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Abstract 

Background It is not unusual to see some parts of tissues are excluded in the field of view of CT simulation images. 
A typical mitigation is to avoid beams entering the missing body parts at the cost of sub-optimal planning.

Methods This study is to solve the problem by developing 3 methods, (1) deep learning (DL) mechanism for missing 
tissue generation, (2) using patient body outline (PBO) based on surface imaging, and (3) hybrid method combin-
ing DL and PBO. The DL model was built upon a Globally and Locally Consistent Image Completion to learn features 
by Convolutional Neural Networks-based inpainting, based on Generative Adversarial Network. The database used 
comprised 10,005 CT training slices of 322 lung cancer patients and 166 CT evaluation test slices of 15 patients. CT 
images were from the publicly available database of the Cancer Imaging Archive. Since existing data were used PBOs 
were acquired from the CT images. For evaluation, Structural Similarity Index Metric (SSIM), Root Mean Square Error 
(RMSE) and Peak signal-to-noise ratio (PSNR) were evaluated. For dosimetric validation, dynamic conformal arc plans 
were made with the ground truth images and images generated by the proposed method. Gamma analysis was con-
ducted at relatively strict criteria of 1%/1 mm (dose difference/distance to agreement) and 2%/2 mm under three 
dose thresholds of 1%, 10% and 50% of the maximum dose in the plans made on the ground truth image sets.

Results The average SSIM in generation part only was 0.06 at epoch 100 but reached 0.86 at epoch 1500. Accord-
ingly, the average SSIM in the whole image also improved from 0.86 to 0.97. At epoch 1500, the average values 
of RMSE and PSNR in the whole image were 7.4 and 30.9, respectively. Gamma analysis showed excellent agreement 
with the hybrid method (equal to or higher than 96.6% of the mean of pass rates for all scenarios).

Conclusions It was first demonstrated that missing tissues in simulation imaging could be generated with high simi-
larity, and dosimetric limitation could be overcome. The benefit of this study can be significantly enlarged when MR-
only simulation is considered.
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Background
The image for diagnosis requires accurate and detailed 
pictures of tumor or the region of interest. Thus, obtain-
ing the whole-body outline in every slice of computed 
tomography (CT) scanning is not necessary. However, 
images for treatment plan in radiation therapy are often 
required to contain the whole body outline for optimal 
dose planning. Due to the finite size of bore dimension 
of a CT simulator it is not unusual to encounter a situa-
tion where some parts of tissues are not included in the 
maximum field of view (FOV) of CT simulation images 
depending on the situation (e.g., when a patient is larger 
than the maximum FOV or an off-centered setup is 
needed). Figure 1, for instance, shows a CT image where 
a part of body was missing even with a 70 cm extended 
FOV in an 85 cm large bore CT simulator. In such situ-
ations, most planners try to make a plan with avoiding 
beams entering the patient body through the areas of 
missing tissues, which accordingly hinder the dose plan-
ning from being optimally processed, especially when 
an advanced delivery technique is utilized such as inten-
sity modulated radiation therapy (IMRT) or volumetric 
modulated arc therapy (VMAT) that typically brings the 
largest benefit with more flexible beam arrangements in 
general. Therefore, patients would lose a chance to get an 
optimal care when missing tissues exist outside the FOV 
of simulation imaging.

CT has the advantage of offering both accurate sur-
face of patient and CT Values that can be converted to 
electron densities for radiation dose calculation, which 
is indispensable for radiotherapy treatment planning. 
However, CT images often have limited soft tissue con-
trast, causing difficulty in identifying the tumor and/
or adjacent critical structures [1, 2]. On the other hand, 

magnetic resonance (MR) imaging provides superior soft 
tissue contrast compared to CT, enabling more accurate 
delineation of both the target and critical structures [3, 
4]. MR is also a multi-parametric imaging modality that 
can provide not only anatomical information with high 
soft tissue contrast but also valuable functional informa-
tion for the assessment of both disease progression and 
treatment response [5–7]. No imaging dose by ionizing 
radiation with MRI imaging is another advantage [8].

Radiation treatment planning frequently uses both 
CT and MR for many disease sites [9, 10]. In general, a 
planning CT scan is used as the primary image set and 
MR set is registered as 2nd data set to the CT set. One 
of the biggest challenges in this approach is the poten-
tial systematic error existing in the registration process 
[11–15]. Obviously, such registration errors can be elimi-
nated through MR based simulation and, in recent years, 
interests in replacing CT with MR in the treatment plan-
ning process have grown rapidly [16–19]. However, most 
MR units provide a maximum bore size of 70 cm [20, 21] 
while most CT simulators have an aperture of from 80 to 
90 cm. Therefore, the issue of missing tissue due to lim-
ited bore size in MR-only simulation can be much more 
serious.

There have been several papers on how to compen-
sate for data truncation based on Cone Beam CT. [22, 
23] However, to our best knowledge, there has been no 
attempt to solve this issue for radiation treatment plan-
ning with initial simulation images. In this study 3 novel 
methods were proposed to manage missing tissues out-
side a FOV during simulation imaging without re-sim-
ulation. First approach utilizes deep learning (DL) and 
second does patient body outline (PBO) obtained with an 
optical surface imaging. Third is based on both DL and 

Fig. 1 An example of CT image where a part of body was missing even with a 70 cm extended FOV in an 85 cm large bore CT simulator
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PBO combined. In the DL method, missing tissue gen-
eration is based on deep convolutional neural network 
(CNN) and Generative Adversarial Networks (GAN) 
[24–28]. A proof-of-concept study was performed with a 
set of CT images.

