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Abstract 

Background Accurate delineation of clinical target volume of tumor bed (CTV-TB) is important but it 
is also challenging due to surgical effects and soft tissue contrast. Recently a few auto-segmentation methods were 
developed to improve the process. However, those methods had comparatively low segmentation accuracy. In this 
study the prior information was introduced to aid auto-segmentation of CTV-TB based on a deep-learning model.

Methods To aid the delineation of CTV-TB, the tumor contour on preoperative CT was transformed 
onto postoperative CT via deformable image registration. Both original and transformed tumor contours were 
used for prior information in training an auto-segmentation model. Then, the CTV-TB contour on postoperative CT 
was predicted by the model. 110 pairs of preoperative and postoperative CT images were used with a 5-fold cross-
validation strategy. The predicted contour was compared with the clinically approved contour for accuracy evaluation 
using dice similarity coefficient (DSC) and Hausdorff distance.

Results The average DSC of the deep-learning model with prior information was improved than the one 
without prior information (0.808 vs. 0.734, P < 0.05). The average DSC of the deep-learning model with prior 
information was higher than that of the traditional method (0.808 vs. 0.622, P < 0.05).

Conclusions The introduction of prior information in deep-learning model can improve segmentation accuracy 
of CTV-TB. The proposed method provided an effective way to automatically delineate CTV-TB in postoperative breast 
cancer radiotherapy.
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Introduction
Breast cancer has become the most frequently diagnosed 
cancer. In 2020, there were 2.26 million women diag-
nosed with breast cancer and 0.68 million deaths globally 
[1]. Breast-conserving surgery followed by postopera-
tive radiotherapy has become the established treatment 
procedure for early-stage breast cancer patients [2]. For 
postoperative breast cancer radiotherapy, it is important 
to accurately delineate the tumor bed and its target vol-
ume. However, the target volume delineation is suscep-
tible to the number of surgical clips, clarity and size of 
seroma, inter-observer variability and other factors [3]. 
And because of asymmetric excision of the tumor dur-
ing surgery, the uniform expansion of the resection cavity 
may not be proper to represent clinical target volume of 
tumor bed (CTV-TB) [4]. In general, the target volume 
of breast tumor bed is manually delineated by radiation 
oncologists in current clinical practice. However, as men-
tioned above, manual delineation is affected by many fac-
tors. Overall it is time-consuming and labor intensive. 
And there exists obvious inter-observer variability [5].

Given the intrinsic characteristics, there are several dif-
ficulties in segmenting tumor bed and its target volume 
for postoperative breast cancer radiotherapy. First, the 
contrast of soft tissue on CT image is relatively low. And 
the high-density marker (lead wires and titanium clips) 
would possibly cause metal artifacts, which compro-
mised the image quality to some extent. Second, the con-
trast between tumor bed and surrounding normal breast 
tissue is low. The density within the region of tumor bed 
is close to soft tissue on the whole. Third, the size, shape 
and location of tumor bed varied considerably from 
patient to patient.

Deep learning models were popularly used in auto-
matic segmentation of medical image [6, 7]. For post-
operative breast cancer radiotherapy, there have been 
several researches in auto-segmenting whole breast 
CTV and organs at risk (OARs) [8–10]. However, there 
are few models developed for segmenting tumor bed 
and its CTV-TB due to its intrinsic complexity. Dai et al. 
employed a 3D U-Net to segment tumor bed, whole 
breast CTV and several organs at risk (OAR) on plan-
ning CT and CBCT-generated synthetic CT [11]. The 
results showed that the tumor bed on synthetic CT was 
obviously larger than the one manually contoured by 
physicians. The DSC (0.63 ± 0.08) was lower compared 
to those achieved in general medical image segmentation 
tasks. Kazemimoghadam proposed a saliency-based deep 
learning method for segmenting tumor bed [12]. It incor-
porated the salient information provided by titanium clip 
into the deep-learning model. The DSC (0.76 ± 0.03) was 
slightly better than that of Dai’s method but still lower in 
general.

