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Abstract 

Background  Nearly one fourth of patients with pancreatic ductal adenocarcinoma (PDAC) occur to liver metastasis 
after surgery, and liver metastasis is a risk factor for prognosis for those patients with surgery therapy. However, there 
is no effective way to predict liver metastasis post-operation.

Method  Clinical data and preoperative magnetic resonance imaging (MRI) of PDAC patients diagnosed between July 
2010 and July 2020 were retrospectively collected from three hospital centers in China. The significant MRI radiomics 
features or clinicopathological characteristics were used to establish a model to predict liver metastasis in the devel-
opment and validation cohort.

Results  A total of 204 PDAC patients from three hospital centers were divided randomly (7:3) into development 
and validation cohort. Due to poor predictive value of clinical features, MRI radiomics model had similar receiver 
operating characteristics curve (ROC) value to clinical-radiomics combing model in development cohort (0.878 vs. 
0.880, p = 0.897) but better ROC in validation dataset (0.815 vs. 0.732, p = 0.022). Radiomics model got a sensitivity of 
0.872/0.750 and a specificity of 0.760/0.822 to predict liver metastasis in development and validation cohort, respec-
tively. Among 54 patients randomly selected with post-operation specimens, fibrosis markers (α-smooth muscle 
actin) staining was shown to promote radiomics model with ROC value from 0.772 to 0.923 (p = 0.049) to predict liver 
metastasis.

Conclusion  This study developed and validated an MRI-based radiomics model and showed a good performance in 
predicting liver metastasis in resectable PDAC patients.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) accounts for 
more than 80% of pancreatic neoplasms and is one of the 
most lethal malignancies all over the world with a 5-year 
survival rate of around 8% [1]. Nearly 80% of patients are 
advanced PDAC when diagnosed and lost the oppor-
tunity for operation, and the remaining 20% of patients 
are feasible for operation as the only potentially curative 
treatment [2]. However, within patients receiving surgery, 
parts of patients might experience local recurrence or dis-
tant metastasis, even at an early stage. Apart from colo-
rectal cancer, pancreas is the second common original 
site for liver metastasis [3]. Of note, up to 80% of patients 
with metastatic pancreatic cancer eventually progress to 
liver metastasis [4]. Liver metastasis is a strong predictor 
of poor outcomes of PDAC and the median survival of 
patients with liver metastasis was reported to be less than 
6 months regardless of whether they received resection, 
palliative therapy or not [5–8]. Meanwhile, for patients 
receiving operation, 35–50% of patients were observed to 
get early recurrence within 1 year after surgery, in which 
nearly 25% of patients occurred to liver metastasis only 
[9, 10]. Hence, evaluating the risk of liver metastasis after 
surgery and identifying PDAC patients with high risk are 
necessary and urgent.

Radiomics were first proposed by Lambin in 2012, 
which were based on large amounts of high-throughput 
features extracted from magnetic resonance imaging 
(MRI) or computerized tomography (CT) images [11]. 
PDAC is a kind of heterogeneous disease with different 
clinical behaviors, while radiomics can oversimply the 
complexities of tumor improvement and behavior [12]. 
Recently, several researches have revealed the associa-
tion between radiomics and tumor biology behavior in 
various malignant diseases, such as tumor phenotype, 
response to treatment, prognosis and so on [13–16]. 
Previous study showed that radiomics had a better pre-
diction value for synchronous metastasis and early recur-
rence in colorectal cancer [17, 18], lung cancer [19] and 
pancreatic cancer [20–22], which indicated radiomics 
might be able to help clinical judgment for continuous 
treatment after surgery. However, while these researches 
showed clinical application in some occasions, there 
are no radiomics models reported in current studies to 
predict liver metastasis post-operation in patients with 
PDAC.

Meanwhile, cancer associated fibroblasts (CAFs) are 
the main composition of stroma in pancreatic cancer and 
take part in fibrosis process in pancreatic cancer [23]. 
CAFs actively communicate with and stimulate tumor 
cells, contributing to PDAC development and progres-
sion, and recent studies reported CAFs in clinical use 
associated with PDAC overall survival and lymph node 

metastasis [24–26]. However, there was no research 
showed definite association between CAFs and liver 
metastasis in clinical practice. Radiomics seemed to 
have a reflection on desmoplasia [27], thus we aimed to 
evaluate whether fibrosis markers can enhance radiom-
ics model to predict the potential of liver metastasis in 
PDAC.

In this study, we established and validated an MRI radi-
omics model to predict the risk of liver metastasis for 
PDAC patients. Fibrosis markers can promote our risk 
model but need further validation.

Method
Patient population and data management
This study was approved by the Ethics Committee of 
Sun Yat-sen Memorial Hospital (SYSMH), and patient 
informed consent was waived for this retrospective 
research. Between July 2010 and July 2020, a total of 330 
patients from SYSMH North District, 201 cases from 
SYSMH South District (North District and South Dis-
trict) and 251 patients from the First Affiliated Hospi-
tal of Sun Yat-Sen University (FAHSYSU) diagnosed as 
PDAC identified by histopathological examination after 
upfront surgery were enrolled in this study. The Exclusion 
criteria included the following: (1) lack of enhanced MRI 
test within 2  weeks before surgery; (2) low-quality MRI 
image; (3) history of previous or coexisting other malig-
nant tumors; (4) synchronous liver metastasis (occur-
rence at base line or within 3 months after surgery); (5) 
any local or systemic treatment at or before the baseline 
MRI examination; (6) follow-up for patients without liver 
metastasis after operation less than 1  year; (7) Patients 
who died within 3 months after surgery.

