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Abstract 

Background To develop and validate radiomics models for prediction of tumor response to neoadjuvant therapy 
(NAT) in patients with locally advanced rectal cancer (LARC) using both pre-NAT and post-NAT multiparameter mag-
netic resonance imaging (mpMRI).

Methods In this multicenter study, a total of 563 patients were included from two independent centers. 453 patients 
from center 1 were split into training and testing cohorts, the remaining 110 from center 2 served as an external 
validation cohort. Pre-NAT and post-NAT mpMRI was collected for feature extraction. The radiomics models were con-
structed using machine learning from a training cohort. The accuracy of the models was verified in a testing cohort 
and an independent external validation cohort. Model performance was evaluated using area under the curve (AUC), 
sensitivity, specificity, positive predictive value, and negative predictive value.

Results The model constructed with pre-NAT mpMRI had favorable accuracy for prediction of non-response to NAT 
in the training cohort (AUC = 0.84), testing cohort (AUC = 0.81), and external validation cohort (AUC = 0.79). The 
model constructed with both pre-NAT and post-NAT mpMRI had powerful diagnostic value for pathologic complete 
response in the training cohort (AUC = 0.86), testing cohort (AUC = 0.87), and external validation cohort (AUC = 0.87).

Conclusions Models constructed with multiphase and multiparameter MRI were able to predict tumor response 
to NAT with high accuracy and robustness, which may assist in individualized management of LARC.
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Introduction
Rectal cancer (RC) is one of the most common malignant 
tumors in the digestive tract [1], with 70% of cases being 
locally advanced rectal cancer (LARC) [2]. Preoperative 
neoadjuvant therapy (NAT) has been considered as a 
standard treatment regimen for LARC [3]. Nevertheless, 
some patients do not benefit from preoperative NAT or 
even show disease progression after NAT [4]. For these 
patients, a more tailored treatment strategy should be 
adopted to avoid the unnecessary toxicity of radiation 
and chemotherapy [5]. Thus, it is critical to identify reli-
able biomarkers to predict patients with non-response to 
NAT before its administration for personalized therapy. 
Approximately 15–27% of patients with LARC achieve 
pathologic complete response (pCR) after NAT [6]; for 
these patients, organ-preserving and function-preserving 
strategies, such as local excision and watch-and-wait, 
might be an alternative treatment method, which shows 
no significant difference from radical resection in 3-year 
overall survival [7]. Meanwhile, radical resection had 
been reported to have a long-term impact on anorec-
tal, urinary, and sexual function in patients with LARC, 
which in turn resulted in poor quality of life for these 
patients [8]. Therefore, it is also crucial to stratify patients 
with pCR after NAT but before surgical section in order 
to take a watch-and-wait approach to avoid unnecessary 
surgery.

Tumor heterogeneity remains the major factor hinder-
ing accurate identification of tumor response to NAT 
[9]. Many studies have attempted to explore serological 
or genetic biomarkers for early prediction of response to 
NAT, but robust biomarkers have not yet been found [10, 
11]. Magnetic resonance imaging (MRI) is recommended 
as a noninvasive method for evaluating therapeutic 
response [12]. Studies have shown that multiparam-
eter MRI (mpMRI) data, such as T2-weighted imaging 
(T2WI), diffusion-weighted imaging (DWI), and dynamic 
contrast-enhanced imaging (DCE), possess diverse diag-
nostic information for assessing therapeutic response 
to NAT in LARC patients [13–15]. However, their per-
formances are limited by insufficient information and 
interobserver variability [16]. Therefore, it is necessary to 
extract more information from image-based features.

