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Abstract 

Background This study leverages a large retrospective cohort of head and neck cancer patients in order to develop 
machine learning models to predict radiation induced hyposalivation from dose-volume histograms of the parotid 
glands.

Methods The pre and post-radiotherapy salivary flow rates of 510 head and neck cancer patients were used to fit 
three predictive models of salivary hypofunction, (1) the Lyman-Kutcher-Burman (LKB) model, (2) a spline-based 
model, (3) a neural network. A fourth LKB-type model using literature reported parameter values was included for 
reference. Predictive performance was evaluated using a cut-off dependent AUC analysis.

Results The neural network model dominated the LKB models demonstrating better predictive performance at 
every cutoff with AUCs ranging from 0.75 to 0.83 depending on the cutoff selected. The spline-based model nearly 
dominated the LKB models with the fitted LKB model only performing better at the 0.55 cutoff. The AUCs for the 
spline model ranged from 0.75 to 0.84 depending on the cutoff chosen. The LKB models had the lowest predictive 
ability with AUCs ranging from 0.70 to 0.80 (fitted) and 0.67 to 0.77 (literature reported).

Conclusion Our neural network model showed improved performance over the LKB and alternative machine 
learning approaches and provided clinically useful predictions of salivary hypofunction without relying on summary 
measures.
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Background
Radiotherapy to the head and neck can result in a wide 
array of morbidities. One such morbidity, which can have 
a devastating effect on oral health, is radiation-induced 
salivary gland hypofunction [1]. Despite being a relatively 

slow-dividing type of cell, salivary glands demonstrate 
remarkable sensitivity to ionizing radiation. At low doses 
radiation damage may be reversible, but substantial 
decreases in salivary function have been noted with even 
moderate doses of radiation (30–40 Gy) [2, 3]. Cumula-
tive therapeutic doses of radiation of 60–70  Gy often 
result in irreversible loss of function.

Saliva has diverse function in the oral cavity. Saliva 
moistens the oral mucosa, contains antibodies that facili-
tate immune response to oral microbes, buffers against 
changes in pH, contains minerals that allow for rem-
ineralization of damaged tooth structure, cleanses the 
teeth, moistens food to aid in swallowing, and is required 
for normal gustatory sensation. HNC survivors that 
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experience hyposalivation consequently are at risk for 
an increase in dental disease, fungal infection, dyspha-
gia, dysgeusia, and friability of the oral mucosa. Because 
these symptoms interfere with eating, taste, and speech 
they can contribute to social isolation and poor quality of 
life [4, 5].

Predicting salivary gland hypofunction after radiation 
therapy is complicated by the sophistication of modern 
radiation plans. The most common way to summarize 
these plans is using a dose-volume histogram (DVH), 
which is a step function relating the dosage (ranging 
from 0 to the maximum dose) and the fraction of the 
total organ volume that received at least the given dose. 
The DVH requires processing to be incorporated in pre-
dictive models as it has a high number of dimensions. 
Since its development in the 1980s, the Lyman-Kutcher-
Burman (LKB) model has been the standard method for 
processing the DVH and assessing normal tissue compli-
cation probabilities (NTCP) during radiation treatment 
planning. This model is appealing in that it is estimated 
using parameters that are tangible, volumes of the organ 
in question, the dose that would result in 50% NTCP 
with uniform irradiation of the total volume ( TD50(1) ), 
an organ specific parameter describing how the organ 
is affected by partial irradiation (n), and the slope of the 
dose–response curve (m). Despite the clinical appeal of 
this class of models, they have a particular limitation as 
they often are not well calibrated, a criticism that was 
recognized by the authors in their original publication 
[6]. Another limitation is that the LKB model requires a 
binary input for what constitutes a complication neces-
sitating an arbitrary cutoff to be established for the fitting 
process. Finally, the LKB does not allow for inclusion of 
other potentially relevant covariates. While this may be 
a lesser concern in radiation planning specifically, hav-
ing a model that incorporates the radiation treatment 
information separate from any model that incorporates 
information on comorbidities and medications presents a 
problem when trying to holistically assess a patient’s risk 
of developing a complication. The LKB model has been 
applied to the parotid glands and data exists which esti-
mate relevant parameters for model fitting [7].