Several clinical characteristics, including age, sex, 
serum tumor biomarkers, and liver function tests were 
collected before surgery. All pancreas pathological speci-
mens were got from the operation tissue. The pathologi-
cal stage was referred to the 8th edition American Joint 
Committee on Cancer (AJCC) [28]. The endpoint of our 
study was occurrence of liver metastasis after surgery. 
The positive definition of endpoint were those patients 
with liver metastasis happened at least 3  months after 
surgery. Patients identified as non-liver metastasis need 
at least 1-year follow up to supervise liver metastasis via 
enhanced CT/MRI scanning.

Finally, 204 patients were enrolled into the final analy-
sis. Among them, 68 cases came from SYSMH South Dis-
trict, 114 cases came from SYSMH North District, and 
22 cases were from FAHSYSU. Patients from three cent-
ers were divided randomly (7:3) into the development 
(n = 143, 70.1%) and validation (n = 61, 29.9%) cohort 
(Fig.  1). Meanwhile, we randomly chose 54 patients, 
including 29 cases with liver metastasis and 25 cases 
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without liver metastasis, from SYSMH who had pan-
creas pathological specimens after operation to test CAFs 
markers in primary tumor by immunohistochemistry 
(IHC) test.

Imaging acquisition
All imaging data included three sets of images from three 
different scanners: preoperative T1w (weight), T2w, and 
contrast enhancing T1w (CE-T1w) portal venous phase 
MR images. T2w was respiratory triggering and CE-
T1w was performed following the intravenous injec-
tion of 0.1 mmol/kg contrast medium (Gadodiamide) as 
rate = 2 mL/s. The portal venous phase (60  s post-injec-
tion) was collected. The details of MRI protocol were 
shown in Additional file 1: Table S1.

Preoperative T1w, T2w, and CE-T1w imaging were 
used to extract radiomics features. The MRIcroGL soft-
ware (version 1.2.20210317, https://​www.​nitrc.​org) was 
used to transfer the original DICOM images to the NIFTI 
format before the segmentation of regions of interests 
(ROIs). The ROIs were manually contoured by two radiol-
ogists (G. M and L. YJ), who both had more than 10-year 
experience of interpreting abdominal images and were 
blinded to the clinical outcome during the ROI segmen-
tation. All ROI work was finished by ITK-SNAP v.3.8.0 
from UPenn (www.​itksn​ap.​org) [29] (Fig.  2). All images 

were normalized as 100 bin width scale and then resam-
pled to voxels of 3 × 3 × 3 mm by sitkBSpline method of 
interpolator. Subsequently, 1302 high-throughput radi-
omics features for each MRI sequence were automatically 
extracted from the platform based on the “Pyradiomics” 
package in Python (version 3.10.1, https://​pyrad​iomics.​
readt​hedocs.​io) [30]. The radiomics features were classi-
fied into following four groups: (a) First-order statistics 
(n = 18); (b) shape features (n = 14); (c) Texture features, 
including gray level co-occurrence matrix (GLCM, 23 
features), gray level run length matrix (GLRLM, 16 fea-
tures), gray level size zone matrix (GLSZM, 16 features), 
neighboring gray tone difference matrix (NGTDM, 5 
features) and gray level dependence matrix (GLDM, 14 
features); (d) higher-order statistical features (n = 1196) 
consisting of fist-order statistics, shape features and tex-
ture features derived from wavelet filter and Laplacian of 
Gaussian filter (σ-1, 2, 3, 4, 5).

Development of radiomics signatures
Before screening radiomics features, all features were 
normalized by Z-score normalization. Least absolute 
shrinkage and selector operation (LASSO), random for-
est (RF) algorithm (the top 20 candidates), and principal 
component analysis (PCA) were used to filter the most 
useful radiomics features from high-dimensional imaging 

Fig. 1  Workflow of this study

https://www.nitrc.org
http://www.itksnap.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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data from T1w, T2w, and CE-T1w images. Then support-
ing vector machine (SVM) model and logistic regression 
(LR) model were used to establish prediction models. 
The best model to predict liver metastasis was selected 
among LASSO-SVM, LASSO-LR, RF-SVM, RF-LR, 
PCA-SVM, and PCA-LR models.

Immunohistochemistry
The tissue after surgery was embedded in paraffin and 
sectioned into 4 μm-thick slices for immunohistochemi-
cal staining. The sections were incubated with primary 
antibody (α-smooth muscle actin, α-SMA, proteintech 
14,395–1-AP) according to antibody specification. The 
IHC staining scores were assessed depending on the 
staining intensity which were graded on scale from 0 to 3 
(0, 0–25%; 1, 26–50%; 2, 51–75%; 3, 76–100%).

Comparison of risk models
Univariate logistic regression was applied to the develop-
ment cohort for each clinical characteristic to choose the 
independent clinical features. The significant variables 
(p < 0.05) were then included in multivariable logistic 
regression analysis to build clinical prediction model for 
liver metastasis. Afterward, significant radiomics signa-
tures and clinical characteristics were included in multi-
variable logistic regression to establish a combined model 
to predict liver metastasis in the development cohort. 
Then combined model, radiomics model and clinico-
pathological model were compared via area under the 
curve (AUC) of receiver operating characteristic (ROC) 
curve analysis in the development and validation cohort. 
The decision curve analysis (DCA) was used to calculate 
the net benefits to estimate the clinical utility of forecast-
ing model. Meanwhile, we used IHC specimen cohort to 
evaluate whether the CAFs markers could make our pre-
dictive model much more suitable via comparing ROC 
curve and DCA.