Methods
Imaging data
The imaging database comprised 10,005 CT training 
slices of 322 lung cancer patients and 166 CT test (i.e., 
evaluation) slices of 15 lung cancer patients obtained 
from the publicly available database of the Cancer Imag-
ing Archive (TCIA) [29]. The data are organized as col-
lections. This collection contains images from 422 
non-small cell lung cancer (NSCLC) patients. For these 
patient’s pretreatment CT scans, manual delineation by a 
radiation oncologist of the 3D volume of the gross tumor 
volume and clinical outcome data are available. This 
dataset refers to the Lung1 dataset of the study published 
in Nature Communications. DICOM is the primary file 
format used by TCIA for radiology imaging.

Image pre- and post-processing was implemented 
using MATLAB program and the deep learning network 
was configured and coded using the Keras package with 
Tensorflow as the computing backend [30]. To create 
the cropped CT images to be used as training data, pre-
processing was performed using MATLAB. Original CT 
matrix size was 512 × 512 pixels with 3  mm slice thick-
ness. Using Tensorflow, all of CT images were reduced to 
128 × 128 with 256  Gy scale to minimize computational 
burden in this proof-of-concept simulation.

In this proof-of-concept study we intentionally chose 
lung patient data. Lung is a body site where large uncer-
tainty is expected when missing parts are generated due 
to significant density variaton. Therefore, lung is consid-
ered one of the most challenging body sites to demon-
strate that the proposed method works.

Architecture for missing tissue generation in deep learning 
(DL) method
In this section, we explain the process of generating CT 
missing tissue using deep learning. In the early stages of 
the research, there was an experiment process compar-
ing different architectures [31–36] and we chose Glob-
ally and Locally Consistent Image Completion (GLCIC) 
as an optimal one for this study. Compared to other net-
works, GLCIC was superior in terms of image size and 
shape, resolution of generated image, and computation 
time. Our work builds upon a Globally and Locally Con-
sistent Image Completion (GLCIC) [35] to learn features 
by Convolutional Neural Networks-based (CNN-based) 
inpainting, based on Generative Adversarial Network 
(GAN).

More specifically, The GLCIC consists of three net-
works, a completion network, the global context discrim-
inator, and the local context discriminator [35]. A unique 
feature of GLCIC network structure is that a dilated 
convolution layer [30, 31, 37, 38] is used for the com-
pletion network rather than a general convolution layer. 
Dilated convolution has the same number of parameters 
and amount of computation as those of general convolu-
tion but has the advantage of being able to view a much 
wider area at once. Using dilated convolution, it allows 
us to understand the context of an image without using 
fully connected layers, hence the trained network can 
be used for images with diverse sizes. Next, it is divided 
into global and local discriminator, and inserts the whole 
image and blank part respectively. Two discrimina-
tors ensure the global and local consistency of the filled 
images. The global discriminator takes the whole image 
as input to recognize global consistency of the image 
while the local discriminator focuses on a small region 
(generated region). The main role of discriminators is to 
determine whether an image has been completed con-
sistently. Also, It is the importance of generating novel 
fragments in the task of image inpainting. We adopt 
pixel-wise reconstruction loss (L2 loss) to ensure that we 
can fill in the missing parts with “correct” structure.

Figure  2 illustrates the overall scheme of the process. 
A CT image with missing parts (input) is expanded to 
a CT image with the missing parts generated (output) 
using a machine learning based algorithm. To make an 
input image a total of 72 × 128 pixels (i.e., about 56% of 
the original image) were replaced with “0” (i.e., 36 × 128 
from the left side and another 36 × 128 from the right) as 
shown in the top left image of Fig. 2.

During each training iteration, the discriminators are 
updated first so that they correctly distinguish between 
real and completed training images. Afterwards, the 
completion network is updated so that it fills the miss-
ing area well enough to fool the context discriminator 
networks. Using both the local and the global context 
discriminators is helpful for obtaining overall image 
completion. In contrast to patch-based approaches like 
PatchMatch [39, 40] GLCIC approach can generate novel 
fragments, which allows completing the images of objects 
with highly specific structures.

The architecture of the image completion network is 
provided in Table 1. After each convolution layer, except 
the last one, there is a Rectified Linear Unit (ReLU) layer. 
The output layer consists of a convolutional layer with 
a sigmoid function instead of a ReLU layer to normal-
ize the output to the [0, 1] range. “Outputs” refers to the 
number of output channels for the output of the layer.

Table 2. summarizes the architectures of the discrimi-
nators used. As seen in standard neural networks, Full 
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Connected (FC) layers can be used to optimize objec-
tives. In this study, the output layer consists of a FC layer 
with a sigmoid transfer function.

Patient body outline (PBO) method
Second approach is to obtain a PBO in interest. PBOs 
will be obtained using an optical surface imaging in 
actual practice as illustrated in a study performed by our 
group [41] where, it was demonstrated that a whole body 
image set for a  total body irradiation (TBI)  treatment 
planning could be obtained in a single setup by using 
both CT and 3D surface imaging. Note surface imaging 
methods can provide large FOVs easily by either having 
multiple cameras or rotating a camera.

However, in this simulation study with exsisting 
archived CT data the PBOs have been simply obtained 
from the original CT slices. Missing tissue parts are sim-
ply filled with water density.