Radiomics, as a computer-aided approach to analyz-
ing medical images, could effectively improve accuracy in 
detection and triage [17], precision diagnosis [18], evalu-
ating treatment response [19], and predicting prognosis 
[20] by extracting minable features related to tumor het-
erogeneity [21, 22]. Recently, radiomics has been widely 
used to predict treatment response and to assess pCR for 
LARC patients [19, 23, 24]. Using pretreatment mpMRI, 
Zhou et  al. built a radiomics model to identify LARC 
patients with non-response to NAT. Although their 

model performed well in their testing group (AUC of 
0.77, 95% confidence interval of 0.61–0.94), the general-
izability of their model is limited due to the single-center 
data collection [23]. Based on post-NAT mpMRI, Shin 
et al. successfully constructed a prediction model for pCR 
in LARC patients after NAT but before radical resection; 
they obtained a powerful predictive value in recognizing 
pCR, but their study was also limited by potential risks of 
overfitting due to the lack of external independent valida-
tion and failing to include pre-NAT MRI data [24], which 
may provide comprehensive information on tumor het-
erogeneity [22].

To resolve these limitations, in the present study, we 
recruited relatively large samples from two independent 
centers to (1) construct a multiparameter MRI model 
(Model_NoRes_NAT) with a pre-NAT multiparameter 
MRI signature to predict non-response to NAT before its 
administration in LARC patients; (2) build a multiphase 
and multiparameter MRI model (Model_pCR) based on 
both pre-NAT and post-NAT MRI data to recognize pCR 
in LARC patients after NAT but before surgical resection.

Materials and methods
Patients
This retrospective study was conducted in accordance 
with the Declaration of Helsinki and was approved by 
the local institutional review board. The requirements for 
informed consent were waived because of the retrospec-
tive design.

A total of 704 patients with LARC were retrospec-
tively recruited from two institutions in China, includ-
ing 539 patients from *BLINDED* (Center 1) and 165 
patients from *BLINDED* (Center 2). The detailed inclu-
sion/exclusion criteria are illustrated in Additional file 1: 
Fig. S1.

MRI protocol
All patients underwent mpMRI scans within 1  week 
before NAT and/or within 1  week before surgery 
(defined as pre- and post-NAT MRI, respectively). MRI 
sequences included T2WI, DWI, and contrast-enhanced 
T1-weighted imaging (CE-T1WI). Details in the Addi-
tional file 1: Table S1.

Neoadjuvant therapy
All eligible participants had been previously treated 
with standard NAT (5-fluorouracil-based chemotherapy 
orally or intravenously with or without concurrent radi-
otherapy delivered at 50  Gy/25 times/5  weeks for gross 
tumor volume and clinical tumor volume 45–46  Gy/25 
times/5  weeks). Total mesorectal excision (TME) was 
performed within 6–8 weeks after completion of NAT.
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Pathological assessment of response
Pathologic response after NAT was reassessed based 
on resection specimens by an experienced patholo-
gist and was further reviewed by a dedicated gastro-
intestinal pathologist, both of whom were blinded to 
the MRI data. Pathologic grading of primary tumor 
regression was conducted according to the Mandard’s 
tumor regression grade (TRG) system [25]. According 
to Mandard’s TRG system, patients were categorized 
into response to NAT with TRG 1–3 [26], while pCR 
was defined as the absence of viable tumor cells in the 
primary tumor (TRG 1) [24].

MRI assessment
The MRI-based tumor regression grade (mrTRG) was 
assessed by a radiologist with dedicated experience in 
rectal cancer imaging based on a five-point system [27]. 
We defined mrTRG 1 as pCR and 2–5 as non-pCR.

Tumor segmentation and feature extraction
All radiomics analyses were conducted with the Darwin 
research platform (https:// arxiv. org/ abs/ 2009. 00908), 
which included tumor segmentation, feature extraction, 
and model construction. Tumor contour was manually 
delineated slice-by-slice on all sequences and features 
were extracted by Pyradiomics software. Intra-class 
correlation coefficients (ICCs) were calculated to evalu-
ate reproducibility of features [28].