Statistical analysis
Continuous variables are expressed as mean ± standard 
deviation (SD), while categorical variables are shown as 
frequency and percentage. The independent t-test and 
Mann–Whitney U-test were used to compare continu-
ous variables, while the chi-squared test or Fisher’s exact 
test were used to analyze the categorical variables when 
necessary. Delong’s test was applied to compare AUC of 
ROC curve.

All the work for significant variables screening, model 
establishment, and model comparison were finished by 
R software (version 4.1.2, https://​www.r-​proje​ct.​org/). 
SPSS 22.0 was applied to perform the statistical analysis. 
All statistical tests were two-sided with statistical signifi-
cance accepted at p < 0.05.

Results
Clinical characteristics
In total, 204 PDAC cases from three hospital centers in 
China were included in this study. Among them, 68 cases 
came from SYSMH South District, 114 cases came from 
SYSMH North District, and the other 22 cases were from 
FAHSYSU (Fig. 1). The baseline characteristics of devel-
opment cohort and validation cohort were shown in 
Table 1. No significant differences between development 
and validation cohort were detected. During median 12 
(3–89) month follow-up, 55 patients (22.7%) got liver 
metastasis identified by following enhanced MRI or CT 
detection and the median time of liver metastasis occur-
rence was 6 (3–17) months after surgery.

Radiomics signature for liver metastasis prediction
3906 radiomics features from T1w, T2w, and CE-T1w 
were used to establish a prediction model. In the devel-
opment and validation cohort, the LASSO-SVM model 
resulted in AUCs of 0.878 and 0.815, respectively; 
the LASSO-LR model got AUCs of 0.870 and 0.821, 

Fig. 2  Manual segmentation of region of interest in pancreatic cancer

https://www.r-project.org/
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respectively; the RF-SVM model calculated the AUCs 
as 0.788 and 0.736, respectively; the RF-LR model 
resulted in AUCs of 0.840 and 0.710, respectively; 
the PCA-SVM model leaded to AUCs of 0.794 and 
0.756, respectively; and the PCA-LR model induced 
the AUCs of 0.825 and 0.762, respectively (Addi-
tional file  1: Table  S2). Though LASSO-SVM model 
had similar AUC to LASSO-LR model, it had better 
sensitivity/specificity in development and validation 
cohort (0.872/0.760 vs. 0.949/0.654, and 0.750/0.822 
vs. 0.250/0.956, respectively). Therefore, the LASSO-
SVM model was selected as the most suitable model 
with the best performance to predict liver metasta-
sis. The results of LASSO regression were shown in 
Fig. 3 and 10 variables included in LASSO-SVM model 
were displayed in Additional file  1: Table  S3. Based 
on the output probability of the SVM model, we con-
vert the output probability into radiomic score (Rad 

score = PSVM, range 0–1, OR 3780, 95% CI 286–84,293, 
p < 0.001).

Clinical model for liver metastasis prediction
The association between clinical characteristics and liver 
metastasis in development cohort was shown in Table 2. 
The variables with p value less than 0.05 in univariable 
analysis were considered for clinical prediction model. As 
a result, age (OR 0.946, p = 0.007) and N stage (OR 3.209, 
p = 0.004) were included for Logistic regression model. 
Finally, the clinical model consisted of age and N stage 
resulted in an AUC of 0.712 and 0.551 in development 
and validation cohort, respectively.

The multivariable logistic regression was used to com-
bine clinical signatures and radiomics signatures to pre-
dict liver metastasis. The clinical-radiomics model and 
radiomics model had similar AUC value in development 
cohort (0.880 vs. 0.878, p = 0.897), both of which were 

Table 1  Clinicopathological characteristics of patients in development and validation cohorts

PD Pancreaticoduodenectomy, PPPD Pylorus-preserving pancreaticoduodenectomy, PNI Perineural invasion

Characteristics Total cohort Development cohort Validation cohort p

Age (y) 60.5 ± 10.0 59.8 ± 10.0 62.1 ± 9.8 0.129

Gender 0.703

 Male (%) 81 (39.7%) 58 (40.5%) 23 (37.7%)

 Female (%) 123 (60.3%) 85 (59.5%) 38 (62.3%)

Tumor biomarker pre-operation

 CA199 (U/ml) 964.4 ± 2683.3 1087.5 ± 2961.0 675.9 ± 1868.1 0.317

 CEA (mg/ml) 7.6 ± 16.8 7.4 ± 15.2 8.1 ± 20.2 0.792

 AFP (IU/ml) 3.6 ± 3.8 3.7 ± 4.4 3.2 ± 1.9 0.399

Tumor region 0.711

 Head 164 (80.4%) 114 (79.7%) 50 (82.0%)

 Body/tail 40 (19.6%) 29 (20.3%) 11 (18.0%)

Operation method 0.865

 Partial resection 13 (6.4%) 10 (7.0%) 3 (4.9%)

 PD 153 (75.0%) 107 (74.8%) 46 (75.4%)

 PPPD 2 (1.0%) 1 (0.7%) 1 (1.6%)

