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Abstract 

Purpose To report the planning benchmark case results of the POTENTIAL trial—a multicenter, randomized, phase 3 
trial—to evaluate the value of internal mammary nodal (IMN) irradiation for patients with high‑risk breast cancer.

Methods All participating institutions were provided the outlines of one benchmark case, and they generated 
radiation therapy plans per protocol. The plans were evaluated by a quality assurance team, after which the institu‑
tions resubmitted their revised plans. The information on beams arrangement, skin flash, inhomogeneity corrections, 
and protocol compliance was assessed in the first and final submission.
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Results The plans from 26 institutions were analyzed. Some major deviations were found in the first submission. 
The protocol compliance rates of dose coverage for the planning target volume of chest wall, supraclavicular fossa 
plus axilla, and IMN region (PTVim) were all significantly improved in the final submission, which were 96.2% vs. 69.2%, 
100% vs. 76.9%, and 88.4% vs. 53.8%, respectively. For OARs, the compliance rates of heart  Dmean, left anterior descend‑
ing coronary artery  V40Gy, ipsilateral lung  V5Gy, and stomach  V5Gy were significantly improved. In the first and final 
submission, the mean values of PTVim  V100% were 79.9% vs. 92.7%; the mean values of heart  Dmean were 11.5 Gy vs. 
9.7 Gy for hypofractionated radiation therapy and 11.5 Gy vs. 11.0 Gy for conventional fractionated radiation therapy, 
respectively.

Conclusion The major deviations were corrected and protocol compliance was significantly improved after revision, 
which highlighted the importance of planning benchmark case to guarantee the planning quality for multicenter 
trials.

Keywords Breast cancer, Radiation therapy, Internal mammary nodal irradiation, Multicenter trial, Quality assurance, 
Benchmark case

Background
Regional nodal irradiation has been proven to benefit 
breast cancer patients with positive axillary nodes, and 
with negative axillary nodes and high-risk features [1–4]. 
The internal mammary node (IMN) chain is an important 
first station of lymphatic drainage of breast cancer, but 
the value of IMN irradiation (IMNI) has not been defined 
in previous prospective studies [4–8]. Most patients 
enrolled in these studies received less systemic therapy 
or underwent two-dimensional radiotherapy (RT). The 
optimal subgroups that may benefit from IMNI with 
modern treatment should be identified in further studies. 
Therefore, we launched a multicenter, randomized, phase 
3 trial to evaluate postmastectomy radiation therapy 
(PMRT) with or without IMNI for patients with high-
risk, node-positive breast cancer (POTENTIAL trial, 
NCT04320979), which was approved by the ethics com-
mittee of the Cancer Hospital, Chinese Academy of Med-
ical Sciences (19/317–2101). This trial intends to enroll 
1800 patients during a 5-year period with the primary 
endpoint being disease-free survival; the detailed trial 
protocol has been previously published [9].

Pretrial quality assurance (QA) is very important in 
multicenter RT trials to guarantee uniform planning 
quality and enhance the reliability of outcomes [10–
12]. Some studies have shown that protocol violations 
adversely affect outcomes [13, 14]. IMNI would increase 
the complexity of RT plan, and it remains a big challenge 
for physicians to balance the target coverage and normal 
tissue sparing, especially for left-sided breast cancer [15]. 
Twenty-six institutions participated in this trial to guar-
antee the accrual sample size within an acceptable time 
period. Different radiation techniques were implemented 
in this trial, including electron beam, three-dimensional 
conformal RT (3DCRT), intensity-modulated RT (IMRT) 
and volumetric-modulated arc therapy (VMAT) [9]. 
IMRT and VMAT were rarely used in previous IMNI 

studies [6–8]. Therefore, it was essential to evaluate the 
potential heterogeneities and improve the planning qual-
ity before enrolling patients. In this trial, we performed 
a strict QA program including general credentialing, 
trial-specific credentialing, and individual case review. 
Target delineation and planning QA were performed in 
trial-specific credentialing. The results of target delinea-
tion QA have been previously reported [16]. The present 
study aimed to report the results of planning benchmark 
case to assess the plan design and protocol compliance of 
the participating institutions.