mpMRI‑based radiomics model construction 
for predicting non‑response to NAT
Eligible patients from center 1 were randomly split 
into a training cohort and testing cohort at a ratio of 
8:2. Min–max normalization was performed to make 
features comparable and to obtain the effect of reduc-
ing the prediction error and training time. To reduce 
overfitting, three feature selection steps were per-
formed. First, a two-sample t test was used for initial 
selection; next, the least absolute shrinkage and selec-
tion operator (LASSO) algorithm was applied to fur-
ther select robust and non-redundant features, and 
the optimal adjustment parameters were determined 
by tenfold cross-validation; finally, we used a recursive 
feature selection support vector machine (Ref-SVM) 
to identify key features. Due to unbalanced sampling 
between the non-responder and responder groups, the 
cost-sensitive learning method was utilized to address 
the balance by strongly penalizing mistakes in the non-
responder group [29]. Thereafter, a multiparameter 
MRI model (Model_NoRes_NAT) was constructed with 
the selected features for predicting non-responders to 
NAT using the linear kernel support vector machine 

algorithm in the training cohort. The performance 
of the multiparameter MRI model was initially evalu-
ated in the internal testing cohort and then validated in 
the independent external validation cohort by receiver 
operating characteristic (ROC) curve analysis. For 
comparisons, three single-sequence prediction mod-
els, which were based on imaging features derived from 
pre-NAT T2WI (T2WI model), DWI (DWI model), 
and CE-T1WI (CE model), were also developed using 
a similar method. The radscore was calculated for all 
patients using the radiomic score formula derived from 
the training cohort to verify the classification perfor-
mance of models.

Multiphase mpMRI‑based radiomics model 
construction for evaluating pCR
We constructed four different models for prediction of 
pCR based on features from mrTRG, pre-NAT multipa-
rameter MRI, post-NAT multiparameter MRI alone or 
in combination of both pre-NAT and post-NAT multipa-
rameter MRI. Firstly, similar feature selection strategies 
were performed for the pre-NAT and post-NAT multipa-
rameter MRI. Thereafter, a multiphase and multiparame-
ter MRI radiomics model (Model_pCR) was constructed 
for the noninvasive assessment of pCR using the linear 
kernel SVM algorithm. Two single phase models (pre-
NAT model and post-NAT model), and one mrTRG 
model (model constructed with mrTRG) were also con-
structed and for further comparisons. ROC curve analy-
sis was utilized to assess the performance of radiomics 
models in the testing cohort and in the external inde-
pendent validation cohort. Concurrently, radscore was 
also calculated for all patients using the radiomic score 
formula derived from the training cohort.

Statistical analysis
ROC curve analysis was used to determine the diagnostic 
accuracy of models in the training cohort, testing cohort, 
and external validation cohort. Accuracy (ACC), positive 
predictive value (PPV), negative predictive value (NPV), 
sensitivity, specificity, the area under the receiver operat-
ing characteristic curve (AUC), and the corresponding 
95% confidence interval (CI) were utilized to evaluate 
predictive performance. The calibration curve detected 
the goodness of fit between the prediction and the actu-
ality. Decision curve analysis (DCA) represented the 
clinical net benefits brought by the model. The DeLong 
test was used to compare AUCs of different models. The 
t test or Mann–Whitney U test was used for continuous 
variables, and the χ2 test or Fisher test was used for cat-
egorical variables. A two-tailed P-value of < 0.05 was con-
sidered significant. All statistical analysis was conducted 

https://arxiv.org/abs/2009.00908
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with R software (version 3.4.0, http:// www.R- proje ct. org) 
and IBM SPSS Statistics (version 25.0).

Results
Clinical characteristics
A total of 563 patients who fulfilled the inclusion cri-
teria (for construction of Model_NoRes_NAT) were 
finally included in the present study; then, 362 patients 
from center 1 were included in the training cohort, 91 
patients from center 1 were included in the internal test-
ing cohort, and 110 patients from center 2 served as the 
independent external validation cohort. Out of the 563 
patients, 476 fulfilled the inclusion criteria for construc-
tion of Model_pCR; a total of 292 patients from center 
1 were included in the training cohort, 74 patients from 
center 1 were included in the internal testing cohort, and 
110 patients from center 2 served as the independent 
external validation cohort. Detailed clinical characteris-
tics of patients are summarized in Table 1 and Additional 
file 1: Tables S2 and S3.