Hybrid method combining DL and PBO
The generated missing tissues by the machine learning in 
Sect. "Architecture for missing tissue generation in deep 
learning (DL) method" are fine-tuned using the PBOs. In 
specific, if there exist artificially generated tissues outside 

Fig. 2 Overall scheme of Globally and Locally Consistent Image Completion (GLCIC) Network for missing tissue generation

Table 1 Architecture of the image completion network

Conv., Convolution layer; Dilated conv., Dilated convolution layer; Deconv., 
Deconvolution layer

Type Kernel Dilation(η) Stride Outputs

Conv 5 × 5 1 1 × 1 64

Conv 3 × 3 1 2 × 2 128

Conv 3 × 3 1 1 × 1 128

Conv 3 × 3 1 2 × 2 256

Conv 3 × 3 1 1 × 1 256

Conv 3 × 3 1 1 × 1 256

Dilated conv 3 × 3 2 1 × 1 256

Dilated conv 3 × 3 4 1 × 1 256

Dilated conv 3 × 3 8 1 × 1 256

Dilated conv 3 × 3 16 1 × 1 256

Conv 3 × 3 1 1 × 1 256

Conv 3 × 3 1 1 × 1 256

Deconv 4 × 4 1 1/2 × 1/2 128

Conv 3 × 3 1 1 × 1 128

Deconv 4 × 4 1 1/2 × 1/2 64

Conv 3 × 3 1 1 × 1 32

Output 3 × 3 1 1 × 1 3
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Table 2 Architectures of the discriminators used in the network model: (a) Local Discriminator, (b) Global Discriminator, and (c) 
Concatenation Layer

Conv., Convolution layer; FC, Fully-connected layer

Type Kernel Stride Outputs

(a) Local Discriminator

Conv 5 × 5 2 × 2 64

Conv 5 × 5 2 × 2 128

Conv 5 × 5 2 × 2 256

Conv 5 × 5 2 × 2 512

Conv 5 × 5 2 × 2 512

FC – – 1024

Type Kernel Stride Outputs

 (b) Global Discriminator

Conv 5 × 5 2 × 2 64

Conv 5 × 5 2 × 2 128

Conv 5 × 5 2 × 2 256

Conv 5 × 5 2 × 2 512

Conv 5 × 5 2 × 2 512

Conv 5 × 5 2 × 2 512

FC – – 1024

Type Kernel Stride Outputs

(c) Concatenation Layer

Conv – – 2048

FC – – 1

Fig. 3 Fine-tuning of machine learning generated image based on PBO
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the PBOs they are eliminated. When there are still miss-
ing tissues inside the PBOs they are replaced with water. 
This process is illustrated in Fig. 3.

Image evaluation metrics
For quantitative assessment of the performance level of 
the process, Root Mean Square Error (RMSE) [42], Peak 
signal-to-noise ratio (PSNR) and Structural Similarity 
Index Metric (SSIM) [43, 44] were evaluated. RMSE is a 
type of error measuring techniques commonly used to 
measure the differences between the predicted value by 
an estimator and the actual value. PSNR is the ratio of the 
maximum possible signal power and the corrupting noise 
power. The PSNR calculates the PSNR ratio in decibels 
amid two images. SSIM is a full reference metric. It com-
pares two images using information about luminance, 
contrast and structure.

Mean Square Error (MSE), RMSE, PSNR, and SSIM are 
defined in formulas (1), (2), (3) and (4), respectively.

 where, s is the maximum possible pixel value of the 
image. When the pixels are represented using 8 bits per 
sample, it is supposed to be 255.

 where,
ŷi : predicted output value.
yi : actual output value.
µx : the average of x.
µy : the average of y.
σ
2
x : the variance of x.

σ
2
y : the variance of y.

σxy : the covariance of x and y.
C1 = (k1L)

2 , C2 = (k2L)
2 : two variables to stabilize the 

division with weak denominator.
L: the dynamic range of the pixel-values.
k1 = 0.01 and  k2 = 0.03 by default.

Dosimetric evaluation
For dosimetric validation a dynamic conformal arc 
(DCA) plan was considered since it often requires a full 
body contour for adequate optimization. For each test 
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case, a DCA plan was made with the ground truth image 
set first, the same plan was applied to the image sets 
obtained by 3 proposed methods, and then calculated 
doses were compared in terms of gamma-evaluation. 
In this simulation, a 2 cm diametter sherical target with 
200  cGy prescribed dose was used. Eclipse Acuros XB 
advanced dose calculation algorithm was used for dose 
calculation. Gamma analysis was conducted at relatively 
strict criteria of 1%/1  mm (dose difference/distance to 
agreement) and 2%/2 mm under three dose thresholds of 
1%, 10% and 50% of the maximum dose in the plans made 
on the ground truth image sets.

Results
Training loss in DL
The standard GAN loss function, described in the 2014 
GAN paper by Ian Goodfellow et al. [25], is also known 
as the min–max loss. It can further be categorized into 
two parts: Discriminator loss and Generator loss. The 
generator tries to minimize the loss while the discrimina-
tor does to maximize it. In practice, it saturates for the 
generator, meaning that the generator quite frequently 
stops training if it does not catch up with the discrimina-
tor. Figure 4 displays the plots of training generator loss 
and discriminator loss according to epoch up to 2,300. 
Generator and discriminator are roughly balanced, but 
discriminator is more consistent. Occasional "spikes" 
come along associated with very high gradient norms. 
These come with dramatic updates to generator.

Qualitative evaluation in DL
Figure 5 illustrates the outputs of 2 test images, obtained 
by the model developed, according to the number of 
epochs. The left most imgeas are inputs and the right 

Fig. 4 Training generator loss and discriminator loss over 2300 
epochs: Note the generator tries to minimize the loss 
while the discriminator does to maximize it
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most ones are ground truth images. In between, output 
images are displayed at 2 epochs, 100 and 1000.

As can be seen missing tissues were generated and 
the output iamges got more similar to the ground truth 
images with the number of epochs increased within the 
range shown.