 Distal pancreatic resection 36 (17.6%) 25 (17.5%) 11 (18.1%)

T stage 0.370

 T1-2 90 (44.1%) 66 (46.2%) 24 (39.3%)

 T3 114 (55.9%) 77 (53.8%) 37 (60.7%)

N stage 0.242

 0 93 (45.6%) 69 (48.3%) 24 (39.3%)

 1–2 111 (54.4%) 74 (51.7%) 37 (60.7%)

Differentiation (poorly, %) 63 (30.9%) 41 (28.7%) 22 (36.1%) 0.295

PNI (%) 147 (72.1%) 102 (71.3%) 45 (73.8%) 0.722

Surgical margin (R1, %) 17 (8.3%) 14 (9.8%) 3 (4.9%) 0.249

Post-operation chemotherapy 103 (50.5%) 75 (52.4%) 28 (45.9%) 0.392

Liver metastasis (%) 55 (22.7%) 39 (27.3%) 16 (26.2%) 0.878

Time for liver metastasis after surgery 
(month)

6 (3–17) 3 (3–17) 6 (3–13) 0.498

Follow-up time (month) 12 (3–89) 12 (3–89) 12 (3–34) 0.179



Page 6 of 11Huang et al. Radiation Oncology           (2023) 18:79 

better than single clinical model in development cohort 
(0.880 vs. 0.709, p < 0.001; 0.878 vs. 0.709, p = 0.002, 
respectively). Due to poor prediction value of clinical 
model in validation cohort (AUC = 0.576), the AUC of 

combing model was worse than single radiomics model 
in validation cohort (0.732 vs. 0.815, p = 0.022, Fig. 4). 
The DCA curve also showed radiomics model provided 
a better net benefit of threshold probabilities to predict 

Fig. 3  LASSO regression for radiomics features selection. A In the LASSO model, tenfold cross-validation as the minimum criteria was used to select 
the penalization parameter λ. The minimum criteria and the 1-SE criteria were used to draw the dotted vertical lines at the optimal values. B The 
illustration about LASSO coefficient profiles to prediction for liver metastasis in pancreatic cancer patients
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Table 2  Univariate and multivariate analysis of clinical characteristics associated with liver metastasis in development cohort

PNI Perineural invasion

Characteristics Univariate logistic regression Multivariate logistic regression

OR (95% CI) p OR (95% CI) p

Age (y) 0.946 (0.907–0.983) 0.007 0.951 (0.911–0.990) 0.018

Gender (male/female) 1.31 (0.62–2.86) 0.487

Tumor biomarker pre-operation

 CA199 (U/ml) 1.0001(0.9999–1.0002) 0.229

 CEA (mg/ml) 1.001 (0.969–1.025) 0.919

 AFP (IU/ml) 1.087 (0.999–1.230) 0.091

Tumor region (head/body + tail) 0.648 (0.274–1.598) 0.331

T stage (T3/T1–2) 0.867 (0.410–1.815) 0.706

N stage (N1-2/N0) 3.209 (1.478–7.371) 0.004 2.883 (1.303–6.718) 0.011

Differentiation (well/poorly) 0.626 (0.286–1.396) 0.244

PNI ( ±) 1.481 (0.649–3.635) 0.367

Surgical margin (R1/R0) 1.074 (0.280–3.445) 0.909

Post-operation chemotherapy ( ±) 1.663 (0.791–3.581) 0.184

Fig. 4  The ROC curve and decision curve of prediction model in development and validation cohort. Discriminatory accuracy in predicting 
liver metastasis was detected by ROC analysis for comparing the AUC in development (A) and validation (B) cohorts. Decision curve analysis for 
combined, radiomic, clinical model in development (C) and validation (D) cohorts
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liver metastasis than combination model due to poor net 
benefit of clinical model in validation cohort (Fig. 4c, d). 
Due to poor ROC value of combination model Finally, 
we chose radiomics model alone as the best prediction 
model to predict the risk of liver metastasis in pancreatic 
cancer after surgery.

IHC model via CAFs biomarker promoting prediction value of 
radiomics model
Because clinical model provided a deplorable predic-
tion value for liver metastasis after surgery, we had to 
consider the value of pathological staining for these 
patients receiving operation. To evaluate the predictive 
value of fibrosis in liver metastasis, we randomly chose 
54 patients from the internal cohort with post-operation 
pancreas specimens (25 liver metastasis vs. 29 non-Liver 
metastasis) and took IHC test for CAFs markers. We 
selected α-SMA as a representative marker for fibrosis 
and the detailed standards of IHC scores were shown in 
Additional file 1: Fig. S1. For patients with a high risk of 
liver metastasis via radiomics score (Rad score > 0.362), 

they got a much higher IHC score of α-SMA than those 
with low risk (2.35 vs. 1.65, p = 0.010, Fig.  5a). Similar 
results were shown in patients with liver metastasis com-
pared with those without liver metastasis (2.36 vs. 1.31, 
p < 0.001, Fig.  5b). Then we evaluated our risk model in 
this cohort. The radiomics and IHC combination model 
provided better AUC (0.923 vs. 0.772, p = 0.049) and deci-
sion curve than single radiomics model, but no difference 
of AUC value was found between radiomics model and 
IHC model (0.772 vs. 0.871, p = 0.246, Fig. 5c, d).