Methods and materials
Benchmark planning procedure
The benchmark case was a 42-year-old, non-smok-
ing, woman with left-sided breast cancer (stage IIIC, 
T2N3M0) after mastectomy and axillary node dissec-
tion followed by eight cycles of dose-dense chemo-
therapy. Surgical pathology showed grade 2, invasive 
ductal carcinoma with a tumor measuring 2.7 × 2.0  cm 
and the presence of lymphovascular invasion. Immuno-
histochemistry showed positive estrogen receptor and 
progesterone receptor, and negative human epidermal 
growth factor receptor-2; the ki-67 index was 30%. Of 23 
dissected lymph nodes, 17 showed metastases, with the 
presence of extracapsular extension and massive lympho-
vascular invasion. There was no manifestation of residual 
tumor, recurrence, or metastasis in work-up images prior 
to chemotherapy and RT.

For the benchmark planning, the patient was scanned 
in the supine position immobilized with a cervicotho-
racic thermoplastic mask with free breathing, and then 
the computed tomography (CT) dataset in the Digital 
Imaging and Communications in Medicine (DICOM) 
format was provided to participating institutions. The RT 
structures including clinical target volumes (CTVs), plan-
ning target volumes (PTVs), and organs at risk (OARs) 
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had been delineated by the QA team per protocol [16] to 
eliminate the dosimetric difference caused by delineation 
variability. We designed the contouring atlas by com-
prehensively referring to the Radiation Therapy Oncol-
ogy Group (RTOG), European Society for Radiotherapy 
and Oncology (ESTRO), and Radiotherapy Comparative 
Effectiveness (RADCOMP) atlas and the results of fail-
ure pattern-mapping studies [17–19]. Considering the 
high-risk recurrence of this cohort and rapid dose falloff 
of IMRT and VMAT, the contouring atlas was consider-
ably large. The PTV of chest wall (PTVcw); supraclavicu-
lar fossa plus axilla levels I, II, III (PTVsc + ax); and IMN 
region (PTVim) were generated from the corresponding 
CTV, with a 5-mm expansion in all directions, but lim-
ited to 5  mm beneath the skin surface for PTVsc + ax, 
PTVim, and PTVcw2 (without bolus), and limited to skin 
surface for PTVcw1 (with bolus). The OARs included 
heart, left anterior descending coronary artery (LADCA), 
both lungs, contralateral breast, spinal cord planning 
organ at risk volume (PRV), esophagus, ipsilateral bra-
chial plexus, ipsilateral shoulder joint, thyroid gland, 
liver, and stomach.

All participating institutions were requested to gener-
ate RT plans with IMRT or VMAT techniques with 6MV 
X-ray beams, because these modern techniques are com-
plicated and have not been routinely used for PMRT in 
some centers. The dose constraints per protocol are 
summarized in Table  1, which had been modified from 
our in-house recommendation and referred to literature 
regarding the low rates of toxicities under certain OAR 
dose constraints after IMRT and VMAT came into use 
[20, 21]. The prescribed dose was either 43.5  Gy in 15 
fractions over 3  weeks for hypofractionated RT (HFRT) 
or 50  Gy in 25 fractions over 5  weeks for conventional 
fractionated RT (CFRT) [22, 23]. The following plan-
ning guidelines were recommended. When multi-beam 
IMRT technique was applied, 4–6 coplanar beams close 
to the tangential direction were set up at the affected 
side to minimize lung irradiation, and one or more ante-
rior beams could be added to the supraclavicular and 
IMN regions to achieve optimum balance between tar-
get coverage and OARs sparing. For VMAT, partial arcs 
covering angles that extended slightly beyond the multi-
beam IMRT field setup could be used. Low-dose irradia-
tion to OARs should be strictly limited. Considering the 
set-up uncertainties, breathing, and possible anatomical 
changes, skin flash will be applied to IMRT and VMAT 
plans to expand the tangential beams or control points 
of 1.5–2  cm outside from the chest wall skin to ensure 
target coverage. The methods to achieve adequate cover-
age of “flash region” include using automatic skin-flash 
tool, virtual bolus, or robust optimization [24, 25]. The 

optimization and final dose calculation will be performed 
with inhomogeneity corrections.