Quantitative evaluation in DL
The quantitative metrics, SSIM, PSNR and RMSE aver-
aged over whole test set (i.e., 166 slices) are plotted 

according to the number of epochs in Fig. 6. Values were 
calculated in 2 different areas, the whole area as illus-
trated in Fig. 6a and missing tissue generation part only 
as shown in Fig. 6b. The red lines are for the latter case 
and the black the former. While the evaluation on the 
missing tissue generation area only was our main interest 
in this study, that on the whole area of image would pro-
vide overall similarity. As can be seen in Fig. 6c, the aver-
age SSIM in missing tissue generation area significantly 
increased with the number of epochs, for example, it 

Fig. 5 Illustration of the outputs of test image of case#1 obtained by the model according to the number of epochs. The input image size 
is 128 × 128 with the batch size of 2. From left to right, displayed are input images, outputs at epochs of 100 and 1,000, and ground truth images

Fig. 6 Quantitative evaluation results with the number of epochs: a Evaluation area – whole image, b Evaluation area – missing tissue generation 
part only c Average structural similarity index (SSIM), d Average peak signal-to-nose ratio (PSNR) and e, Average root mean square error (RMSE)
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was 0.06 at epoch 100 but reached to 0.86 at epoch 1500. 
Accordingly, the average SSIM in the whole area of the 
image also increased from 0.86 to 0.97.

The average PSNR, as displayed in Fig.  6d, increased 
from around 20 and 28 to 24 and 31 for the missing tissue 
generation area only and the whole area, respectively.

On the other hand, the average RMSE decreased 
from around 25 and 10 to 15 and 7 for the missing tis-
sue generation area only and the whole area, respectively, 
as shown in Fig.  6e. Numerical average values of SSIM, 
RMSE and PSNR are summarized in Table 3 for 5 epochs 
(100, 500, 1000, 1500 and 2000). 

Dosimetric evaluation
The gamma analysis under the 1%/1 mm and 2%/2 mm 
criteria for 15 cases are summarized in Table  4. As 
shown in the table the best results were obtained with 
the proposed hybrid method (i.e., DL + PBO approach) 
among 3 approaches proposed. In detail, the mean of 
pass rates under all thresholds considered were equal 
to or higher than 96.6% and 99.2% for 1%/1  mm and 
2%/2  mm criterion, respectively. In high dose region 

(i.e., under 50% threshold) the pass rates of hybrid 
method were 100% for all cases except one which was 
99.3% for case 11 with 1%/1 mm criterion. The DL only 
approach provided good agreements with the mean 
of pass rates ranged from ~ 93% to ~ 100% among the 
thresholds considered. The results of PBO only method 
were the worst with the mean of pass rates ranging 
from ~ 86% to ~ 98% among the thresholds considered.

Figure 7 shows dose distributions of the case 2 as an 
illustration.

Computation time
The weighting hyper parameter was set to α = 0.0004. 
The batch size of 2 was used for training. The comple-
tion network was trained up to 2300 iterations. The 
entire training procedure took roughly 11  days on 
one workstation that included an NVIDIA GeForce 
GTX 970 graphic Card. The training of the GLCIC per 
epoch took approximately 7  min. When the model is 
trained, it takes approximately 0.5  s for missing tissue 
generation.

Table 3 The average SSIM, PSNR and RMSE values according to the number of epochs

Epoch Structural Similarity Index (SSIM) between output and ground truth

Generation part only Whole image

0 – 0.9434

100 0.0557 0.8552

500 0.4004 0.9086

1,000 0.8421 0.9715

1,500 0.8603 0.9745

2,000 0.8613 0.9747

Epoch Peak signal-to-noise ratio (PSNR) between output and ground truth

Generation part only Whole image

0 – 22.0114

100 20.4575 27.8581

500 21.8561 28.9943

1,000 23.6109 30.5355

1,500 24.0551 30.9155

2,000 24.3891 31.2220

Epoch Root Mean Square Error (RMSE) between output and ground truth

Generation part only Whole image

0 – 20.2287

100 24.3296 10.3563

500 20.7680 9.0974

1000 17.3119 7.7092

1500 16.3794 7.3581

2000 15.5609 7.0198
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Discussion
Recently, convolutional neural networks (CNN) based 
deep learning has been utilized to medical imaging with 
successful implementations for a wide range of applica-
tions [45–47]. A study in Ref. Han [48] demonstrated the 
feasibility of pseudo CT generation from MR images with 
a deep CNN model. This has led to the development of 
several approaches for the generation and translation of 

image data. Our study described in this article aimed to 
investigate whether machine learning approach could 
generate missing body parts in medical imaging and 
demonstrated it was possible using a set of CT images, 
for the first time to our best knowledge.

For evaluating the performance of the DL-generated 
images, Structural Similarity Index Metric (SSIM), Root 
Mean Square Error (RMSE) and Peak signal-to-noise 

Table 4 Gamma Analysis Results: all of pass rates of 100% are highlighted in bold to be emphasized; note, for the hybrid (i.e., 
DL + PBO) method, pass rates under 50% threshold were 100% for all cases except one which was 99.3% for case 11 with 1%/1 mm 
criterion