Discussion
Liver metastasis is a common and serious outcome for 
PDAC patients, and patients relapsed with liver metas-
tasis had a worse prognosis compared those without 
recurrence [8]. Thus, we hoped to establish a prediction 
system to forecast the risk of liver metastasis for those 
PDAC patients receiving surgery in early stage, in order 
to carry out more aggressive intervention therapy and 
follow-up. In this multicenter study, we established and 
validated an MRI-based radiomics model to predict liver 

Fig. 5  IHC score of α-SMA in PDAC promoting radiomics model. A α-SMA level in different risk group by radiomics score. B α-SMA score in PDAC 
patients with/without liver metastasis. C ROC curve of different risk models in PDAC patients with IHC staining. D The decision curve of different risk 
models in PDAC patients with IHC staining
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metastasis in individuals with PDAC after operation. We 
extracted high-throughput radiomics features from T1w, 
T2w and CE-T1w sequence of MRI images before opera-
tion, and developed a prediction model for liver metas-
tasis in development and validation cohort from three 
hospital centers.

In radiomics features, histogram feature is a low-order 
radiomics parameter, describing the distribution of voxel 
intensities related to the properties of individual pixels 
[31]. As previous study reported, some histogram fea-
tures were correlated to the biobehavioral, like hypoat-
tenuation value reflecting degree of tumor necrosis and 
isoattenuating enhancement pattern meaning probably 
well-differentiated tumor [32, 33]. However, shape fea-
tures and histogram features showed no prediction value 
for liver metastasis and did not included in our finally 
model. For texture features, especially some high-order 
features derived from various transform filter, showed 
well prognosis value in various malignancies, including 
breast cancer, colorectal cancer, pancreatic cancer and 
so on [34–36]. Our results proved that high-order fea-
tures had a well prediction value for liver metastasis in 
PDAC patients, indicating their value reflecting to tumor 
behavior process, which was also verified in researches 
utilizing texture signatures to predicting early recurrence 
in PDAC [20]. However, high-order texture features had 
their own problems that they could not be easily inter-
preted in clinical description. Due to challenges to asso-
ciate single radiomics signature with complex tumor 
biological behaviors, a multifactor model formed from 
various radiomics features can ameliorate this issue. Our 
results showed that the radiomics model derived from 
development cohort achieved a satisfactory prediction 
value for liver metastasis in validation cohort as well.

In our analysis, age was a protection factor for liver 
metastasis and older patients were much easier to occur 
to liver metastasis. Patients with lymph node metastasis 
seemed much easier to occur to liver metastasis after sur-
gery, which were not confirmed in our validation cohort. 
Though PDAC with high tumor size (T stage) or lymph 
node metastasis had higher likelihood of metastasis, 
patients including in our analysis had no advanced metas-
tasis before surgery and most of them received complete 
R0 resection, which is the possible reason why tumor 
size and lymph node metastasis had worse prediction 
value in our cohort. Previous study also reported tumor 
region and extra-pancreatic neuropathy might had asso-
ciation with liver metastasis post-operation [37, 38]. They 
showed tumors in pancreatic body or trail were easier to 
metastasis but not verified in our study. 72.1% cases in 
our cohort had PNI and our data showed no correlation 
between PNI and liver metastasis. However, no research 
proved that any useful prediction model based on such 

clinicopathological features were established or validated. 
Meanwhile, in our study, the clinicopathological features 
also had poor prediction value to liver metastasis, which 
was not consistent in validation cohort. Further study 
should pay more attention to exploring much more effec-
tive clinical features to predict risk of liver metastasis in 
pancreatic cancer. A good example was that, Tien et  al. 
[39] proposed that a high circulating tumor cells (CTC) 
in portal vein had a 64.7% sensitivity and 95.4% specific-
ity to predict liver metastasis within 6 months after sur-
gery, which needed further validation.

Due to the poor predictive value of clinical charac-
teristics for liver metastasis in PDAC patients receiving 
surgery, we tried to use pathological staining to enhance 
our radiomics model. Compared with clinical charac-
teristics, pathological signatures seemed to have a bet-
ter ability to reflect bio-behaviors of PDAC. Pancreatic 
cancer is rich in fibrous stroma and CAFs are the main 
cells mostly from mesenchymal origin found in tumor 
microenvironment playing an important role in fibro-
sis [40]. Besides metastasis foci, CAFs can also promote 
primary tumor cells invasion and metastasis [41]. Sugai 
et  al. [42] reported CAFs might have a prediction value 
of lymph node metastasis in invasive submucosal colo-
rectal cancer, and CAFs with nectin-1, monocarboxylate 
transporters (MCTs), fibroblast activation protein (FAP) 
marker had prediction value of lymph node metastasis 
or overall survival in pancreatic cancer [24, 43, 44], sug-
gesting potential clinical use of CAFs in prognosis. In our 
study, we found radiomics signature had a good asso-
ciation with fibrosis level in pancreatic cancer, and the 
addition of α-SMA score promoted AUC of radiomics 
model. Wang et  al. [25] pointed pancreatic cancer with 
loose-type had a higher potential of metastasis, but our 
results suggesting dense-type were easier to occur to liver 
metastasis. However, α-SMA is a common marker of 
CAFs while the consists of CAFs had heterogeneity [40, 
45]. Different subtype of CAFs had their own function 
and markers, and the heterogeneity of CAFs influenced 
the potential of liver metastasis in individual patient. 
Therefore, further study should concentrate on the com-
position of subtype of CAFs to evaluate the risk of liver 
metastasis. Our study provided a potential for fibrosis 
level to predict liver metastasis for PDAC patients receiv-
ing surgery, and further study can consider MR scanning 
for pancreas stiffness detection to replace of IHC staining 
in order to neoadjuvant treatment to reduce risk of liver 
metastasis after surgery.

