard deviation) between clinical 
plans, automatic plans with warm start and cold start

Structures Metrics (Gy) Clinical plans Automatic plans 
with warm start

Automatic plans 
with cold start

P1 P2 P3

PTV-GTV D2% 75.80 ± 0.56 74.54 ± 0.53 74.38 ± 0.71  < 0.001  < 0.001 0.62

D98% 70.30 ± 0.58 70.79 ± 0.36 69.31 ± 0.82  < 0.001  < 0.001 0.002

CI 0.983 ± 0.02 0.996 ± 0.00 0.939 ± 0.05  < 0.001  < 0.001  < 0.001

HI 0.064 ± 0.01 0.042 ± 0.01 0.058 ± 0.01  < 0.001 0.32  < 0.001

PTV-1 D2% 75.43 ± 0.57 74.14 ± 0.52 74.06 ± 0.07  < 0.001  < 0.001 0.92

D98% 62.10 ± 1.88 61.57 ± 1.81 61.06 ± 2.32  < 0.001  < 0.001  < 0.001

CI 0.993 ± 0.01 0.992 ± 0.01 0.963 ± 0.02 0.06  < 0.001 0.004

HI 0.191 ± 0.03 0.187 ± 0.03 0.188 ± 0.04 0.08 0.16 0.54

PTV-2 D2% 74.47 ± 0.70 73.38 ± 0.53 73.42 ± 0.68  < 0.001 0.002 0.56

D98% 55.52 ± 1.76 55.54 ± 1.67 55.58 ± 1.91 0.54 0.06 0.31

CI 0.986 ± 0.01 0.991 ± 0.00 0.979 ± 0.01 0.001 0.002  < 0.001

HI 0.304 ± 0.03 0.295 ± 0.03 0.292 ± 0.03  < 0.001 0.16 0.01

PTV-LN(L) D2% 70.31 ± 2.87 70.15 ± 2.83 70.72 ± 2.76 0.32 0.03 0.03

D98% 67.10 ± 2.42 67.13 ± 2.46 68.10 ± 2.09 0.56 0.004 0.006

CI 0.994 ± 0.01 0.998 ± 0.00 0.999 ± 0.00  < 0.001  < 0.001 0.16

HI 0.039 ± 0.01 0.036 ± 0.01 0.033 ± 0.01 0.04 0.06 0.08

PTV-LN(R) D2% 69.72 ± 3.06 69.56 ± 2.73 70.32 ± 2.78 0.59  < 0.001  < 0.001

D98% 66.58 ± 2.81 66.71 ± 2.70 67.92 ± 2.84 0.03  < 0.001 0.007

CI 0.992 ± 0.01 0.998 ± 0.00 0.999 ± 0.00  < 0.001  < 0.001 0.69

HI 0.038 ± 0.01 0.035 ± 0.01 0.030 ± 0.01 0.20 0.006 0.08

Brainstem Dmax 58.51 ± 5.89 50.17 ± 6.43 51.29 ± 6.25  < 0.001  < 0.001  < 0.001

Spinal cord Dmax 36.28 ± 1.46 35.21 ± 2.33 35.15 ± 2.71 0.002 0.08 0.43

Chiasm Dmax 47.01 ± 19.41 45.42 ± 22.04 46.60 ± 21.11 0.26 0.71 0.47

Left optic nerve Dmax 39.99 ± 22.17 39.69 ± 23.64 40.57 ± 22.44 0.68 0.28 0.09

Right optic nerve Dmax 40.36 ± 21.96 38.83 ± 23.20 39.79 ± 22.07 0.07 0.77 0.12

Left len Dmax 6.83 ± 3.04 8.53 ± 5.26 10.24 ± 5.5.82 0.001  < 0.001 0.01

Right len Dmax 7.12 ± 3.54 9.32 ± 6.32 11.15 ± 7.17  < 0.001  < 0.001 0.01

Left parotid gland Dmean 38.24 ± 3.87 35.73 ± 5.03 36.16 ± 5.20  < 0.001 0.01 0.002

Dmedian 33.03 ± 5.87 30.51 ± 7.91 30.54 ± 7.43 0.002  < 0.001 0.61

Right parotid gland Dmean 38.38 ± 3.11 35.83 ± 4.00 37.49 ± 4.51  < 0.001 0.06  < 0.001

Dmedian 32.81 ± 4.26 29.85 ± 5.84 31.04 ± 6.49  < 0.001 0.13  < 0.001

Left temporal lobe Dmean 18.80 ± 6.96 19.00 ± 7.47 19.34 ± 8.0 0.98 0.02 0.004

Dmedian 15.08 ± 7.73 15.32 ± 8.21 16.01 ± 9.04 0.67 0.004 0.006

Right temporal lobe Dmean 19.23 ± 7.49 18.80 ± 7.38 19.84 ± 7.64 0.01 0.19  < 0.001