Motivated by Kazemimoghadam’s method which 
encoded locations of titanium clips and salient regions 
in the deep-learning model, we proposed a method to 
incorporate tumor location information into the deep-
learning model for segmenting CTV-TB on postopera-
tive CT. The tumor contour on preoperative CT and 
its transformed contour on postoperative CT both 
provided prior information in searching for the poten-
tial location of CTV-TB. The rest of paper was organ-
ized as follows. In methods section, the delineation 
of CTV-TB and generation of prior information were 
first introduced. Then, the scheme of model learning 
and predicting was explained in detail. In results sec-
tion, the effect of prior information and the model per-
formance were evaluated. Finally, the advantages and 
disadvantages of the proposed method were discussed, 
and the future work was prospected.

Methods
Patient dataset
110 left-sided breast cancer patient undergone breast-
conserving surgery (BCS) and eligible for whole breast 
irradiation (WBI) plus boost irradiation were enrolled 
in this study. The median age of patients was 50  years 
(range, 44–59 years), and the pathological diagnosis was 
all invasive ductal carcinoma with a stage of T1-T2N0M0. 
No patient received oncoplastic surgery. All patients 
underwent a lumpectomy with sentinel lymph node dis-
section. Tumor-negative margins were ensured during a 
single operation. Equal or more than 5 surgical clips were 
used to mark the boundaries of the lumpectomy cavity. 
All enrolled patients had either no seroma or a seroma 
clarity score of ≤ 3 in the lumpectomy cavity. This study 
was approved by the Institutional Ethics Committee of 
Cancer Hospital, Chinese Academy of Medical Sciences 
and Peking Union Medical College. Consent was waived 
due to the retrospective nature of the study.

The patient dataset consisted of 110 pairs of preop-
erative and postoperative CTs, which were acquired in 
the supine position. The preoperative CT was acquired 
averagely one week before surgery. They were recon-
structed with dimensions of 512 × 512, slice thickness 
of 5.0  mm, and pixel size of 0.68–0.94  mm. The post-
operative CT was acquired averagely 10  weeks after 
surgery and used for the purpose of radiotherapy treat-
ment planning. They were reconstructed with dimen-
sions of 512 × 512, slice thickness of 5.0  mm, and pixel 
size of 1.18–1.37 mm. All CTs were pre-processed using 
3D Slicer (RRID:SCR_005619) [13, 14]. They were first 
resampled to an isotropic resolution of 1 × 1 × 5 mm and 
then cropped to dimensions of 256 × 256 × 32 around the 
breast’s centroid [15].
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Contour delineation
The distribution of multiple regions of interest (ROIs) 
on preoperative and postoperative CTs is illustrated 
in Fig.  1. Before surgery, patient was CT scanned for 
diagnostic purpose and the location of primary tumor 
(PT) was manually delineated by radiation oncologist. 
After surgery, the volume of actually excised tissue 
(pathological volume, PV) was estimated by its maximum 
diameter in three dimensions (provided in pathological 
report). And the excision volume (EV) on preoperative 
CT image is estimated by adding a given margin to PT as 
shown in Fig. 1A. Different margin was tested from 1 to 
3 cm. And it was found that the volume of PT with 2 cm 
margin is closest to the volume of PV. Thus, 2 cm margin 
to PT on preoperative CT image was used to represent 
excision volume (EV).

In a few weeks after surgery, patient was CT scanned 
again and proceeded to radiotherapy. As shown in 
Fig.  1B, clinical target volume of tumor bed (CTV-TB) 
is generated by adding 1  cm margin to the contour of 
tumor bed (TB). The margin was used to account for 
the subclinical lesions and potential invaded regions. 
In practice, the contour of TB was manually delineated 
by radiation oncologist according to the surgical marks 
and postoperative changes. Due to the poor clarity of 
lumpectomy cavity and relatively low soft tissue contrast, 
TB contouring is difficult and challenging.