The completed RT plans were submitted to the QA 
team for review. Meanwhile, other details such as treat-
ment planning system (TPS), dose prescription, treat-
ment technique, and beam information were provided. 
The qualified documents of the QA process of CT sim-
ulator, linear accelerator, image-guided RT, and TPS 
were also provided for general credentialing. If major 
deviations occurred in the submitted plans, detailed 
recommendations were sent back, and the participating 
institutions revised the plans until they were approved. 
The problems were also discussed during regular online 
workshops to improve the plan quality of all centers. 
For the finally approved plans, dosimetric verification of 
absolute dose distribution was performed by each insti-
tution and the passing rate was required to be ≥ 90%, 
based on the gamma criteria of 3%/3 mm and 10% dose 
threshold.

Dosimetric analysis
The DICOM files of submitted plans were imported into 
MIM software (Cleveland, OH) for review. All plans were 
reviewed by at least one experienced radiation oncolo-
gist and one specialized dosimetrist in the QA team. The 
plans were evaluated regarding the homogeneity and 
conformality of PTV, dose to OARs, beams arrangement, 
skin flash, inhomogeneity corrections, space for improve-
ment, and the results of dosimetric verification. Major 
deviations such as inappropriate beam arrangement were 
defined by the radiation oncologists and dosimetrists 
during review. The protocol compliance and the actual 
value of each parameter were assessed in the first and 
final submission, respectively. Statistical analyses were 
computed using SPSS 22.0 (IBM Corporation, Armonk, 
NY, USA). Mc-Nemar test was used for paired differ-
ences between the first and final submission. Two-sided 
P < 0.05 indicated statistically significances.

Results
A total of 26 institutions (Additional file 1: Table A) par-
ticipated in the planning benchmark case; among these, 
all submitted first plans and 22 institutions resubmitted 
revised versions. The details of TPS, fraction regimen, 
radiation technique, use of skin flash, and the number of 
beams or arcs are shown in Table 2. The dose calculation 
was performed with inhomogeneity corrections in all 
plans. As shown in Table 3, some major deviations were 
found in the first submission. They were corrected in the 
revised submission. Examples of dose distributions of the 
final plans are shown in Fig. 1.
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The number and ratio of plans that met the optimal 
and acceptable criteria are summarized in Table  4. The 
dosimetric results compared with the dose constraints 
are shown in Fig.  2. Actual dosimetric data with HFRT 
or CFRT regimen are shown in (Additional file 1: Table 
B and C), respectively. For target volumes, the opti-
mal plus acceptable rates of dose coverage for PTVcw, 
PTVsc + ax, and PTVim  (V100%) were all significantly 

improved in the final submission compared to first sub-
mission, which were 96.2% vs. 69.2% (P = 0.016), 100% vs. 
76.9% (P = 0.031), and 88.4% vs. 53.8% (P = 0.012), respec-
tively (Table 4, Fig. 2 A and D). In the final submission, 
the PTVcw  V100% of the only one plan that did not meet 
the acceptable criteria was 88.4%; the PTVim  V100% of 
the three plans that did not satisfy the acceptable criteria 
were 82.9%, 85.7%, and 86.6%, and the  V90% values were 

Table 1 Dose constraints for target volumes and organs at risk in the POTENTIAL trial

HFRT, hypofractionated radiotherapy; CFRT, conventional fractionated radiotherapy; PTVcw, chest wall planning target volume; PTVsc, supraclavicular planning target 
volume; PTVax, axilla planning target volume; PTVim, internal mammary nodal planning target volume; IMNI, internal mammary nodal irradiation; Vx, the relative 
volume irradiated to a minimum dose x Gy; Dmax, maximal dose; Dmean, mean dose; LADCA, left anterior descending coronary artery; RCA, right coronary artery; 
PRV, planning organs at risk volume
* Patients treated with photon-based intensity modulated technique to all target volumes
† Patients treated with electron beam therapy to the chest wall ± IMN