However, there are still several limitations in our study. 
First, it was a retrospective study with heterogeneity in 
MR acquisition among different MR scanners between 
three different hospital centers. Therefore, we made 
normalization and resample before radiomics features 



Page 10 of 11Huang et al. Radiation Oncology           (2023) 18:79 

extraction to reduce heterogeneity, and further work 
might concentrate on a prospective verification of our 
risk model based on standard MR scanning protocol and 
unified MR scanner. Second, the cases with specimen for 
IHC analysis were limited and much CAFs associated 
marker were also considered to including in further risk 
model. Third, due to the limitation of amounts of patients 
in three hospital centers, we mixed patients and divided 
into development and validation cohorts, and further 
study should include more patients from different centers 
to validate our model.

In conclusion, this research established and validated 
a radiomics model to predict liver metastasis after sur-
gery in PDAC patients. This prediction model can assist 
clinicians to decide clinical treatment after operation for 
patients with high risk of liver metastasis. CAFs markers 
has their own potential to predict liver metastasis com-
bining with radiomics, but still need a further validation.

Abbreviations
PDAC	� Pancreatic ductal adenocarcinoma
MRI	� Magnetic resonance imaging
ROC	� Receiver operating characteristics
CAFs	� Cancer associated fibroblasts
IHC	� Immunohistochemistry
CE-T1w	� Contrast enhancing T1w
ROIs	� Regions of interests
GLCM	� Gray level co-occurrence matrix
GLRLM	� Gray level run length matrix
GLSZM	� Gray level size zone matrix
NGTDM	� Neighboring gray tone difference matrix
GLDM	� Gray level dependence matrix
LASSO	� Least absolute shrinkage and selector operation
RF	� Random forest
PCA	� Principal component analysis
SVM	� Supporting vector machine
LR	� Logistic regression
AUC​	� Area under the curve
DCA	� Decision curve analysis
SD	� Standard deviation
PNI	� Perineural invasion
α-SMA	� α-Smooth muscle actin

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13014-​023-​02273-w.

Additional file 1: Table S1. MRI scanning parameters for patients. 
Table S2. AUC of ROC analysis in different risk model for liver metastasis 
prediction. Table S3. Variables of radiomic features selected by LASSO 
regression. Fig. S1. Standard figures of α-SMA IHC scores.

Acknowledgements
We thank all the participants who worked for this study. We especially thank 
Dr. Jiang Chendan for his help for our issues of python code.

Author contributions
YH, SZ and YL were co-first authors and contributed equally to this study in 
study design, data acquisition, data analysis and manuscript drafting. GL, 
MG and KH were the corresponding author responsible for study design, 
quality control and manuscript drafting. YL and MG were responsible for ROIs 

segmentation. JZ, YL and SC help to clinical data acquisition and data analysis. 
All authors read and approved the final manuscript.

Funding
This study was supported by Medical Scientific Research Foundation of 
Guangdong Province of China (A2016210), Science and Technology Program 
of Guangzhou, China (202102020161), GuangDong Basic and Applied Basic 
Research Foundation (2021A1515110240) and National Natural Science Foun-
dation of China (NSFC 81874057, NSFC 82203036).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the Sun Yat-sen Memorial Hospital Ethics 
Committee, and informed consent from participants was exempted due to 
retrospective study.

Consent for publication
Informed consent was obtained from the patients for publication of this 
report.

Competing interests
The authors declare no potential competing interests.

Author details
1 Department of Gastroenterology, Sun Yat‑Sen Memorial Hospital, Sun Yat-Sen 
University, Guangzhou 510120, China. 2 Guangdong Provincial Key Laboratory 
of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‑Sen Memorial 
Hospital, Sun Yat-Sen University, Guangzhou 510120, China. 3 Department 
of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhong 
Shan Road 2, Guangzhou 510080, China. 4 Department of Radiology, Sun 
Yat‑Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China. 

Received: 14 October 2022   Accepted: 27 April 2023

References
	1.	 Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic 

cancer: global trends, etiology and risk factors. World J Oncol. 
2019;10(1):10–27.

	2.	 Ducreux M, Cuhna AS, Caramella C, et al. Cancer of the pancreas: ESMO 
clinical practice guidelines for diagnosis, treatment and follow-up. Ann 
Oncol Off J Eur Soc Med Oncol. 2015;26(Suppl 5):v56-68.

	3.	 de Ridder J, de Wilt JH, Simmer F, Overbeek L, Lemmens V, Nagtegaal 
I. Incidence and origin of histologically confirmed liver metas-
tases: an explorative case-study of 23,154 patients. Oncotarget. 
2016;7(34):55368–76.

	4.	 Hess KR, Varadhachary GR, Taylor SH, et al. Metastatic patterns in adeno-
carcinoma. Cancer. 2006;106(7):1624–33.

	5.	 Ouyang H, Wang P, Meng Z, et al. Multimodality treatment of pancreatic 
cancer with liver metastases using chemotherapy, radiation therapy, and/
or Chinese herbal medicine. Pancreas. 2011;40(1):120–5.

	6.	 Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for 
metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.