1%/1 mm 2%/2 mm

DL only PBO only DL + PBO DL only PBO only DL + PBO

Threshold Threshold Threshold Threshold Threshold Threshold

Case# 1% 10% 50% 1% 10% 50% 1% 10% 50% 1% 10% 50% 1% 10% 50% 1% 10% 50%

1 95.4 95.9 100.0 95.4 89.6 89.3 99.3 97.5 100.0 99.6 99.7 100.0 98.7 95.7 96.7 100.0 99.9 100.0
2 96.5 95.8 100.0 90.4 79.1 56.5 99.1 97.3 100.0 98.8 99.1 100.0 95.6 88.9 72.1 99.9 99.5 100.0
3 96.3 99.7 100.0 98.0 95.8 100.0 100.0 100.0 100.0 98.9 100.0 100.0 99.9 99.8 100.0 100.0 100.0 100.0
4 95.4 96.3 99.2 91.7 82.3 90.8 99.2 97.3 100.0 98.9 98.6 100.0 96.9 90.2 100.0 99.7 98.7 100.0
5 93.1 92.3 100.0 94.4 87.3 100.0 96.9 92.3 100.0 97.0 96.0 100.0 98.5 95.0 100.0 98.8 96.7 100.0
6 95.0 95.9 100.0 96.3 89.9 100.0 99.5 99.1 100.0 98.9 99.8 100.0 99.1 96.8 100.0 100.0 99.9 100.0
7 95.0 94.3 97.5 92.5 86.9 80.7 98.8 96.0 100.0 98.4 98.6 100.0 97.1 92.8 99.7 99.8 99.2 100.0
8 92.6 95.9 100.0 92.1 88.3 100.0 98.8 97.8 100.0 96.8 99.0 100.0 98.3 95.3 100.0 100.0 99.9 100.0
9 96.0 97.1 98.3 96.5 94.7 100.0 99.7 99.0 100.0 99.2 99.9 100.0 99.1 97.9 100.0 100.0 100.0 100.0
10 94.3 94.7 100.0 92.8 87.1 79.0 99.2 97.5 100.0 97.8 98.5 100.0 97.0 92.5 95.6 99.9 99.4 100.0
11 85.7 85.5 98.7 86.9 69.8 81.3 95.0 89.8 99.3 94.3 95.3 100.0 95.3 84.0 93.9 99.2 97.1 100.0
12 88.9 92.6 99.4 94.0 92.2 100.0 95.1 94.7 100.0 93.9 96.8 100.0 99.2 98.2 100.0 99.0 98.7 100.0
13 95.3 95.4 100.0 99.3 98.1 100.0 99.7 99.3 100.0 99.0 98.9 100.0 99.9 99.8 100.0 100.0 99.8 100.0
14 93.1 95.3 100.0 93.3 87.7 100.0 98.8 97.4 100.0 98.0 99.1 100.0 98.5 95.6 100.0 100.0 100.0 100.0
15 90.9 88.4 99.3 82.3 66.9 24.0 98.3 94.8 100.0 96.8 97.2 100.0 92.0 79.6 33.7 99.9 99.6 100.0
Mean 93.6 94.3 99.5 93.1 86.4 86.8 98.5 96.6 100.0 97.7 98.4 100.0 97.7 93.5 92.8 99.7 99.2 100.0

SD 2.9 3.4 0.8 4.1 8.5 20.7 1.5 2.7 0.2 1.7 1.4 0.0 2.1 5.5 17.2 0.4 1.0 0.0

Fig. 7 An illustration of dose distributions of the case 2. The first row are the ground truth (GT) and calculated dose distributions; the second 
row are the dose difference map between the calculated and GT dose. Dose differences less than 0.1 Gy are not shown in the figures. In columns 
from left to right, plans on GT image set, GT image with missing tissue removed, deep learning (DL) only image set, patient body outline (PBO) 
only image set and DL + PBO image set
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ratio (PSNR) were evaluated [49, 50]. SSIM is based on 
visible structures in the image thus, it actually measures 
the perceptual difference between two similar images. 
An SSIM value is between 0 and 1 with 1 indicating per-
fect structural similarity. Therefore, it is considered the 
model is able to generate images in high similarity. This 
consideration is also supported by both RMSE and PSNR 
values. RMSE measures the amount of change per pixel 
due to a process. RMSE values are non-negative and a 
value of 0 means the image being compared are identi-
cal. PSNR measures the ratio between the maximum 
possible power of a signal and the power of corrupting 
noise that affects the fidelity of its representation. PSNR 
is usually expressed in terms of the logarithmic decibel 
scale. A 20 dB or higher PSNR indicates that the image is 
of good quality. Obviously, a smaller value of RMSE and 
a higher value of PSNR indicate that the images are of 
higher quality. In quantitative analysis, the output images 
showed the average SSIM values of up to 0.86 and 0.97 
for the generated part only and the whole area, respec-
tively. Also, when epoch is 1500, average values of RMSE 
and PSNR in the whole image are 7.4 and 30.9, respec-
tively. Even in the missing tissue generation area only, 
PSNR is 24.1 which is larger than 20 with enough margin.

Although this study did not specifically address how 
to obtain 3D surface imaging, our team members have 
developed a technology that utilizes both CT and 3D 
optical surface imaging to acquire 3D whole-body infor-
mation and import it into a treatment planning system 
(TPS) for total body irradiation planning [41]. Never-
theless, surface imaging of posterior parts of the body 
can be challenging. However, we believe, PBO can be 
obtained with acceptable accuracy in most cases. For 
most patients, the outline under the body (i.e., posterior 
part of the body) is typically inside the FOV thus only 
lateral parts need to be included in surface imaging. For 
obese patients, both lateral and laterally located posterior 
parts of the body would be missing. In this case, lateral 
parts can be surfaced imaged but laterally located poste-
rior parts can be estimated to be flat (due to the table) 
or approximated with the surface of the immobilization 
device if immobilized.

The MRI-only treatment process is currently an active 
field of research since it could eliminate systematic 
MR-CT co-registration errors [13–15], reduce medical 
cost, avoid diagnostic radiation exposure, and simplify 
clinical workflow. However, most MR bores are smaller 
than those of CT, resulting in higher chances of having 
missing tissues outside the FOV [20]. When an MRI sys-
tem is used for simulation in radiation therapy, a syn-
thetic CT is generated for both dose calculation and 
reference image preparation. While MRI data set pro-
vides superior soft tissue contrast over that of CT, one of 

distinct limitations of MRI system at present is its smaller 
field of view (FOV), resulting in exclusion of patients in 
relatively large size. To solve the issue of small MR FOV, 
a process of creating tissue information not included in 
the FOV is under consideration. In step 1, patient body 
outline (3D surface imaging) in interest is obtained using 
an optical imaging method. In step 2, an MR image set in 
limited FOV is converted to a synthetic CT image set in 
limited FOV. In step 3, the syn-CT-in-LFOV is expanded 
to a synthetic CT image set in full FOV using both the 
patient body outline obtained in the step 1 and a machine 
learning based missing body generation algorithm. This 
approach is also able to significantly reduce geometrical 
distortion that is dominant at periphery in typical MR 
images. In this study, we focused on Step 3 as a novel 
development. For Step 1 and Step 2, there are already 
promising technologies available as mentioned above. 
When all three steps are integrated, we would be able to 
solve the issue of small FOV in MR based treatment plan-
ning. Therefore, the value of the solution developed in 
this study can be significantly enlarged in MR-only sim-
ulation environment, which is considered one of future 
directions in radiation oncology practice.