Intra‑ and inter‑observer reproducibility 
evaluation
Satisfactory intra-observer and inter-observer reproduc-
ibility was acquired for the tumor segmentation and the 
extraction of imaging features (ICCs > 0.6).

Performance of mpMRI radiomics model
After a strict feature selection strategy, 20 imaging 
features (including 12 T2WI features, 4 DWI features, 
and 4 CE-T1WI features) were selected from pre-NAT 
mpMRI to construct Model_NoRes_NAT for predic-
tion of non-response to NAT (detailed features can 
be found in Additional file  1: Table  S4). As shown in 
Fig.  1a, Model_NoRes_NAT had good performance in 
predicting non-response to NAT in the testing cohort 
(AUC 0.81, 95% CI 0.70–0.91) and independent exter-
nal validation cohort (AUC 0.79, 95% CI 0.67–0.91). 
The sensitivity was 70.6, 78.3 and specificity was 79.7, 
71.3 for the testing cohort and the external validation 
cohort, respectively. The NPV (92.2 and 92.5 for testing 
and external validation cohort, respectively) was rela-
tively superior to the PPV (44.4 and 41.9 for testing and 
external validation cohort, respectively), which may 
be due to the disproportionate rate of non-responders 
in our study population (Table  2). The AUC values of 
the T2WI, DWI, and CE-T1WI models for predicting 
non-responders to NAT were 0.72 (95% CI 0.59–0.85), 
0.63 (95% CI 0.49–0.76), and 0.69 (95% CI 0.53–0.85), 
respectively, in the testing cohort and 0.68 (95% CI 
0.55–0.80), 0.61 (95% CI 0.49–0.74), and 0.43 (95% CI 
0.29–0.56) in the external validation cohort (Fig.  1b–
c, Additional file  1: Table  S5). Compared with three 

single-sequence models, Model_NoRes_NAT yielded 
higher AUC in the prediction of non-responders to 
NAT in the two validation cohorts (Additional file  1: 
Table S6). The overall distribution of radscore was obvi-
ously different between responders and non-responders 

Table 1 Clinical and treatment characteristics for all patients

Unless otherwise specified, data are numbers of patients, with percentages 
in parentheses. * Data are means ± standard deviations. Clinical stage was 
based on pretreatment computed tomography of the chest and abdomen and 
pelvis magnetic resonance imaging, according to the 8th edition of the AJCC 
Staging Manual. LN status was defined by case. Tumor location was categorized 
based on distance from the anorectal verge: < 5 cm, 5–10 cm, and > 10 cm. 
The pretreatment CEA and CA199 level were tested within one week before 
neoadjuvant therapy. CEA, carcinoembryonic antigen; CA199, carbohydrate 
antigen-199

Center 1 (n = 453) Center 2 (n = 110)

Age (years, mean ± SD) * 55.34 ± 11.12 59.2 ± 10.6

Sex (%)

Male 299 (66.0%) 85 (77.3%)

Female 154 (34.0%) 25 (22.7%)

Clinical stage (%)

II 93 (20.5%) 11 (10.0%)

III 321 (70.9%) 97 (88.2%)

IV 39 (8.6%) 2 (1.8%)

Pretreatment T stage (%)

2 10 (2.2%) 1 (0.9%)

3 269 (59.4%) 51 (46.4%)

4 174 (38.4%) 58 (52.7%)

Lymph node status (%)

LN negative 94 (20.8%) 14 (12.7%)

LN positive 359 (79.2%) 96 (87.3%)

Location (%)

 > 10 cm 68 (15.0%) 10 (9.1%)

5–10 cm 235 (51.9%) 41 (37.3%)

 < 5 cm 150 (33.1%) 59 (53.6%)

Pretreatment CEA (%)

 < 5 (normal) 245 (54.1) 52 (47.3%)

 ≥ 5 (abnormal) 208 (45.9%) 58 (52.7%)

Pretreatment CA199 (%)

 < 39 (normal) 392 (86.5%0 93 (84.5%)

 ≥ 39 (abnormal) 61 (13.5%) 17 (15.5%)

Neoadjuvant therapy (%)