The LKB model was the original prediction model 
for NTCPs and was applied to a wide variety of organs. 
Roesink et al. [7] performed a study in 2001 in which they 
used a cohort of 108 patients to estimate the parameters 
of the LKB for parotid glands and salivary hypofunction. 
More recently, Beetz et al. [8] and Li et al. [9] developed 
regression models that predict salivary hypofunction 
using a variety of clinical and demographic informa-
tion in addition to a DVH-derived mean organ dose 
in cohorts of size 167 and 365 respectively. Still others 
have attempted to predict either xerostomia or salivary 

hypofunction without using any data on the radiation 
plan [10, 11] while others have turned to delta radiomics 
[12] for prediction, although these calculations cannot be 
performed in the radiation planning phase.

Among these attempts, the only studies that utilized 
the radiation plan as a predictor (the LKB model via 
Roesink and the regression-based models of Beetz and Li 
which relied on mean organ dose), only utilized a gross 
summary of the DVH. In this manuscript, we compare 
the LKB method for assessing the probability of radiation 
induced salivary gland hypofunction to two alternative 
methods of prediction, which incorporate the informa-
tion from the radiation DVH in a way in which the full 
information about the distribution of radiation dose 
across the organ is preserved. The first method summa-
rizes the DVH using a cubic spline basis and uses this as 
input to a standard regression model. The second method 
registers the value of the DVH at each dose and uses 
these as inputs into a neural network. This study arrived 
at new estimates of the LKB model parameters for the 
parotid glands which were derived in a larger cohort than 
those previously reported, developed and demonstrated 
two methods for incorporating the complete information 
contained within the DVH into a prediction model, and 
obtained some level of evidence that grossly summariz-
ing the radiation plan may adversely impact prediction of 
NTCPs in the parotid glands.

Methods
Patients
510 patients undergoing radiotherapy for H&N cancers at 
BC Cancer between November 2004 and July 2015 were 
enrolled in this study. Patients were treated with either 
intensity modulated radiation therapy or volumetric 
modulated arc therapy. Radiation dose for all radiother-
apy plans were calculated using the analytical anisotropic 
algorithm using the same planning system, dose prescrib-
ing convention, and dosimetric grid size. DVHs for each 
patient’s parotid glands (both ipsilateral and contralateral 
to the tumor site) were extracted using DICOMautoma-
tion. Patients were excluded if: they were unable to fol-
low written saliva collection procedures; they received 
atypical chemotherapy agents (i.e. an agent other than 
cetuximab, cisplatin, carboplatin, or gemcitabine); they 
received electron therapy; or they had previous interfer-
ing radiotherapy. In addition to routine clinical quality 
assurance procedures prior to delivery of radiotherapy 
plans, a single senior H&N Radiation Oncologist (JW) 
validated the consistency and accuracy of salivary con-
tours of the parotid glands specifically for research qual-
ity assurance purposes after plan delivery. Although 
salivary function can also be impacted by radiation to the 
other major salivary glands, stimulated salivary function 
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is most impacted by the parotid glands. In addition, the 
LKB model requires gland specific parameters and there-
fore cannot be fit or otherwise compared to the candidate 
approaches in a mixed-gland framework.

Saliva collection
Stimulated saliva was measured prior to radiotherapy 
and one year following completion of treatment. Meas-
urements comprise whole-mouth saliva collected with 
patients in prone or upright position over a five-minute 
period while chewing flavorless wax.

Radiation planning/data collection
All clinical plans were created according to institutional 
guidelines using the Varian Eclipse treatment planning 
system. Dose-volume histograms for the parotid glands 
were extracted from clinical plans using DICOMautoma-
ton [13], an open source toolkit for radiotherapy analysis.