Dose parameters Optimal Acceptable

HFRT CFRT HFRT CFRT

Target volumes

PTVcw* Target volume coverage  (V100%)  ≥ 95%  ≥ 95%  ≥ 90%  ≥ 90%

Hot spot dose Dmax < 52 Gy Dmax < 60 Gy V120% < 1 cc V120% < 1 cc

Dose uniformity  (V110%)  < 25%  < 25%  < 30%  < 30%

PTVsc/PTVax* Target volume coverage  (V100%)  ≥ 95%  ≥ 95%  ≥ 90%  ≥ 90%

Hot spot dose Dmax < 52 Gy Dmax < 60 Gy V120% < 1 cc V120% < 1 cc

Dose uniformity  (V110%)  < 25%  < 25%  < 30%  < 30%

PTVim for IMNI group Target volume coverage  (V100%)*  ≥ 95%  ≥ 95%  ≥ 90%  ≥ 90%

Target volume coverage  (V90%)† V40 ≥ 90% V45 ≥ 90% V40 ≥ 85% V45 ≥ 85%

Hot spot dose* Dmax < 52 Gy Dmax < 60 Gy V120% < 1 cc V120% < 1 cc

Dose uniformity  (V110%)*  < 25%  < 25%  < 30%  < 30%

Organs at risk

Heart (left‑sided tumor) Dmean  < 8 Gy  < 10 Gy  < 10 Gy  < 12 Gy

V5  < 45%  < 50%  < 50%  < 55%

Heart (right‑sided tumor) Dmean  < 5 Gy  < 6 Gy  < 6 Gy  < 8 Gy

V5  < 30%  < 35%  < 35%  < 40%

Left anterior descending coronary artery V40  < 20%  < 20%  < 25%  < 25%

Right coronary artery V40  < 20%  < 20%  < 25%  < 25%

Ipsilateral lung Dmean  < 15 Gy  < 15 Gy  < 16 Gy  < 16 Gy

V20  < 30%  < 30%  < 32%  < 35%

V5  < 55%  < 55%  < 60%  < 60%

Contralateral lung V5  < 20%  < 20%  < 25%  < 25%

Contralateral breast Dmean  < 5 Gy  < 5 Gy  < 8 Gy  < 8 Gy

Spinal cord PRV Dmax  < 30 Gy  < 40 Gy  < 32 Gy  < 45 Gy

Esophagus Dmax  < 48 Gy  < 55 Gy  < 50 Gy  < 58 Gy

Brachial plexus Dmax  < 48 Gy  < 55 Gy  < 50 Gy  < 58 Gy

Ipsilateral shoulder joint V30  < 30%  < 30%  < 35%  < 35%

Thyroid gland Dmean  < 28 Gy  < 30 Gy  < 32 Gy  < 35 Gy

Liver (left‑sided tumor) V5  < 10%  < 10%  < 15%  < 15%

Liver (right‑sided tumor) V5  < 25%  < 25%  < 30%  < 30%

Stomach (left‑sided tumor) V5  < 25%  < 25%  < 30%  < 30%

Stomach (right‑sided tumor) V5  < 10%  < 10%  < 15%  < 15%



Page 5 of 12Song et al. Radiation Oncology          (2023) 18:194  

97.4%, 95.1%, and 96.8%, respectively. In the first and 
final submission, the mean values of PTVim  V100% were 
79.9% and 92.7%.

For OARs, the optimal plus acceptable rates of heart 
 Dmean, ipsilateral lung  V5Gy, and stomach  V5Gy were sig-
nificantly improved in the final submission compared 
to the first submission, which were 100% vs. 73.1% 
(P = 0.016), 92.3% vs. 65.4% (P = 0.016), and 92.3% vs. 
53.8% (P = 0.002), respectively (Table  4, Fig.  2B, C, E, 
and F). In the first and final submission, the mean val-
ues of heart  Dmean were 11.5 Gy vs. 9.7 Gy for HFRT and 
11.5  Gy vs. 11.0  Gy for CFRT, respectively (Additional 
file 1: Table B and C). Although the protocol compliance 
of LADCA  V40Gy was significantly enhanced, it was still 
low after revision at only 65.4%.