Neoadjuvant chemoradio-
therapy

403 (89.0%) 110 (100.0%)

Neoadjuvant chemotherapy 50 (11.0%) –

Mandard grade (%)

1 104 (23.0%) 25 (22.7%)

2 125 (27.6%) 31 (28.2%)

3 138 (30.5%) 29 (26.4%)

4 80 (17.7%) 25 (22.7%)

5 6 (1.3%) –

http://www.R-project.org


Page 5 of 11Huang et al. Radiation Oncology          (2023) 18:179  

in all cohorts (p < 0.001), suggesting Model_NoRes_
NAT achieved excellent classification performance 

(Fig. 2a). The calibration curve of the radiomics model 
presented satisfactory consistency between predic-
tion and observation in all validation cohorts (Fig. 2b). 
The decision curve indicated that the radiomics model 

Fig. 1 Prediction performance of Model_NoRes_NAT and comparison with single-sequence prediction models. a Receiver operating characteristic 
curve analysis of Model_NoRes_NAT in the training cohort (n = 362), internal testing cohort (n = 91), and external validation cohort (n = 110) 
for predicting non-response to neoadjuvant therapy. b, c Receiver operating characteristic curve analysis of Model_NoRes_NAT compared 
with three single-sequence prediction models (T2WI, DWI, and CE model) in the internal testing cohort (n = 91) and the external validation cohort 
(n = 110). T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; CE, contrast-enhanced T1-weighted imaging; Model_NoRes_NAT, pre-NAT 
multiparametric magnetic resonance imaging-based radiomics model
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could bring more clinical net benefits for patients in all 
validation sets (Fig. 2c).

Performance of Multiphase mpMRI‑based 
radiomics model
A total of 21 imaging features were chosen from both 
the pre-NAT and post-NAT mpMRI for developing 
Model_pCR to identify pCR in LARC patients after NAT 
but before surgical resection (Additional file 1: Table S7). 
Incorporating these features to evaluate pCR yielded 
favorable AUC values of 0.87 (95% CI 0.76–0.98) and 
0.87 (95% CI 0.78–0.95) in the testing cohort and exter-
nal validation cohort, respectively. The sensitivity and 
specificity of Model_pCR were excellent (84–87%). The 
NPV was relatively high (93.8–94.5%), while the PPV 

was marginally lower (56.8–65.4%) (Table  2). Model_
pCR showed improved performance over single-phase 
mpMRI prediction models (AUC = 0.69 and 0.66 for the 
pre-NAT mpMRI model in the testing cohort and exter-
nal validation cohort, respectively, AUC = 0.83 and 0.77 
for the post-NAT mpMRI model in the testing cohort 
and external validation cohort, respectively) (Addi-
tional file 1: Table 8, Fig. 3a). When comparing with the 
mrTRG model, all three MRI-based radiomics models 
showed superior performance in AUC, sensitivity, speci-
ficity, and accuracy in two validation cohorts (Fig.  3b, 
Additional file  1: Tables S9–S10). Figure  4a shows sig-
nificant differences in the radscore between pCR and 
non-pCR (p < 0.001), suggesting that Model_pCR could 
accurately predict pCR. Calibration curves exhibited 

Table 2 Performance of the Model_NoRes_NAT and Model_pCR in the prediction of tumor response to neoadjuvant therapy in LARC 
patients

Data in parentheses are 95% CIs. Model_NoRes_NAT is for non-response prediction and Model_pCR is for pathological complete response prediction. AUC, area under 
the curve; PPV, positive predictive value; NPV, negative predictive value

AUC (95%) Sensitivity (95%) Specificity (95%) PPV (95%) NPV (95%) Accuracy

Model_NoRes_NAT

Training cohort 0.84 [0.79–0.89] 77.9 [66.7–86.2] 78.6 [73.5–82.9] 45.7 [36.9–54.8] 93.9 [90.2–96.3] 0.78

Testing cohort 0.81 [0.70–0.91] 70.6 [46.9–86.7] 79.7 [69.2–87.3] 44.4 [27.6–62.7] 92.2 [83.0–96.6] 0.78