LKB model
The LKB model addresses the multidimensionality of 
a DVH as a predictor variable by reducing it to a single 
dose and volume in a process originally described by 
Lyman [6, 14]. This reduction of the multidimensional 
DVH to a single dose over an effective volume is justified 
by an assumed power law relationship, where i represents 
each step of the DVH.

Transformed single-step histograms are assumed to 
have the same complication probability as the original 
one. The newly transformed dose and volume are then 
used to normalize the dose with m× TD50(v) serving 
as an estimate of the standard deviation of dose, where 
V and D are the transformed values from the DVH and 
Vtotal is the total organ volume (in this case the parotid 
glands).
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n

where TD50(v) is attained from another assumed power 
law.

The final model estimate is then calculated by plug-
ging the estimated t into the cumulative distribution of a 
standard normal random variable.

Due to the LKB model requiring a binary definition of 
complication, patients were defined to have a complica-
tion if their post-radiation salivary flow rate was reduced 
to less than 25% of the preoperative rate (i.e., a ‘severe’ 
reduction). The model was fit using maximum likeli-
hood. After transforming the DVHs to a single dose and 
volume, the ratio of post-treatment to pre-treatment 
whole salivary flow was dichotomized and the model fit 
resulting in the 3 organ specific parameters  (TD50(1), 
m, n). Roesink et.al conducted a study of 93 patients in 
which these parameters were estimated to be 31 Gy, 0.54, 
and 1 respectively [7]. The fitted values as well as those 
reported by Roesink et  al. were also used in the assess-
ment of the candidate models fit with new methods.

Alternative models
The first alternative model addresses the high dimension-
ality of the DVH using a cubic spline basis. This proce-
dure fits a polynomial function with a specified form to 
each of the DVHs in the dataset. For this application, it 
was decided that a spline function with 5 knots equally 
spaced across the range of observed doses imparted suf-
ficient flexibility to adequately mimic the DVHs, Fig.  1. 
The resulting fitted model contains six coefficients 
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Fig. 1 Three examples of spline approximation of dose-volume histograms and their approximation by cubic spline basis (red)
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which are then used as predictors in a logistic regression 
model, which also incorporates splines to improve model 
flexibility.

The second model extracts the volume recorded in 
the DVH at intervals of 1 Gy from 0 to 70 Gy. These val-
ues are then used directly as inputs into a neural net-
work with a single hidden layer containing 12 nodes and 
a decay of 0.8, which is a form of regularization for the 
model. These model parameters were determined by 
using ten-fold cross validation to obtain optimal predic-
tive performance.

Both of these candidate models contain tuning param-
eters, which were optimized using tenfold cross-valida-
tion of the AUC for predicting a decrease in salivary flow 
rate of 0.5*baseline. In the case of the regression-based 
approach, the cubic splines were applied to the model 
inputs with the number of knots being tuned by tenfold 
cross-validation. In the case of the neural network, the 
decay parameter was employed. The decay parameter 
regularizes the model penalizing the size of the weights 
to prevent overfitting and improves the performance of 
the model-fitting algorithm by reducing flat spots in the 
cost function by inducing a differential penalty between 
highly correlated inputs like those coming from the dose-
volume histogram. Additionally, alternative architectures 
were tested in which the number of inputs were reduced 
to as few as 10-equally spaced readings from the DVH 
and hidden layer sizes ranging from 5 to 25. However, 
reducing the number of inputs did not improve perfor-
mance with performance being negatively effected at the 
smallest number of inputs.

Evaluation
The data was partitioned into a training set containing 
70% of the observations and a test set containing 30%. 
The predictive performances of the models were com-
pared using area under the receiver operating charac-
teristic curve in the test set. Sensitivity to the cutoff for 
reduction in salivary flow rate was examined by including 
a variety of other potential cutoffs. All analyses were con-
ducted in the R statistical computing program [15].