For dosimetric verification, all institutions reported > 90% 
gamma passing rate (median: 96.9% [range: 90.9–100%]).

Discussion
To our best knowledge, this is the first study to evalu-
ate the IMRT and VMAT plans regarding regional nodal 
irradiation including IMNI in the planning benchmark 
case, and is also the first study to compare the first and 
revised plans before enrolling patients. The results 
showed that a number of major deviations were found in 
the first submission. After revision, the major deviations 
were corrected; the protocol compliance was significantly 
improved and was of high level; and the inter-institu-
tional consistency of planning quality was achieved in the 
revised plans in the benchmark case.

Some previous studies showed that a variety of poten-
tial protocol deviations and heterogeneities were always 
detected in the pretrial benchmark case, and many of 
them could be improved during actual patient enrollment 
[26–30]. In the current study, some deviations were found 
in the first submitted plans and were corrected by timely 
review and feedback. Almost all of the dose parameters 
were improved and inter-institutional variations were 
decreased after revision as shown in Fig. 2, guaranteeing 
the planning quality and its uniformity. Similarly, in the 
EORTC AMAROS trial 10,981/22023, the protocol devi-
ations found in the benchmark case were considerably 
improved at 18  months after the trial started by adapt-
ing the recommendations from the QA committee, and 
inter-institutional conformance was achieved [31]. Fur-
thermore, the QA program in the EORTC 22922/10925 
trial showed that the number of deviations found in the 
individual case review was substantially less than that 
in the benchmark case [27, 30]. In the previous QA pro-
grams on PMRT, either two-dimensional RT or 3DCRT 

Table 2 Summary of the treatment planning system, fraction 
regimen, radiation technique, use of skin flash, and radiation 
beams/arcs for the benchmark case

HFRT, hypofractionated radiotherapy; CFRT, conventional fractionated 
radiotherapy; IMRT, intensity-modulated radiation therapy; VMAT, volumetric 
modulated arc therapy; NA, not available

First submission 
(n = 26)

Final submission 
(n = 26)

P value

No. (%) No. (%)

Treatment planning system

Pinnacle 8 (30.8) 8 (30.8) 0.572

Eclipse 11 (42.3) 10 (38.5)

Monaco 4 (15.4) 5 (19.2)

Raystation 3 (11.5) 3 (11.5)

Fraction regimen

HFRT 5 (19.2) 10 (38.5) 0.063

CFRT 21 (80.8) 16 (61.5)

Radiation technique

IMRT 16 (61.5) 12 (46.2) 0.219

VMAT 10 (38.5) 14 (53.8)

Use of skin flash 21 (80.8) 26 (100.0) NA

Number of beams/arcs

IMRT NA

6 1 (3.8) 0

7 4 (15.4) 2 (7.7)

8 4 (15.4) 4 (15.4)

9 5 (19.2) 5 (19.2)

10 1 (3.8) 1 (3.9)

11 1 (3.8) 0

VMAT NA

2 5 (19.2) 7 (26.9)

3 3 (11.5) 3 (11.5)

4 2 (7.7) 2 (7.7)

5 0 2 (7.7)

Table 3 Summary of major deviations that occurred in the 26 
first submitted plans

Major deviations No. (%)

Inappropriate beam arrangement 4 (15.4)

No application of chest wall skin flash 5 (19.2)

Insufficient dose coverage of PTV 12 (46.2)

Hot spot dose inside PTV or large volume of  V110% 5 (19.2)

High‑dose region occurred outside PTV 3 (11.5)

Insufficient constraint on  V5Gy of OARs 12 (46.2)

No constraint on ipsilateral shoulder joint  V30Gy 2 (7.7)

High spinal cord PRV Dmax 1 (3.8)

Insufficient dose constraint on ipsilateral lung 1 (3.8)
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technique was always used [31–34]. However, IMRT and 
VMAT were used in all plans during our benchmark case. 
For the large volume irradiation including chest wall and 
regional lymph nodes simultaneously with IMNI, the 
plan design was highly complicated; for example, many 
fields (sometimes ≥ 10) were necessary for multi-beam 
IMRT and should be reasonably arranged to achieve dose 

homogeneity and conformity [35, 36]. Because the most 
common chest wall recurrence site is the skin and sub-
cutaneous tissues anterior to the pectoralis muscles [37, 
38], the use of skin flash was recommended for IMRT 
and VMAT, which could be solved by different methods 
[24, 25]. However, the skin flash was not applied in five 
first submitted plans and were corrected after feedback, 