Furthermore, obesity is continuously increasing in the 
United States such that currently more than 65% of U.S 
adults are considered overweight or obese and this rep-
resents a 25% increase in the past three decades [51–54]. 
As is to be expected with the increased prevalence of 
obesity in the general population, the number of obese 
patients requiring medical imaging also has increased. 
Therefore, it is important that medical images provide 
some practical solutions to improve the accuracy of treat-
ment planning imaging in this obese patient population. 
This study, we believe, can certainly mitigate such prob-
lem significantly.

Due to limited computer memory, the network model 
in this study was designed to take a 2D slice as input 
and outputs a corresponding 2D slice with the gener-
ated missing tissues. In addition, the 2D procedure is still 
much more efficient than voxel-by-voxel predictions. If 
necessary, this method can later be extended to take mul-
tiple slices as input or process a 3D volume when data 
and computer resources become available.

We have utilized just one architecture in this study. 
Since many different network models have been pro-
posed in the CNN algorithms and applications, various 
architectures can be tested in the future to build a model 
with improved performance.

While the deep learning method was able to pro-
vide missing tissues with decent levels of similar-
ity, obviously, it is hard to expect it can predict exact 
body outlines. As demonstrated modern surface imag-
ing technologies can be utilized to compensate such 
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limitation. When naked skin surface is not easily 
obtainable due to practical reasons like cultural barrier 
thermal imaging technique can be considered. Another 
potential advantage of surface imaging is that it may be 
able to reduce image distortion problem during MR-
only simulation since distortion is more dominant at 
body periphery in MR images.

Conclusions
It was first demonstrated that missing tissues in simu-
lation imaging could be generated with high similar-
ity (reaching up to 0.86 of similarity index) using the 
machine learning method for all cases tested. Addition 
of patient body outline information further improved the 
dosimetric accuracy with the mean of gamma pass rates 
equal to or higher than 96.6% in all evaluated cases.

Abbreviations
CT  Computer tomography
FOV  Field of view
IMRT  Intensity modulated radiation therapy
VMAT  Volumetric modulated arc therapy
MR  Magnetic resonance
DL  Deep learning
PBO  Patient body outline
CNN  Convolutional neural network
GAN  Generative Adversarial Networks
TCIA  The Cancer Imaging Archive
GLCIC  Globally and Locally Consistent Image Completion
FC  Fully connected
ReLU  Rectified Linear Unit
Conv.  Convolution layer
Dilated conv.  Dilated convolution layer
Deconv.  Deconvolution layer
TBI  Total body irradiation
RMSE  Root Mean Square Error
PSNR  Peak signal-to-noise ratio
SSIM  Structural Similarity Index Metric
MSE  Mean Square Error
DCA  Dynamic conformal arc

Acknowledgements
This research was financially supported by the Ministry of Trade, Industry and 
Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) 
through the International Cooperative R&D program (Project No. P0019304). 
Special thanks to Elisabeth Weiss, MD in the Department of Radiation 
Oncology, VCU and Yuichi Motai, Ph.D. in the Department of Electrical and 
Computer Engineering, VCU.

Author contributions
SK developed the model, analyzed imaging results and wrote the main manu-
script text. LY performed and summarized dosimetric evaluation. SK initiated 
the project and provided overall technical guidance. TSS led collaboration 
between 2 institutions.

Funding
Global Ph.D. Fellowship Program through the National Research Foundation 
of Korea (NRF), 2018H1A2A1063207, National Research Foundation of Korea 
(NRF), International Cooperative R&D program (Project No.P0019304) through 
the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for 
Advancement of Technology (KIAT).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
“Not applicable”.

Consent for publication
“Not applicable”.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biomedical Engineering and Research Institute of Biomedi-
cal Engineering, College of Medicine, The Catholic University of Korea, 222 
Banpo-daero, Seocho−gu, Seoul 06591, Republic of Korea. 2 Department 
of Radiation Oncology, School of Medicine, Virginia Commonwealth Univer-
sity, Richmond, VA 23284, USA. 3 Department of Radiation Oncology, Yonsei 
Cancer Center, Seoul 03722, Republic of Korea. 

Received: 29 January 2023   Accepted: 28 November 2023

References
 1. Njeh C. Tumor delineation: the weakest link in the search for accuracy in 

radiotherapy. J Med Phys/Assoc Med Phys India. 2008;33(4):136.
 2. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation cri-

teria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 
2009;45(2):228–47.

 3. Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image 
analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97-129.

 4. Jacco de Pooter IB, de Prez L, Duane S, Kapsch R-P, Karger CP, van Asselen 
B, Wolthaus J. Reference dosimetry in MRI-linacs: evaluation of avail-
able protocols and data to establish a Code of Practice. Phys Med Biol. 
2021;66:05TR02.

 5. Khoo VS, Joon DL. New developments in Mill for target volume delinea-
tion in radiotherapy. Br J Radiol. 2006;79:S2–15.

 6. Jansen EPM, Dewit LGH, van Herk M, Bartelink H. Target volumes in radio-
therapy for high-grade malignant glioma of the brain. Radiother Oncol. 
2000;56(2):151–6.

 7. Whitfield GA, Kennedy SR, Djoukhadar IK, Jackson A. Imaging and target 
volume delineation in Glioma. Clin Oncol. 2014;26(7):364–76.