Results
Patient demographics
Since salivary measurements were considered stand-
ard-of-care for dental monitoring at the study site, 
study participant demographics are representative of 
institutional-level head-and-neck radiotherapy patient 
demographics. 335 (65.7%) were male, 118 (23.1%) were 
female, and 57 (11.1%) were unknown or other gen-
der. Average patient age when radiotherapy began was 
59.8  years (standard deviation: 11.9  years; minimum: 
18.8 years; maximum: 90.9 years).

Tumour primary site was: nasopharynx for 110 (21.6%) 
patients; tonsil for 94 (18.4%); base of tongue for 76 
(14.9%); larynx for 27 (5.2%); thyroid for 13 (2.5%); and 
unknown or various other sites for the remaining patients 
(Table 1).

Salivary function
Patients baseline salivary function was measured prior to 
initiation of cancer therapy. The mean whole stimulated 
salivary flow rate was 1.47  g/min (95% CI (1.40, 1.55)). 
Post cancer therapy, salivary function was reassessed 
at 3  months and one year post radiation, with the one-
year data being used to train the model. The post therapy 
mean whole stimulated salivary flow rates were 0.57  g/
min (95% CI (0.52, 0.62)) and 0.77 g/min (95% CI (0.70, 
0.83)) respectively.

Model fitting
The resulting LKB model parameter estimates from 
the data were 39.2  Gy, 1.1, and 1 for  TD50(1), m, and n 
respectively. During the fitting of the candidate machine 
learning models, the number of inputs for the learning 
methods was considered. Models were fit using the ipsi-
lateral parotid data only as well as combining data from 
the ipsilateral and contralateral glands. Given no substan-
tial improvement in predictive ability, the data presented 
here represents the more parsimonious approach, which 
utilized only data from the ipsilateral parotid gland.

Comparison of predictive ability
The LKB, neural network, and the spline basis models 
were fit in the training set and predictions were derived 
for the test set. Predictions based on the parameter 
estimates found by Roesink et  al. were also generated 
for the test set. Because model performance may differ 

Table 1 Demographics for study participants

n(%), mean(sd)

Sex

 Male 335 (65.7%)

 Female 118 (23.1%)

 Other/Unknown 57 (11.1%)

Age (y) 59.8 (11.8)

Tumor Site

 Nasopharynx 110 (21.6%)

 Tonsil 94 (18.4%)

 Base of Tongue 76 (14.9%)

 Larynx 27 (5.2%)

 Thyroid 13 (2.5%)

 Other/Unknown 190 (37.2%)
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depending on the definition of what constitutes a com-
plication, predictive accuracy was evaluated using a cut-
off dependent area under the ROC curve. The neural 
network model dominated the LKB models demonstrat-
ing better predictive performance at every cutoff with 
AUCs ranging from 0.75 to 0.83 depending on the cutoff 
selected. Similarly the spline based model nearly domi-
nated the LKB models with the fitted LKB model only 
performing better at the 0.55 cutoff. The AUCs for the 
spline model ranged from 0.75 to 0.84 depending on the 
cutoff chosen. The LKB models had the lowest predictive 
ability with AUCs ranging from 0.70 to 0.80 (fitted) and 
0.67 to 0.77 (Roesink et al.), Fig. 2.

The statistical significance of the difference between 
the models was dependent on the cutoff chosen to define 
the complication. Using a cutoff at 0.5*baseline, all dif-
ferences were statistically significant ANN vs regression 
(p = 0.004); ANN versus LKB (p < 0.001); regression ver-
sus LKB (p = 0.031). The neural network maintained sta-
tistically significant p-values at cutoffs from 0.45*baseline 
to 0.7*baseline. Below 0.45*baseline and at 0.7–0.75*base-
line, there was no significant difference between the 
regression and neural network’s performance. The dif-
ference between the neural network and the fitted LKB 
model was statistically significant at every cutoff. The 
regression approach was statistically superior to the LKB 
model at all cutoffs with the exception of 0.55–0.60*base-
line at which point they performed similarly.