Prior information
As the location of TB is at the same place of EV before 
surgery, the TB contour on postoperative CT would 
highly correlates with the EV contour on preopera-
tive CT. Accordingly, the TB contour plus 1  cm margin 
 (TB1cm), i.e. CTV-TB, on postoperative CT would highly 
correlate with the EV contour plus 1 cm margin  (EV1cm) 
on preoperative CT. Therefore, it would be reasonable 
to create virtual  EV1cm on postoperative CT, and used it 
as prior location information in searching for CTV-TB 

contour on postoperative CT. For reaching this goal, the 
deformable image registration (DIR) between preop-
erative and postoperative CTs was performed on Elastix 
(RRID:SCR_009619) [16, 17]. As a result, the deforma-
tion vector field (DVF) was obtained and used to gener-
ate the transformed  EV1cm (T-EV1cm) on postoperative 
CT from the  EV1cm on preoperative CT.

To enhance the effect of tumor contour on CTs, the 
regions of  EV1cm and T-EV1cm were processed via image 
enhancement tool. In detail, the pixel values within 
these ROIs were multiplied by an integer number 
such as 25, while the pixel values outside them was 
multiplied by a fraction number such as 0.1. The effect 
of CT images before and after image enhancement is 
shown in Fig.  2. The preoperative and postoperative 
CTs before image enhancement are shown in Fig.  2A, 
B, while the preoperative and postoperative CTs after 
image enhancement are shown in Fig. 2C, D. Clearly, the 
intensities of tumor contours on CTs were significantly 
enlarged comparing with those of the surrounding tissue.

Deep‑learning model
A 3D U-Net used to solve many segmentation problems 
was employed in this study [18–20]. The detail of net-
work architecture and setting was described in Addi-
tional file 1. In brief, it has an encoder part to analyze the 
whole image and a decoder part to produce full resolu-
tion segmentation. 3D U-Net takes 3D volume as inputs 
and applies 3D convolution, 3D max-pooling and 3D 
up-convolutional layers which has an entirely 3D archi-
tecture. In this study, there were two 3D input channels 
(enhanced preoperative and postoperative CT) and one 
3D output channel (predicted label) in the deep learning 
model. A five-fold cross-validation was applied to the 110 
patient dataset. One fold (22 patients) was used for test-
ing, and the remaining four folds (88 patients) were used 
for training.

Fig. 1 Illustration of regions of interest (ROIs) on (A) preoperative CT and (B) postoperative CT images. PT: primary tumor; PV: pathological volume; 
EV: excision volume; TB: tumor bed; CTV-TB: clinical target volume of tumor bed
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The weights of convolution layers are initialized by a 
normal distribution according to the published studies 
[18, 19]. The Dice similarity coefficient (DSC) was used as 
the loss function [19]. The Adaptive moment estimation 
(Adam) with batch size of 4 and weight decay of 3e−5 
was used for optimization [21]. The initial learning rate 
was set as 0.0005, the learning rate drop factor as 0.95, 
and the validation frequency as 20. The network was 
implemented with Matlab (version 2020a) (MathWorks, 
Natick, MA 01760) and trained with maximal 50 epochs. 
The test was performed on a workstation equipped with 
one NVIDIA Geforce GTX 1080 TI GPU.

Auto‑segmentation of CTV‑TB
The overall workflow for segmenting CTV-TB on 
postoperative CT is shown in Fig. 3 and the main steps 
are labeled by numbers. (1) Both preoperative and 
postoperative CTs were registered by DIR. As a result, 
the DVF was obtained. (2) T-EV1cm on postoperative CT 
was generated by deforming  EV1cm on preoperative CT 
via the obtained DVF. (3) Both  EV1cm and T-EV1cm were 
processed by image enhancement tool and the resulting 
3D images were fed into the deep-learning model. (4) The 
CTV-TB contour on postoperative CT was predicted by 
the deep learning model. (5) The similarity between the 
predicted and clinically approved CTV-TB contours was 
evaluated.