Dmedian 15.85 ± 8.77 15.19 ± 8.02 16.26 ± 8.97 0.04 0.43 0.004

Left mandible Dmean 42.74 ± 6.00 42.18 ± 5.85 43.27 ± 5.35 0.004 0.23  < 0.001

Dmedian 43.24 ± 6.44 42.50 ± 6.54 43.93 ± 6.70 0.008 0.04  < 0.001

Right mandible Dmean 41.87 ± 4.45 41.17 ± 4.40 42.30 ± 4.10  < 0.001 0.08  < 0.001

Dmedian 42.33 ± 4.72 41.46 ± 4.74 42.99 ± 4.53  < 0.001 0.04  < 0.001

Body Dmean 18.73 ± 4.11 18.65 ± 4.22 18.44 ± 3.74 0.24 0.002 0.09

Dmedian 9.29 ± 6.13 9.84 ± 6.29 8.04 ± 5.01  < 0.001  < 0.001  < 0.001

Tongue Dmean 43.00 ± 4.32 43.67 ± 4.24 42.74 ± 4.74 0.001 0.63 0.06

Dmedian 42.27 ± 3.82 43.28 ± 3.92 41.82 ± 4.64  < 0.001 0.77 0.01

Left temporo-mandibular joint Dmean 43.34 ± 8.59 43.03 ± 8.42 41.84 ± 8.48 0.07  < 0.001 0.02

Dmedian 42.73 ± 9.07 42.72 ± 8.87 40.85 ± 7.31 0.46 0.06  < 0.001

Right temporo-mandibular joint Dmean 42.50 ± 9.15 41.25 ± 8.88 41.93 ± 10.15  < 0.001 0.11 0.42

Dmedian 42.13 ± 9.69 40.79 ± 9.03 41.58 ± 4.64  < 0.001 0.77 0.13

Plan MU 1623 ± 302 1815 ± 206 1683 ± 146  < 0.001 0.56 0.004

P1 significant difference between clinical and automatic plans with warm start, P2 significant difference between clinical plans and automatic plans with cold start, P3 
significant difference of automatic plans between warm start and cold start. Results with P < 0.05 indicated statistical significance and were labeled with bold
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plans, automatic plans with warm start and cold start. 
The automatic plans with cold start also ameliorated the 
dosimetric results for most structures compared to clini-
cal plans, and showed only a slight plan quality difference 
compared with automatic plan with warm start. How-
ever, automatic plans with warm start showed higher 
plan MUs than automatic plans with cold start.

Discussion
The ideal trade-off between target coverage and OAR 
sparing for NPC is challenging and often requires a well-
experienced planner to iteratively adjust optimization 
parameters during manual IMRT planning. Such a con-
ventional method is time/resource-consuming and leads 
to uneven plan quality. In this study, we developed an 
automated IMRT plan-generating framework through 
fluence prediction and further plan fine-tuning, and we 
integrated it into commercial TPS via scripts to achieve 
automatic plan generation by one click. The proposed 
method was validated through 38 patients with NPC, 
showing high planning efficiency in less than 4 min and 
comparable plan quality with clinical plans.

Several previous studies have proposed to automati-
cally generate plans based on direct fluence prediction 
[24–28], which may lead to unstable plan quality due to 
inaccurate prediction of fluence or quality loss when con-
verting fluence into MLC sequences. The proposed plan 
fine-tuning step may be favored to further improve the 
plan quality. The DVH results in Figures  5 and 6 illus-
trated that some of the targets showed low-dose cover-
age in the predicted fluence generated plan, whereas the 
dose coverage significantly improved after the automatic 
plan fine-tuning step. Compared with the DVH predic-
tion-based KBP method, the proposed method generated 
an initial deliverable plan first, which provided already 
achieved dosimetric information although may not opti-
mal, while the predicted DVH is not always guaranteed to 
be achievable and optimal (uncertainties from machine 
learning models).

For NPC patients, VMAT is increasingly used in cur-
rent clinical practice. Although the proposed method 
was only validated on IMRT plans in this study, it can 
be potentially used for VMAT plan optimization. Spe-
cifically, fluence can be predicted at discrete beam angles 
(such as 60 beams with 6 degree space) first, a VMAT 
plan arc sequencing step can be followed to generate an 
initial plan, then the plan fine-tuning step can be pro-
ceeded by using the predicted dose as objectives and the 
initial plan as warm start to generate a final plan. The 
planning efficiency improvement can be expected and 
would be more meaningful than IMRT. In the future 
study, we plan to extend the proposed method to auto-
matic VMAT planning for NPC patients.

Conclusions
In conclusion, we proposed an automated IMRT plan-
generating method for patients with NPC through flu-
ence prediction and further plan fine-tuning. This 
method remarkably reduced the dose for most OARs 
without compromising target conformity and homoge-
neity. Compared with clinical plans, the automatic plans 
showed high planning efficiency and achieved compara-
ble or superior plan quality.
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