Fig. 1 Examples of dose distributions in the final submitted IMRT or VMAT plan with HFRT or CFRT regimen. A IMRT with HFRT; B VMAT with HFRT; 
C IMRT with CFRT; D VMAT with CFRT. The blue line represents CTV of supraclavicular and axilla region (CTVsc + ax); the green line represents 
PTVsc + ax; pink line represents CTV of chest wall (CTVcw); the sky‑blue line represents PTVcw; the purple line represents CTV of internal mammary 
node region (CTVim); and the forest green line represents PTVim
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which should be noted for patients enrolled in the future. 
In addition, inhomogeneity correction was an important 
step during plan design to obtain more accurate dose cal-
culation [39], which was applied in all plans in our study.

In our study, the case used for the benchmark planning 
had a considerably large irradiated volume with left-sided 
breast cancer, including chest wall, supraclavicular fossa, 
axilla levels I-III, and IMN region, for which the plan 
design was very difficult. Various optimization strategies 
were used by the dosimetrists. In the first submission, 
insufficient target coverage, hot spot dose, and dose inho-
mogeneity in PTV were common major deviations. The 
protocol compliance rates were all low for first PTVcw, 
PTVsc + ax, and PTVim  V100% that were significantly 

improved to 96.2%, 100.0%, and 88.5% after revision, 
respectively. Though the acceptable rate of PTVim  V100% 
was lower than that of other targets due to heart and lung 
sparing, the PTVim  V90% of three plans that did not sat-
isfy the dose constraint were 97.4%, 95.1%, and 96.8%, 
which met the criteria of electron beam and were higher 
than the CTVim  V90% of 86.9% in the DBCG-IMN study 
using two-dimensional RT technique [40]. In addition, 
although the hot-spot dose and dose uniformity con-
straint of PTV  V110% < 25% seemed to be permissive, the 
actual mean values of hot-spot doses were 49.9–51.1 Gy 
and 57.4–58.9  Gy, and those of the PTV  V110% were 
4.5–5.8% and 8.0–12.1% for HFRT and CFRT regimens, 
respectively, which were acceptable.

Table 4 Protocol compliance of target volumes and organs at risk in the first and final submission

PTVcw, chest wall planning target volume; PTVsc + ax, supraclavicular fossa plus axilla levels I, II, III planning target volume; PTVim, internal mammary nodal planning 
target volume; NA, not available; LADCA, left anterior descending coronary artery; PRV, planning organs at risk volume; Vx, the relative volume irradiated to a 
minimum dose x Gy; Dmean, mean dose; Dmax, maximal dose
‡ Comparison of the optimal plus acceptable rates between first and final submission

Target 
volumes/ 
Organs at risk

Dose 
parameters

First submission (n = 26) Final submission (n = 26) P  value‡

Optimal No. 
(%)

Acceptable 
No. (%)

Optimal plus 
acceptable 
No. (%)

Optimal No. 
(%)

Acceptable 
No. (%)

Optimal plus 
acceptable 
No. (%)

PTVcw V100% 7 (26.9) 11 (42.3) 18 (69.2) 11 (42.3) 14 (53.8) 25 (96.2) 0.016

Dmax/V120% 20 (76.9) 4 (15.4) 24 (92.3) 15 (57.7) 10 (38.5) 25 (96.2) 1.000

V110% 23 (88.5) 2 (7.7) 25 (96.2) 23 (88.5) 3 (11.5) 26 (100.0) 1.000

PTVsc + ax V100% 15 (57.7) 5 (19.2) 19 (76.9) 13 (50.0) 13 (50.0) 26 (100.0) 0.031