Evaluations
The DSC and Hausdorff distance (HD) were used to eval-
uate the similarity between the predicted and clinically 
approved contours of CTV-TB on postoperative CT. The 
DSC is defined as follows [22]:

where A is the clinically approved CTV-TB contour man-
ually delineated by the radiation oncologist and B is the 
predicted CTV-TB contour by the model. A ∩ B is the 
volume that A and B have in common. The DSC results in 
values between 0 and 1, where 0 represents no intersec-
tion and 1 reflects perfect overlap. The HD is defined as 
[23]:

where

and �·� is some underlying norm on the points of A and 
B (e.g., the  L2 or Euclidean norm). h(A, B) identify the 
point a ∈ A that is farthest from any point of B and meas-
ures the distance from a to its nearest neighbor in B. The 
Hausdorff distance HD(A, B) is the maximum of h(A, B) 
and h(B,A) and measures the largest degree of mismatch 

(1)DSC(A, B) =
2 A ∩ B

A + |B|

(2)HD(A, B) = max(h(A, B), h(B,A))

(3)h(A, B) = max
a∈A

(

min
b∈B

� a− b �

)

Fig. 2 The effect of CT images before and after image enhancement. A The preoperative CT and B postoperative CT before image enhancement. C 
The preoperative CT and D postoperative CT after image enhancement
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between A and B. The overlap between A and B increases 
with smaller HD(A, B).

The performance of the deep-learning model with 
prior information (using Fig. 2C, D as inputs) was com-
pared with the same 3D U-Net without prior information 
(using Fig. 2B, C as inputs). This will investigate the effect 
of prior information on segmentation accuracy of the 
deep-learning model. Five-fold cross-validation was used 
to tune the hyperparameters and the testing data were 
used to evaluate the performance of the final models. In 
addition, the performance of the traditional gray-level 
threshold method was also investigated. The gray-level 
threshold method partitions the gray levels in an image 
into two classes: those below a user-defined threshold 
and those above. In our study, CT values above threshold 
(40 HU) within the breast region were auto-segmented as 
CTV-TB contour. For statistical analysis, the paired t-test 
was performed if the data were normally distributed. 
Otherwise, the Wilcoxon Signed-Rank Test for Paired 
Samples (non-parametric test) was performed. A level of 
P < 0.05 was considered statistically significant. All statis-
tical analyses were performed in R Project for Statistical 
Computing (RRID:SCR_001905) (version 3.6.3).

Results
The training time for 3D U-Net was approximately 
30  h, while the prediction time was 20  s per patient. 
In this binary segmentation, each pixel is labeled as 
CTV-TB or non-CTV-TB. The average values of DSC 
(mean ± standard deviation) were 0.808 ± 0.065 and 
0.734 ± 0.085 for the deep-learning models with and 

without prior information. Comparatively, the aver-
age value of DSC (mean ± standard deviation) was 
0.622 ± 0.090 for the traditional gray-level threshold 
method. For fair comparison, the average values of 
HD (mean ± standard deviation) were 19.254 ± 6.012 
and 47.975 ± 22.214 for the deep-learning models with 
and without prior information. Comparatively, the 
average value of HD (mean ± standard deviation) was 
60.512 ± 28.145 for the traditional gray-level threshold 
method.

The results of Shapiro–Wilk normality test confirmed 
that the data were normally distributed, so the paired 
t-test was used. The difference of average DSC and 
HD resulting from the deep-learning models with and 
without prior information was statistically significant 
(0.808 vs. 0.734, P = 0.0014 < 0.05; 19.254  vs. 47.975, 
P = 0.002 < 0.05). Besides, the difference between the 
deep-learning models with prior information and the 
traditional gray-level threshold method were statis-
tically significant (0.808  vs. 0.622, P = 0.0005 < 0.05; 
19.254 vs. 60.512, P = 0.001 < 0.05).