External validation cohort 0.79 [0.67–0.91] 78.3 [58.1–90.3] 71.3 [61.0–79.7] 41.9 [28.4–56.7] 92.5 [83.7–96.8] 0.73

Model_pCR

Training cohort 0.86 [0.81–0.91] 71.2 [60.1–80.4] 85.4 [80.1–89.5] 61.9 [51.2–71.6] 89.9 [85.1–93.3] 0.82

Testing cohort 0.87 [0.76–0.98] 85.0 [64.0–94.8] 83.3 [71.3–91.0] 65.4 [46.2–80.6] 93.8 [83.2–97.9] 0.84

External validation cohort 0.87 [0.78–0.95] 84.0 [65.4–93.6] 81.2 [71.6–88.1] 56.8 [40.9–71.3] 94.5 [86.7–97.9] 0.82

Fig. 2 Radscore, calibration curves, and decision curves to predict non-response to neoadjuvant therapy. a Radscore for each patient in the training 
cohort (n = 362), internal testing cohort (n = 91), and external validation cohort (n = 110). b Calibration curves for Model_NoRes_NAT in the training 
cohort, internal testing cohort, and external validation cohort. The dotted reference line indicates perfect calibration. c Decision curves 
for Model_NoRes_NAT in the training cohort, internal testing cohort, and external validation cohort. The y-axis represents the net benefit. The x-axis 
represents the threshold probability. The red line represents Model_NoRes_NAT. The gray line represents the assumption that all patients showed 
non-response to neoadjuvant therapy. The black line represents the hypothesis that no patients showed non-response to neoadjuvant therapy. 
The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. Model_NoRes_NAT, 
pre-NAT multiparametric magnetic resonance imaging-based radiomics model
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good agreement between observations and predictions in 
all validation cohorts (Fig. 4b). The decision curve indi-
cated that the multiphase and multiparameter model 
(Model_pCR) could bring more clinical net benefits for 
patients than default strategies (treat all, treat no one) 
(Fig. 4c).

Discussion
In this study, with relatively large samples from two inde-
pendent centers, we constructed two radiomics models 
to predict tumor response to NAT and to noninvasively 
assess pCR in LARC patients after NAT but before surgi-
cal resection. Firstly, we constructed a radiomics model 
for early prediction of non-response to NAT before 
its administration using pre-NAT mpMRI. The model 
showed favorable predictive performance, with an AUC 
of 0.81 and 0.79 in the internal testing group and inde-
pendent external validation group, respectively. Sec-
ondly, we constructed a model with both pre-NAT and 
post-NAT mpMRI for noninvasively assessing pCR in 
LARC patients after NAT but before surgical resection, 

which exhibited excellent diagnostic performance, with 
an AUC of 0.87 and 0.87 in the internal testing group 
and independent external validation group, respectively. 
Moreover, the model constructed with pre-NAT mpMRI 
(Model_NoRes_NAT) showed better classification per-
formance than single-sequence MRI for prediction of 
non-response to NAT, while the model constructed with 
multiphase mpMRI (Model_pCR) performed better than 
single-phase mpMRI and mrTRG for identification of 
pCR. Thus, our study provides a reliable and robust tool 
to identify and predict tumor response to NAT, which 
may assist in individualized management of LARC.

Numerous studies have attempted to identify biomark-
ers for early prediction of good and poor response to NAT 
in LARC patients before initial treatment from genetic 
[30] and molecular perspectives [31], but no robust 
predictive factors have been identified [32]. Recently, 
two radiomics models based on pre-treatment MRI 
were applied to predict non-response to NAT in LARC 
patients, which achieved good predictive performance, 
with an AUC of 0.773 [23] and 0.83 [33]. Although these 