Discussion
Since the original formulation of the LKB model, its limi-
tations have been recognized [6]. However, the conveni-
ent and clinically relevant parameterization of the LKB 
model coupled with a lack of compelling alternatives 
have made it a mainstay of radiation treatment planning. 

Although these parameters have proved to be clinically 
useful, they are only directly comparable between organs 
to the extent that the LKB model assumptions are uni-
formly satisfied for each. Parameters in the alternative 
approaches lack a readily apparent clinically relevant 
interpretation. In order to obtain similarly relevant organ 
specific information, the user must analyze how the pre-
dictions from the model change with varying inputs. For 
example, feeding a DVH representative of uniform irra-
diation at various levels can be used to determine  TD50 
by simply inputting dosage until the model returns a 
50% complication probability. The effect of partial irra-
diation, typically associated with LKB parameter n, could 
similarly be determined by the feeding the models DVHs 
consistent with partial irradiation. Unlike the LKB model 
estimates, clinically useful measures obtained in this 
manner would likely be directly comparable under any 
circumstances.

Comparison of the predictive ability of the four can-
didate models suggests that alternative approaches to 
incorporating dose-volume histograms paired with mod-
ern machine learning approaches can provide improved 
discrimination for the prediction of post-radiation hypo-
salivation. These improvements are likely due to infor-
mation loss in the way in which the LKB model and 
similar approaches which rely on simple low-dimension-
ality summaries of the DVH incorporate the DVH infor-
mation, such as average organ dose [8, 9].

Minor differences between the LKB model parameters 
in the fitted LKB model and the model from Roesink 
et al. can likely be attributed to a combination of estima-
tion error and differences in measuring and defining sali-
vary hyposalivation. These differences also account for 
the model’s low performance. The Roesink study was rel-
atively small (n = 108) resulting in a relatively large degree 
of random error. In addition, effective LKB parameter 
values may shift over time due to advances in therapeutic 
methodologies.

Models which start with the DVH are limited by 
the fact that they cannot account for the variable clini-
cal impact of radiation delivered to specific anatomic 
regions; spatial location information is lost when the 
radiation is summarized as a DVH. There is some evi-
dence to suggest that radiation to specific regions of the 
parotid glands, for example those containing stem and 
progenitor cells, may be particularly detrimental [16–18]. 
This limitation would apply to any DVH-based approach 
to an organ with such a region, where functional capacity 
was particularly dependent on a specific anatomical loca-
tion. However, in these cases similar machine learning 
models could be applied directly to the three-dimensional 
dosimetry data, but these approaches would require extra 
steps to achieve spatial registration and extremely large 

Fig. 2 Cutoff dependent AUC for 4-candidate models: This figure 
illustrates how the four models compared to each other depending 
on what cutoff was chosen to define a salivary function complication. 
For example 0.5 on the x-axis indicates the results obtained when 
patients whose salivary function decreased by half or more were 
considered a complication
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amounts of data, likely on the order of tens of thousands 
of patients, to properly fit the predictive models.

Conclusions
One advantage of the alternative modeling approaches 
explored here is that they can easily incorporate other 
clinical information relevant to predicting patient out-
comes. Although this study was limited by the lack of 
availability of other clinically meaningful information, 
future studies could incorporate other factors pertinent 
to predicting hyposalivation such as chemotherapies, 
comorbidities, use of other medications commonly asso-
ciated with hyposalivation, and delta radiomics data, 
which have been shown to have predictive value beyond 
that of dosing information alone [19–21]. In addition, 
this study was limited by lack of access to the DVHs of 
other major salivary glands. However, it is unlikely that 
the addition of the information from these glands would 
have made a substantial difference in predictive ability 
as they almost certainly contain less predictive informa-
tion than is contained in the contralateral parotid gland, 
whose addition did not improve predictive accuracy. It is 
possible that information about the other glands could 
prove more fruitful in even larger cohorts. While the 
model using the DVH alone is helpful for radiation plan-
ning, larger models that can accurately predict complica-
tions from any cause could help supportive care teams to 
quickly and accurately identify side effects and intervene 
proactively.
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