 8. Schmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 
2015;60(22):R323–61.

 9. Oldham M, Siewerdsen JH, Shetty A, Jaffray DA. High resolution gel-
dosimetry by optical-CT and MR scanning. Med Phys. 2001;28(7):1436–45.

 10. Huynh T, Gao YZ, Kang JY, et al. Estimating CT image from MRI data using 
structured random forest and auto-context model. IEEE Trans Med Imag-
ing. 2016;35(1):174–83.

 11. Chen SP, Quan H, Qin A, Yee S, Yan D. MR image-based synthetic CT for 
IMRT prostate treatment planning and CBCT image-guided localization. J 
Appl Clin Med Phys. 2016;17(3):236–45.

 12. Ulin K, Urie MM, Cherlow JM. Results of a multi-institutional benchmark 
test for cranial CT/MR image registration. Int J Radiat Oncol Biol Phys. 
2010;77(5):1584–9.

 13. Nakazawa H, Mori Y, Komori M, et al. Validation of accuracy in image 
co-registration with computed tomography and magnetic resonance 
imaging in Gamma Knife radiosurgery. J Radiat Res. 2014;55(5):924–33.

 14. Opposits G, Kis SA, Tron L, et al. Population based ranking of frameless 
CT-MRI registration methods. Z Med Phys. 2015;25(4):353–67.

 15. Nyholm T, Nyberg M, Karlsson MG, Karlsson M. Systematisation of spatial 
uncertainties for comparison between a MR and a CT-based radiotherapy 
workflow for prostate treatments. Radiat Oncol. 2009;4:9.

 16. Devic S. MRI simulation for radiotherapy treatment planning. Med Phys. 
2012;39(11):6701–11.



Page 12 of 12Kim et al. Radiation Oncology           (2024) 19:15 

 17. Pollard JM, Wen ZF, Sadagopan R, Wang JH, Ibbott GS. The future 
of image-guided radiotherapy will be MR guided. Br J Radiol. 
2017;90(1073):9. https:// doi. org/ 10. 1259/ bjr. 20160 667.

 18. Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only 
radiation therapy. Radiat Oncol. 2017;12:15. https:// doi. org/ 10. 1186/ 
s13014- 016- 0747-y.

 19. Siciarz P, McCurdy B. U-net architecture with embedded Inception-
ResNet-v2 image encoding modules for automatic segmentation of 
organs-at-risk in head and neck cancer radiation therapy based on 
computed tomography scans. Phys Med Biol. 2022. https:// doi. org/ 10. 
1088/ 1361- 6560/ ac530e.

 20. Reynolds A. Obesity and medical imaging challenges. Radiol Technol. 
2011;82(3):219–39.

 21. Uppot RN, Sahani DV, Hahn PF, Gervais D, Mueller PR. Impact of obesity 
on medical imaging and image-guided intervention. Am J Roentgenol. 
2007;188(2):433–40.

 22. Shields B, Ramachandran P. Generating missing patient anatomy from 
partially acquired cone-beam computed tomography images using 
deep learning: a proof of concept. Phys Eng Sci Med. 2023;46(3):1321–30. 
https:// doi. org/ 10. 1007/ s13246- 023- 01302-y.

 23. Huang Y, Preuhs A, Manhart M, Lauritsch G, Maier A. Data extrapolation 
from learned prior images for truncation correction in computed tomog-
raphy. IEEE Trans Med Imaging. 2021;40(11):3042–53. https:// doi. org/ 10. 
1109/ TMI. 2021. 30725 68.

 24. Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating syn-
thetic CTs from magnetic resonance images using generative adversarial 
networks. Med Phys. 2018;45(8):3627–36. https:// doi. org/ 10. 1002/ mp. 
13047.

 25. Goodfellow I. NIPS 2016 tutorial: Generative adversarial networks. arXiv 
preprint arXiv: 1701. 00160 2016

 26. Armanious K, Jiang C, Fischer M, et al. MedGAN: Medical image transla-
tion using GANs. arXiv preprint arXiv: 1806. 06397 2018

 27. Radford A, Metz L, Chintala S. Unsupervised representation learning with 
deep convolutional generative adversarial networks. arXiv preprint arXiv: 
1511. 06434 2015

 28. Nie D, Trullo R, Lian J, et al. Medical image synthesis with deep convolu-
tional adversarial networks. IEEE Trans Biomed Eng. 2018;65(12):2720–30.

 29. Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): main-
taining and operating a public information repository. J Digit Imaging. 
2013;26(6):1045–57.

 30. Chollet F. Keras. 2015 doi: http:// keras. io
 31. Barnes C, Shechtman E, Finkelstein A, Goldman DB. PatchMatch: a 

randomized correspondence algorithm for structural image editing. ACM 
Trans Graph. 2009;28(3):24.

 32. Summarizing visual data using bidirectional similarity. 2008 IEEE Confer-
ence on Computer Vision and Pattern Recognition; 2008 23–28 June 
2008.

 33. Wexler Y, Shechtman E, Irani M. Space-time completion of video. IEEE 
Trans Pattern Anal Mach Intell. 2007;29(3):463–76. https:// doi. org/ 10. 
1109/ TPAMI. 2007. 60.

 34. High-Resolution Image Inpainting Using Multi-scale Neural Patch Synthe-
sis. 2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR); 2017 21–26 July 2017.

 35. Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image 
completion. ACM Trans Graph. 2017;36(4):107. https:// doi. org/ 10. 1145/ 
30729 59. 30736 59.

 36. Zhu Z, Huang HZ, Tan ZP, Xu K, Hu SM. Faithful Completion of images 
of scenic landmarks using internet images. IEEE Trans Vis Comput Gr. 
2016;22(8):1945–58. https:// doi. org/ 10. 1109/ TVCG. 2015. 24800 81.