Fig. 3 Comparison of prediction performance among MRI-based radiomics models and the mrTRG model. a Receiver operating characteristic 
curve analysis of Model_pCR compared with two single-phase mpMRI prediction models (pretreatment and posttreatment models) in the training 
cohort (n = 292), internal testing cohort (n = 74), and external validation cohort (n = 110). b Receiver operating characteristic curve analysis of mrTRG 
compared with MRI-based radiomics models in the internal testing cohort and external validation cohort. Pretreatment model, pre-NAT multiple 
parameter MRI-based radiomics model; posttreatment model, post-NAT multiple parameter MRI-based radiomics model; Model_pCR, multiple 
phase and multiple parameter MRI-based radiomics model; pCR, pathological complete response
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studies provided important preliminary results, they also 
had critical limitations and thus were far from conclusive. 
For example, Yang et al. reported that a radiomics model 
based on a pre-treatment apparent diffusion coefficient 
image could be used to predict non-response to NAT in 
LARC with an AUC of 0.83 in their testing group [33]. 
However, they only recruited 89 LARC patients from 
a single center, which resulted in low robustness due to 
potential risks of overfitting with small sample sizes and 

poor generalizability due to lack of external validation 
[34]. Although Zhou et al. included a relatively large sam-
ple size (n = 425) in their study and achieved an accept-
able predictive power (AUC = 0.773, 95% CI 0.608–0.937) 
in their testing cohort [23], their study lacked an external 
independent validation cohort, which limited the gener-
alizability of their model [34]. In the current study, we 
recruited a large number of patients (n = 563) from two 
independent centers, although patients from two centers 

Fig. 4 Radscore, calibration curves, and decision curves to evaluate pCR. a Radscore for each patient in the training cohort (n = 292), internal 
testing (n = 74), cohort and external validation cohort (n = 110). b Calibration curves for Model_pCR in the training cohort, internal testing cohort, 
and external validation cohort. The dotted reference line indicates perfect calibration. c Decision curves for Model_pCR in the training cohort, 
internal testing cohort, and external validation cohort. The y-axis represents the net benefit. The x-axis represents the threshold probability. The 
red line represents Model_pCR. The gray line represents the assumption that all patients achieved pCR. The black line represents the hypothesis 
that no patients achieved pCR. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding 
treatment. Model_pCR, multiple phase and multiple parameter MRI-based radiomics model. pCR, pathological complete response
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following different types of NAT (Center 1, 50 patients 
treated with neoadjuvant chemotherapy and the remain 
405 patients treated with neoadjuvant chemoradiother-
apy and Center 2, 110 patients treated with neoadjuvant 
chemoradiotherapy); based on pre-NAT mpMRI signa-
tures, our model exhibited powerful predictive value in 
identifying non-responders to NAT before initial treat-
ment, with an AUC of 0.84, 0.81, and 0.79 in the training 
group, internal testing group, and independent external 
validation group, respectively. Moreover, we revealed 
that the performance of the mpMRI model was better 
than that of any single-sequence models, which is simi-
lar to previous reports [23], it is not surprising, given that 
different imaging modalities have inherent strengths and 
limitations in reflecting tumor phenotype, microcircu-
lation, and vascularization, and their integration might 
improve predictive performance [35, 36].

In addition, we constructed a multiphase and multipa-
rameter radiomics model (model_pCR) for preopera-
tively assessing pCR after NAT based on pre-NAT and 
post-NAT MRI, which achieved excellent diagnostic per-
formance, with an AUC of 0.87 and 0.87 in the internal 
testing group and independent external validation group, 
respectively. Currently, no standardized assessment cri-
teria for pCR are available before surgical resection. The 
mrTRG is widely used in clinic to identify patients who 
have potentially achieved pCR after NAT [37]; however, 
the sensitivity and specificity were found to be only 62% 
(95% CI 43, 77) and 89% (95% CI 80, 94), respectively, in 
a recent meta-analysis [38]. Our radiomics model based 
on multiphase and multiparameter MR data achieved a 
much better diagnostic performance than the mrTRG 
model, with sensitivity and specificity of 84.0 [65.4–93.6] 
and 81.2 [71.6–88.1], respectively, which suggested that 
radiomics models may contribute to reducing misjudg-
ment by providing complementary information about the 
tumor heterogeneity [21, 34]. Our study obtained a simi-
lar diagnostic performance in assessing pCR as previous 
radiomics studies [24, 39]. Shin et  al. built a radiomics 
model based on post-NAT T2WI and DWI signatures, 
which reported promising results, with the best-per-
forming models for predicting pCR being those based 
on T2-weighted images (sensitivity, 80.0% [95% CI 71.0, 
89.1], and specificity, 68.4% [95% CI 62.4, 74.4]) and the 
merged model (sensitivity, 76.0% [95% CI 66.3, 85.7], and 
specificity, 71.4% [95% CI 65.6, 77.3]). Moreover, they 
revealed that both the T2 and merged models achieved 
significantly greater sensitivity than the radiologists did. 
Although they recruited a large sample cohort and con-
structed a well-performing model, as their study was a 
single-center study, the generalizability to other health-
care settings was unclear [24]. Jang et al. [40] developed 
an image-based deep learning model for predicting pCR 