	7.	 Tsilimigras DI, Brodt P, Clavien PA, et al. Liver metastases. Nat Rev Dis Prim-
ers. 2021;7(1):27.

	8.	 Shi HJ, Jin C, Fu DL. Preoperative evaluation of pancreatic ductal adeno-
carcinoma with synchronous liver metastasis: Diagnosis and assessment 
of unresectability. World J Gastroenterol. 2016;22(45):10024–37.

	9.	 Yamamoto Y, Ikoma H, Morimura R, Konishi H, Murayama Y, Komatsu S, 
Shiozaki A, Kuriu Y, Kubota T, Nakanishi M, Ichikawa D, Fujiwara H, Oka-
moto K, Sakakura C, Ochiai T, Otsuji E. Optimal duration of the early and 
late recurrence of pancreatic cancer after pancreatectomy based on the 

https://doi.org/10.1186/s13014-023-02273-w
https://doi.org/10.1186/s13014-023-02273-w


Page 11 of 11Huang et al. Radiation Oncology           (2023) 18:79 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

difference in the prognosis. Pancreatology. 2014;14(6):524–9. https://​doi.​
org/​10.​1016/j.​pan.​2014.​09.​006.

	10.	 Groot VP, Gemenetzis G, Blair AB, et al. Defining and predicting early 
recurrence in 957 patients with resected pancreatic ductal adenocarci-
noma. Ann Surg. 2019;269(6):1154–62.

	11.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Ruud G, Stiphout 
PG, Zegers CML, Gillies R, Boellard R, Dekker A, Aerts HJWL. Radiom-
ics: extracting more information from medical images using advanced 
feature analysis. Eur J Cancer. 2012;48(4):441–6. https://​doi.​org/​10.​1016/j.​
ejca.​2011.​11.​036.

	12.	 Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the muta-
tional landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.

	13.	 Khorrami M, Prasanna P, Gupta A, et al. Changes in CT radiomic features 
associated with lymphocyte distribution predict overall survival and 
response to immunotherapy in non-small cell lung cancer. Cancer Immu-
nol Res. 2020;8(1):108–19.

	14.	 Dasgupta A, Gupta T, Pungavkar S, et al. Nomograms based on preopera-
tive multiparametric magnetic resonance imaging for prediction of 
molecular subgrouping in medulloblastoma: results from a radiogenom-
ics study of 111 patients. Neuro Oncol. 2019;21(1):115–24.

	15.	 Li M, Zhu YZ, Zhang YC, Yue YF, Yu HP, Song B. Radiomics of rectal cancer 
for predicting distant metastasis and overall survival. World J Gastroen-
terol. 2020;26(33):5008–21.

	16.	 Lu H, Arshad M, Thornton A, et al. A mathematical-descriptor of tumor-
mesoscopic-structure from computed-tomography images annotates 
prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat 
Commun. 2019;10(1):764.

	17.	 Liu M, Ma X, Shen F, Xia Y, Jia Y, Lu J. MRI-based radiomics nomogram to 
predict synchronous liver metastasis in primary rectal cancer patients. 
Cancer Med. 2020;9(14):5155–63.

	18.	 Liu H, Zhang C, Wang L, et al. MRI radiomics analysis for predicting preop-
erative synchronous distant metastasis in patients with rectal cancer. Eur 
Radiol. 2019;29(8):4418–26.

	19.	 Wang G, Wang B, Wang Z, et al. Radiomics signature of brain metastasis: 
prediction of EGFR mutation status. Eur Radiol. 2021;31(7):4538–47.

	20.	 Tang TY, Li X, Zhang Q, et al. Development of a novel multiparametric MRI 
radiomic nomogram for preoperative evaluation of early recurrence in 
resectable pancreatic cancer. J Magn Reson Imaging. 2020;52(1):231–45.

	21.	 Fang WH, Li XD, Zhu H, et al. Resectable pancreatic ductal adenocar-
cinoma: association between preoperative CT texture features and 
metastatic nodal involvement. Cancer Imaging. 2020;20(1):17.

	22.	 Gao J, Huang X, Meng H, et al. Performance of multiparametric functional 
imaging and texture analysis in predicting synchronous metastatic 
disease in pancreatic ductal adenocarcinoma patients by hybrid PET/MR: 
initial experience. Front Oncol. 2020;10:198.

	23.	 Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of 
pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-
associated fibroblasts. Cancer Discov. 2019;9(8):1102–23.

	24.	 Yamada M, Hirabayashi K, Kawanishi A, et al. Nectin-1 expression in 
cancer-associated fibroblasts is a predictor of poor prognosis for pancre-
atic ductal adenocarcinoma. Surg Today. 2018;48(5):510–6.

	25.	 Wang Y, Liang Y, Xu H, et al. Single-cell analysis of pancreatic ductal ade-
nocarcinoma identifies a novel fibroblast subtype associated with poor 
prognosis but better immunotherapy response. Cell Discov. 2021;7(1):36.

	26.	 Shi M, Yu DH, Chen Y, et al. Expression of fibroblast activation protein in 
human pancreatic adenocarcinoma and its clinicopathological signifi-
cance. World J Gastroenterol. 2012;18(8):840–6.