Dmax/V120% 23 (88.5) 3 (11.5) 26 (100.0) 24 (92.3) 2 (7.7) 26 (100.0) NA

V110% 23 (88.5) 2 (7.7) 25 (96.2) 22 (84.6) 3 (11.5) 25 (96.2) 1.000

PTVim V100% 9 (34.6) 5 (19.2) 14 (53.8) 8 (30.8) 15 (57.7) 23 (88.5) 0.012

Dmax/V120% 24 (92.3) 2 (7.7) 26 (100.0) 25 (96.2) 1 (3.8) 26 (100.0) NA

V110% 24 (92.3) 0 24 (92.3) 24 (92.3) 1 (3.8) 25 (96.2) 1.000

Heart Dmean 4 (15.4) 15 (57.7) 19 (73.1) 2 (7.7) 24 (92.3) 26 (100.0) 0.016

V5Gy 17 (65.4) 3 (11.5) 20 (76.9) 22 (84.6) 3 (11.5) 25 (96.2) 0.125

LADCA V40Gy 3 (11.5) 7 (26.9) 10 (38.5) 7 (26.9) 10 (38.5) 17 (65.4) 0.039

Ipsilateral lung Dmean 11 (42.3) 8 (30.8) 19 (73.1) 14 (53.8) 8 (30.8) 22 (84.6) 0.250

V20Gy 12 (46.2) 13 (50.0) 25 (96.2) 17 (65.4) 9 (34.6) 26 (100.0) 1.000

V5Gy 9 (34.6) 8 (30.8) 17 (65.4) 11 (42.3) 13 (50.0) 24 (92.3) 0.016

Contralateral 
lung

V5Gy 20 (76.9) 4 (15.4) 24 (92.3) 21 (80.8) 4 (15.4) 25 (96.2) 1.000

Contralateral 
breast

Dmean 20 (76.9) 6 (23.1) 26 (100.0) 23 (88.5) 3 (11.5) 26 (100.0) NA

Spinal Cord PRV Dmax 22 (84.6) 3 (11.5) 25 (96.2) 26 (100.0) 0 26 (100.0) 1.000

Esophagus Dmax 21 (80.8) 5 (19.2) 26 (100.0) 23 (88.5) 3 (11.5) 26 (100.0) NA

Ipsilateral Bra‑
chial plexus

Dmax 13 (50.0) 11 (42.3) 24 (92.3) 9 (34.6) 15 (57.7) 24 (92.3) 1.000

Ipsilateral shoul‑
der joint

V30 12 (46.2) 4 (15.4) 16 (61.5) 16 (61.5) 5 (19.2) 21 (80.8) 0.125

Thyroid gland Dmean 15 (57.7) 9 (34.6) 24 (92.3) 16 (61.5) 9 (34.6) 25 (96.2) 1.000