As shown in Fig. 4, the segmentation results of prior 
information guided deep-learning model are displayed 
in three orthogonal views. The predicted labels of 
CTV-TB were overlaid on postoperative CT images 
with ground-truth (clinically approved) labels, where 
the predicted labels in white and the ground truths in 
black. It showed that the majority of both contours were 
similar. The predicted contour had smoother boundary 
than the contour which was manually delineated by 
radiation oncologist.

Predicted CTV-TB

DIR

DVF

Accuracy

3D U-Net

Similarity

Postoperative CTPreoperative CT

Approved CTV-TB

Enhanced Preoperative CT Enhanced Postoperative CT

T-EV1cmEV1cm

①
②

③

④

⑤

③

Fig. 3 The workflow of auto-segmentation of CTV-TB on postoperative CT image
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Discussion
In this study, a prior information guided deep-learning 
model was developed to automatically segment CTV-
TB from postoperative CT. The results showed that the 
introduction of prior information succeeded in identify-
ing low-contrast CTV-TB from surrounding normal tis-
sue on postoperative CT. This improvement would be 
attributed to the introduction of  EV1cm on preoperative 
CT and T-EV1cm on postoperative CT, which bring prior 
information about the approximate CTV-TB contour and 
set a good starting point for the deep learning model. 
Besides, the DSC and HD of the transformed T-EV1cm 
contour and clinically approved CTV-TB contour were 
0.551 ± 0.110 and 49.875 ± 23.514. It is worth noting that 
intensity-based DIR method is challenged due to the 
large deformations and non-correspondence caused by 
tumor resection and clip insertion. Thus the introduction 
of T-EV1cm on postoperative CT just provide the approxi-
mate location of CTV-TB contour.

3D U-Net was previously used in segmenting tumor 
bed on CBCT-generated synthetic CT and the DSC was 
lower [11]. Later, Kazemimoghadam incorporated the 
salient information provided by titanium clip into the 
U-Net model for tumor bed segmentation. The DSC was 
improved but limited [12]. In our study the DSC was fur-
ther improved. The improved DSC would be attributed to 
the introduction of prior information, which limited the 
searching range for potential CTV-TB contour on post-
operative CT. It should be noted that both Kazemimogh-
adam’s and our methods incorporated prior information 
in segmentation model to aid the searching of final target.

There are certain limitations of this study. First, the 
training set is small, which requires massive cross-valida-
tion to ensure the stability of learning model. More data 
will be collected in the future to make the model more 
robust. Second, the intensity-based DIR was used to gen-
erate DVF for transforming tumor contour onto post-
operative CT. More advanced DIR methods would be 
investigated and adopted for future study. Third, only CT 
image was used for the input of deep learning model. It 
would be more interesting to include other image modal-
ities such as CBCT, Ultrasound and MRI. With these 
inputs the segmentation accuracy of the deep learning 
model would be further improved. Fourth, manual con-
touring on preoperative CT image was still needed. In 
the future, auto-segmentation method would be investi-
gated to further improve efficiency.

Conclusions
Incorporating prior information of tumor location into 
deep learning model improved the segmentation accu-
racy of CTV-TB contour on postoperative CT. The 
tumor contours on both preoperative and postoperative 
CT provided the approximate CTV-TB contour, which 
facilitated the subsequent searching by the deep learning 
model. The proposed method demonstrated an effective 
way in auto-segmentation of CTV-TB in postoperative 
breast cancer radiotherapy.

Abbreviations
CTV-TB  Clinical target volume of tumor bed
TB  Tumor bed

Fig. 4 The segmentation results of prior information guided deep-learning model for two representative patients (A, B). The predicted labels are 
shown in white, and the ground truths are shown in black
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CT  Computed tomography
DIR  Deformable image registration
DSC  Dice similarity coefficient
HD  Hausdorff distance
OARs  Organs at risk
BCS  Breast-conserving surgery
WBI  Whole breast irradiation
ROIs  Regions of interest
PT  Primary tumor
PV  Pathological volume
EV  Excision volume
DVF  Deformation vector field
Adam  Adaptive moment estimation
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