	27.	 Park HJ, Park B, Lee SS. Radiomics and deep learning: hepatic applications. 
Korean J Radiol. 2020;21(4):387–401.

	28.	 Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland 
RK, Meyer L, Gress DM, Byrd DR, Winchester DP. The eighth edition AJCC 
cancer staging manual: continuing to build a bridge from a population-
based to a more “personalized” approach to cancer staging: the eighth 
edition AJCC cancer staging manual. CA Cancer J Clin. 2017;67(2):93–9. 
https://​doi.​org/​10.​3322/​caac.​21388.

	29.	 Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour 
segmentation of anatomical structures: significantly improved efficiency 
and reliability. Neuroimage. 2006;31(3):1116–28.

	30.	 van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational 
radiomics system to decode the radiographic phenotype. Can Res. 
2017;77(21):e104–7.

	31.	 Vidić I, Egnell L, Jerome NP, et al. Support vector machine for breast cancer 
classification using diffusion-weighted MRI histogram features: preliminary 
study. J Magn Reson Imaging. 2018;47(5):1205–16.

	32.	 Takumi K, Fukukura Y, Higashi M, et al. Pancreatic neuroendocrine tumors: 
correlation between the contrast-enhanced computed tomography features 
and the pathological tumor grade. Eur J Radiol. 2015;84(8):1436–43.

	33.	 Sandrasegaran K, Lin Y, Asare-Sawiri M, Taiyini T, Tann M. CT texture analysis of 
pancreatic cancer. Eur Radiol. 2019;29(3):1067–73.

	34.	 Yu Y, Tan Y, Xie C, et al. Development and validation of a preoperative mag-
netic resonance imaging radiomics-based signature to predict axillary lymph 
node metastasis and disease-free survival in patients with early-stage breast 
cancer. JAMA Netw Open. 2020;3(12):e2028086.

	35.	 Khalvati F, Zhang Y, Baig S, et al. Prognostic value of CT radiomic features in 
resectable pancreatic ductal adenocarcinoma. Sci Rep. 2019;9(1):5449.

	36.	 Choi MH, Lee YJ, Yoon SB, Choi JI, Jung SE, Rha SE. MRI of pancreatic ductal 
adenocarcinoma: texture analysis of T2-weighted images for predicting long-
term outcome. Abdom Radiol. 2019;44(1):122–30.

	37.	 Kovač JD, Mayer P, Hackert T, Klauss M. The time to and type of pancreatic 
cancer recurrence after surgical resection: is prediction possible? Acad Radiol. 
2019;26(6):775–81.

	38.	 Lu M, Xiu DR, Guo LM, Yuan CH, Zhang LF, Tao LY. Extrapancreatic 
neuropathy correlates with early liver metastasis in pancreatic head 
adenocarcinoma. Onco Targets Ther. 2019;12:11083–95.

	39.	 Tien YW, Kuo HC, Ho BI, et al. A high circulating tumor cell count in portal 
vein predicts liver metastasis from periampullary or pancreatic cancer: 
a high portal venous CTC count predicts liver metastases. Medicine. 
2016;95(16):e3407.

	40.	 Boyd LNC, Andini KD, Peters GJ, Kazemier G, Giovannetti E. Heterogeneity 
and plasticity of cancer-associated fibroblasts in the pancreatic tumor 
microenvironment. Semin Cancer Biol. 2022;82:184–96. https://​doi.​org/​
10.​1016/j.​semca​ncer.​2021.​03.​006.

	41.	 Bhattacharjee S, et al. Tumor restriction by type I collagen opposes 
tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest. 
2021. https://​doi.​org/​10.​1172/​JCI14​6987.

	42.	 Sugai T, Yamada N, Osakabe M, et al. Microenvironmental markers are 
correlated with lymph node metastasis in invasive submucosal colorectal 
cancer. Histopathology. 2021;79(4):584–98.

	43.	 Sukeda A, Nakamura Y, Nishida Y, et al. Expression of monocarboxy-
late transporter 1 is associated with better prognosis and reduced 
nodal metastasis in pancreatic ductal adenocarcinoma. Pancreas. 
2019;48(8):1102–10.

	44.	 Zhang C, Ding J, Xu X, et al. Tumor microenvironment characteristics of 
pancreatic cancer to determine prognosis and immune-related gene 
signatures. Front Mol Biosci. 2021;8:645024.

	45.	 Lee JJ, Bernard V, Semaan A, et al. Elucidation of tumor-stromal heteroge-
neity and the ligand-receptor interactome by single-cell transcriptomics 
in real-world pancreatic cancer biopsies. Clin Cancer Res Off J Am Assoc 
Cancer Res. 2021;27(21):5912–21.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.pan.2014.09.006
https://doi.org/10.1016/j.pan.2014.09.006
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.3322/caac.21388
https://doi.org/10.1016/j.semcancer.2021.03.006
https://doi.org/10.1016/j.semcancer.2021.03.006
https://doi.org/10.1172/JCI146987

	Development and validation of a radiomics model of magnetic resonance for predicting liver metastasis in resectable pancreatic ductal adenocarcinoma patients
	Abstract 
	Background 
	Method 
	Results 
	Conclusion 

	Introduction
	Method
	Patient population and data management
	Imaging acquisition
	Development of radiomics signatures
	Immunohistochemistry
	Comparison of risk models
	Statistical analysis

	Results
	Clinical characteristics
	Radiomics signature for liver metastasis prediction
	Clinical model for liver metastasis prediction
	IHC model via CAFs biomarker promoting prediction value of radiomics model

	Discussion
	Anchor 21
	Acknowledgements
	References