Liver V5 21 (80.8) 2 (7.7) 23 (88.5) 26 (100.0) 0 26 (100.0) NA

Stomach V5 10 (38.5) 4 (15.4) 14 (53.8) 18 (69.2) 6 (23.1) 24 (92.3) 0.002
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Fig. 2 The boxplots for the dosimetric results of target volumes and organs at risk in first and final submission. HFRT: A‑C; CFRT: D‑F. Abbreviations: 
PTVcw, chest wall planning target volume; PTVsc + ax, supraclavicular fossa plus axilla levels I, II, III planning target volume; PTVim, internal mammary 
nodal planning target volume; LADCA, left anterior descending coronary artery; PRV, planning organs at risk volume; Vx, the relative volume 
irradiated to a minimum dose x Gy; Dmean, mean dose; Dmax, maximal dose
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Given that increased radiation-induced heart and lung 
injury were the main concerns for IMNI [41, 42], more 
attention should be paid to heart and lung dose, espe-
cially for left-sided breast cancer. In our study, the pro-
tocol compliance of heart and lung  Dmean was improved 
after revision. The mean value of heart  Dmean was 11.0 Gy 
with CFRT in our study, while it was 5.2 Gy in the bench-
mark case of the KROG 0806 trial. In contrast to IMRT 
or VMAT used in our study, partially wide tangent field 
and reverse hockey stick techniques were used in the 
KROG 0806 trial [34]. LADCA was a key substructure 
associated with radiation-induced cardiac damage [43]. 
Although the protocol compliance of LADCA  V40Gy was 
significantly improved, it was only 65.4% in the final sub-
mission. The high dose to the heart and LADCA was 
mainly attributed to inclusion of IMNI and the close 
proximity of the heart to the target in this case, which is 
not uncommon in our practice. A systematic review of 
heart doses showed that irradiating the IMN approxi-
mately doubled the mean heart dose (MHD) in left-sided 
breast cancer (8.4  Gy vs. 4.2  Gy). Meanwhile, women 
with unfavorable anatomy received higher heart dose 
since small differences in the anatomy of the heart’s loca-
tion can substantially affect heart dose [44]. The other 
systematic review of heart dose in breast RT showed that 
Asian countries reported the highest MHD for left-sided 
RT among the four continents (6.2  Gy vs. 2.8–3.9  Gy), 
probably partially because of differences in anatomy 
[45]. Darby et  al. reported that if the MHD was 10  Gy 
for a 50-year-old woman, her absolute risk of death from 
ischemic heart disease would increase from 1.9% to 3.4% 
[46], which might compromise the potential gains from 
IMNI [7, 47]. Therefore, individualized cardiac-sparing 
techniques, such as deep inspiration breath hold, are 
encouraged for actual enrolled cases with high predicted 
heart dose, to reduce the exposure dose [48, 49]. The pre-
sent study showed acceptable lung dose, with the mean 
ipsilateral lung  V20Gy in CFRT regimen being lower than 
that in the KROG 0806 trial (29.4% vs. 34.6%) [34].

It is worth noting that the use of multi-beam IMRT 
and VMAT improves homogeneity and conformity at the 
expense of extending low-dose spread [35, 50], which was 
an easily ignored predictor for toxicities, such as radia-
tion pneumonitis, digestive symptoms, second cancer, or 
lymphopenia [51–54]. Insufficient constraint on low-dose 
spread was one of the most common major deviations in 
our study. The protocol compliance rates of heart, ipsi-
lateral lung, and stomach  V5Gy in the first plans were 
unsatisfactory mainly because the dosimetrists lacked 
experience with a less strict limit on relevant optimiza-
tion parameters. In addition, there was much room for 
improvement for the low-dose radiation to contralateral 
lung, contralateral breast, and liver in the first submission 

despite the majority of them showing protocol compli-
ance. These were improved subsequently and the varia-
tions were reduced by stricter optimization strategy after 
revision. The ipsilateral shoulder joint  V30Gy was also an 
easily overlooked parameter relating to shoulder joint 
dysfunction, which was also improved. All final plans’ 
dosimetric verification met the gamma criteria, sug-
gesting that they could be implemented safely in clinical 
practice.

This study has some limitations. First, there was only 
one benchmark case in this QA procedure, and the large 
irradiated volume and left-sided tumor resulted in diffi-
culties for plan design, which might be unrepresentative, 
but was effective to improve the ability of dosimetrists in 
individual institutions. Second, owing to the close prox-
imity between the IMN and chest wall, the unintentional 
IMN dose in the non-IMNI group is an important focus, 
which might affect the trial results. However, no bench-
mark case was provided for non-IMNI planning, and the 
unintentional IMN dose was not evaluated in this study, 
which would be assessed in individual case review. Third, 
electron beams were not used in this benchmark case; 
therefore, careful QA is warranted in subsequent indi-
vidual case review for the actual enrolled patients. Last, 
the protocol compliance in other follow-up cases was 
not evaluated in this paper. We will report the results of 
subsequent individual case review in the near future and 
reflect upon the fact that this benchmark planning pro-
cedure provided a meaningful contribution to improving 
the plan qualities for actual enrolled patients.

Conclusions
In this planning benchmark case, a number of major 
deviations were found in the first submission, and they 
were corrected after revision. The protocol compliance 
was significantly improved and was of high level in the 
final submission. The reduced variations will guarantee 
good RT plan quality and its inter-institutional consist-
ency. The benchmark case results provided a valuable 
insight into the importance of pretrial QA, continuous 
education, communication through regular workshops, 
real-time central review, and feedback in multi-center 
clinical trials.
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