 37. Liu J-Y, Yang Y-H. Dilated convolution with dilated GRU for music source 
separation. arXiv preprint arXiv: 1906. 01203 2019

 38. Wang B, Lei Y, Tian S, et al. Deeply supervised 3D fully convolutional 
networks with group dilated convolution for automatic MRI prostate 
segmentation. Med Phys. 2019;46(4):1707–18.

 39. The generalized patchmatch correspondence algorithm. European 
Conference on Computer Vision; 2010. Springer.

 40. Demir U, Unal G. Patch-Based Image Inpainting with Generative Adver-
sarial Networks. 2018

 41. A Hybrid Full-Body Image Set Generation for TBI Using Both CT and 
3D Optical Imaging. Med. Phys.; 2021. WILEY 111 RIVER ST, HOBOKEN 
07030–5774, NJ USA.

 42. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error 
(MAE)?–Arguments against avoiding RMSE in the literature. Geosci Model 
Dev. 2014;7(3):1247–50.

 43. Image quality metrics: PSNR vs. SSIM. 2010 20th international conference 
on pattern recognition; 2010. IEEE.

 44. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: 
from error visibility to structural similarity. IEEE Trans Image Process. 
2004;13(4):600–12.

 45. Rezaeijo SM, Jafarpoor Nesheli S, Fatan Serj M, Tahmasebi Birgani MJ. 
Segmentation of the prostate, its zones, anterior fibromuscular stroma, 
and urethra on the MRIs and multimodality image fusion using U-Net 
model. Quant Imaging Med Surg. 2022;12(10):4786–804. https:// doi. org/ 
10. 21037/ qims- 22- 115.

 46. Rezaeijo SM, Chegeni N, Baghaei Naeini F, Makris D, Bakas S. Within-
modality synthesis and novel radiomic evaluation of brain MRI scans. 
Cancers (Basel). 2023. https:// doi. org/ 10. 3390/ cance rs151 43565.

 47. Jahangirimehr A, Abdolahi Shahvali E, Rezaeijo SM, et al. Machine learn-
ing approach for automated predicting of COVID-19 severity based on 
clinical and paraclinical characteristics: Serum levels of zinc, calcium, and 
vitamin D. Clin Nutr ESPEN. 2022;51:404–11. https:// doi. org/ 10. 1016/j. 
clnesp. 2022. 07. 011.

 48. Han X. MR-based synthetic CT generation using a deep convolutional 
neural network method. Med Phys. 2017;44(4):1408–19. https:// doi. org/ 
10. 1002/ mp. 12155.

 49. Salmanpour MR, Hosseinzadeh M, Rezaeijo SM, Rahmim A. Fusion-based 
tensor radiomics using reproducible features: application to survival 
prediction in head and neck cancer. Comput Methods Programs Biomed. 
2023;240:107714. https:// doi. org/ 10. 1016/j. cmpb. 2023. 107714.

 50. Salmanpour MR, Rezaeijo SM, Hosseinzadeh M, Rahmim A. Deep versus 
handcrafted tensor radiomics features: prediction of survival in head and 
neck cancer using machine learning and fusion techniques. Diagnostics 
(Basel). 2023. https:// doi. org/ 10. 3390/ diagn ostic s1310 1696.

 51. Modica MJ, Kanal KM, Gunn ML. The obese emergency patient: imaging 
challenges and solutions. Radiographics. 2011;31(3):811–23.

 52. Uppot RN, Sahani DV, Hahn PF, Kalra MK, Saini SS, Mueller PR. Effect of 
obesity on image quality: fifteen-year longitudinal study for evaluation of 
dictated radiology reports. Radiology. 2006;240(2):435–9.

 53. Shah S, Shah V, Ahmed A, Blunt D. Imaging in bariatric surgery: ser-
vice set-up, post-operative anatomy and complications. Br J Radiol. 
2011;84(998):101–11.

 54. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in 
obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–41.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1259/bjr.20160667
https://doi.org/10.1186/s13014-016-0747-y
https://doi.org/10.1186/s13014-016-0747-y
https://doi.org/10.1088/1361-6560/ac530e
https://doi.org/10.1088/1361-6560/ac530e
https://doi.org/10.1007/s13246-023-01302-y
https://doi.org/10.1109/TMI.2021.3072568
https://doi.org/10.1109/TMI.2021.3072568
https://doi.org/10.1002/mp.13047
https://doi.org/10.1002/mp.13047
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1806.06397
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
http://keras.io
https://doi.org/10.1109/TPAMI.2007.60
https://doi.org/10.1109/TPAMI.2007.60
https://doi.org/10.1145/3072959.3073659
https://doi.org/10.1145/3072959.3073659
https://doi.org/10.1109/TVCG.2015.2480081
http://arxiv.org/abs/1906.01203
https://doi.org/10.21037/qims-22-115
https://doi.org/10.21037/qims-22-115
https://doi.org/10.3390/cancers15143565
https://doi.org/10.1016/j.clnesp.2022.07.011
https://doi.org/10.1016/j.clnesp.2022.07.011
https://doi.org/10.1002/mp.12155
https://doi.org/10.1002/mp.12155
https://doi.org/10.1016/j.cmpb.2023.107714
https://doi.org/10.3390/diagnostics13101696

	Generation of tissues outside the field of view (FOV) of radiation therapy simulation imaging based on machine learning and patient body outline (PBO)
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Imaging data
	Architecture for missing tissue generation in deep learning (DL) method
	Patient body outline (PBO) method
	Hybrid method combining DL and PBO
	Image evaluation metrics
	Dosimetric evaluation

	Results
	Training loss in DL
	Qualitative evaluation in DL
	Quantitative evaluation in DL
	Dosimetric evaluation
	Computation time

	Discussion
	Conclusions
	Acknowledgements
	References