in rectal cancer by using post-chemoradiotherapy mag-
netic resonance imaging. Although they also obtained 
a comparable predictive efficiency (AUC of 0.77), the 
“black-box” nature of deep learning, including implicit 
feature engineering or modeling, would hinder its appli-
cation in clinical practice [41]. Moreover, we integrated 
pre-NAT and post-NAT MR data, which achieved better 
performance than the model constructed with pre-NAT 
(AUC = 0.69 and 0.66 in the internal testing and external 
validation groups, respectively) or post-NAT (AUC = 0.83 
and 0.77 in the internal testing and external validation 
groups, respectively) MR data alone. A possible explana-
tion is that post-NAT MRI directly reflects tumor regres-
sion and residual after treatment, while pretreatment 
MRI can provide comprehensive information on tumor 
heterogeneity, which might be associated with tumor 
response and prognosis [42]. Therefore, a combination 
of these approaches, which can comprehensively cap-
ture the tumor heterogeneity and tumor reaction to NAT, 
might improve predictive performance. A recent study 
also demonstrated that the combination of pre- and post-
treatment MRI improved the performance of the radiom-
ics model [43]. Thus, it is plausible that fusing multiphase 
and multiparameter information from both pre-NAT and 
post-NAT could facilitate a more comprehensive descrip-
tion of tumor characteristics and could undoubtedly help 
to establish a more precise prediction model.

Our study also had several limitations. First, we used a 
manual delineation method to perform tumor segmen-
tation. Although satisfactory intra-observer and inter-
observer reproducibility was acquired for the tumor 
segmentation and the extraction of imaging features 
(ICCs > 0.6), the manual delineation is a time-consuming 
and labor-intensive task. Therefore, a user-friendly and 
completely automated segmentation approach such as 
deep learning should be developed in the future. Second, 
non-imaging predictive markers, such as pathology and 
endoscopy, were not included in present study. Future 
studies should investigate whether incorporating clinical 
variables into a radiomics model would improve the pre-
dictive performance. In addition, patients from Center 
1 underwent different types of NAT (50 of them treated 
with neoadjuvant chemotherapy and the remain 405 
patients treated with neoadjuvant chemoradiotherapy), 
while patients from Center 2 treated with neoadjuvant 
chemoradiotherapy only. Different treatment strategies 
may have biased the results, future study should include 
patients with the same treatment regimen.

Conclusion
In conclusion, based on multiphase and multipa-
rameter MRI, we developed two radiomics models, 
for prediction of non-responders to NAT before its 
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administration (Model_NoRes_NAT) and for identifi-
cation of pCR before surgical resection (Model_pCR), 
respectively, both of which obtained excellent per-
formance in the testing cohort and the independent 
external validation cohort. Additionally, the model con-
structed with pre-NAT multiparameter MRI showed 
better classification performance than single-sequence 
MRI for prediction of non-response to NAT, while the 
model constructed with multiphase multiparameter 
MRI also performed better than single-phase multipa-
rameter MRI and mrTRG for identification of pCR, 
suggesting that the multiphase and multiparameter 
models may assist in individualized management of 
LARC.
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