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Abstract 

Background  The risk of ototoxicity, characterized by hearing impairment, tinnitus, or middle ear inflammation, is ele-
vated in both child and adult cancer survivors who have undergone head-neck or brain radiation, or a combination 
of the two. To provide optimal care for these cancer survivors and minimize subsequent complications, it is crucial to 
comprehend the relationship between radiotherapy and ototoxicity.

Methods  A comprehensive search of databases, including the Cochrane Library, PubMed, Embase, and Web of 
Science, was conducted from the inception of the knowledge base up until January 2023. The metafor-package was 
employed to compare ototoxicity rates in individuals receiving radiotherapy. Two independent assessors extracted 
data and analyzed targets using a random-effects model.

Results  Out of the 28 randomized controlled trials (RCTs) included in the analysis, 25 were prospective RCTs. Sub-
group analysis revealed that mean cochlear radiation dose, primary tumor location, radiotherapy modality, and 
patient age significantly influenced total hearing impairment. Intensity-modulated radiotherapy was associated 
with less ototoxicity than 2D conventional radiotherapy (OR, 0.53; 95% CI, 0.47–0.60; P = 0.73; I2 = 0%). Stereotactic 
radiotherapy appeared to be a superior option for hearing preservation compared to radiosurgery (OR, 1.44; 95% CI, 
1.00–2.07; P = 0.69; I2 = 0%). Children demonstrated a higher risk of hearing impairment than adults. More than 50% 
of patients with vestibular neuroadenoma experienced hearing impairment following radiation therapy. A strong 
association was observed between the average cochlear radiation dose and hearing impairment. Increased cochlear 
radiation doses may result in a heightened risk of hearing impairment.

Conclusion  Several risk factors for radiation-induced hearing impairment were identified in this study. High cochlear 
radiation doses were found to exacerbate the risk of hearing impairment resulting from radiation therapy.

Keywords  Radiation exposure, Radiotherapy, Radiation dose, Ototoxicity, Cochlea

†Yan Huang and Hong Zhou have contributed equally to this study

*Correspondence:
Meihua Wang
wangmeihua1234@suda.edu.cn
Judong Luo
judongluo@163.com
1 Department of Radiotherapy, The Affiliated Changzhou Second People’s 
Hospital of Nanjing Medical University, Changzhou Medical Center, 
Nanjing Medical University, Changzhou, China
2 Department of Head and Neck Surgery, Graduate School of Dalian 
Medical University, Dalian, China
3 Department of Otolaryngology, Shidong Hospital, Yangpu District, 
Shidong Hospital Affiliated to University of Shanghai for Science 
and Technology, Shanghai, China

4 The Third Department of Internal Medicine, Hospital of Traditional 
Chinese Medicine, Lingcheng, Dezhou, Shandong Province, China
5 Department of Obstetrics and Gynecology, Dongchangfu Maternal 
and Child Health Hospital of Liaocheng, Liaocheng, China
6 Department of Head and Neck Surgery, The Affiliated Changzhou No.2 
People’s Hospital of Nanjing Medical University, Changzhou, China
7 Department of Pathology, Changzhou Tumor Hospital, Changzhou, 
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-023-02268-7&domain=pdf


Page 2 of 17Huang et al. Radiation Oncology           (2023) 18:95 

Introduction
Ototoxicity, which can manifest as hearing impairment, 
tinnitus, and/or vertigo, is a recognized adverse effect asso-
ciated with a group of antitumor therapies, including plati-
num chemotherapy, radiotherapy, or surgery involving the 
ear and auditory nerves [1]. Hearing impairment can lead 
to communication and social difficulties, ultimately reduc-
ing the quality of life. In children, hearing impairment can 
severely impair cognitive development as well as language 
and social skills. Although the structure of the human ear 
is formed at birth, the maturation of neural pathways and 
auditory structures continues during infancy and early 
childhood, making young children particularly vulnerable 
to radiotherapy-induced ototoxicity [2].

Radiation therapy (RT), which can be utilized as a sin-
gle treatment modality or as an adjuvant treatment before 
and after surgery, is commonly used to treat patients 
with a variety of cancers. Patients with locally advanced 
and inoperable head and neck tumors are usually treated 
with cisplatin-based chemoradiotherapy. Cisplatin or 
carboplatin-based chemotherapy drugs are known to 
cause ototoxicity [3]. Winther et al. discovered that inner 
ear radiation in guinea pigs resulted in extensive degen-
eration of hair cells outside Corti organs. Concurrently, 
radiation therapy to the temporal bone led to Corti organ 
damage and auditory vestibular nerve atrophy [4]. In 
radiation therapy for head, neck, or brain malignancies, 
the middle ear, inner ear, and brainstem may be exposed 
to high doses of ionizing radiation [5]. The underlying 
physiological processes leading to hearing impairment 
may vary depending on the location of radiation-induced 
lesions. If hearing impairment arises from damage to 
middle ear components, such as eustachian tubes or 
ossicles, it is classified as conductive. In contrast, senso-
rineural hearing loss (SNHL) results from lesions in the 
cochlea or the auditory system’s posterior section [6].

Despite the prevalence and severity of ototoxicity 
following radiotherapy, it has seldom been reported in 
radiation oncology literature. The correlation between 
cochlear radiation dose and subsequent morbidity has 
rarely been documented. The objective of this study is 
to assess the incidence of various factors that may con-
tribute to radiotherapy-induced ototoxicity.

Methods
This meta-analysis was conducted in accordance with 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) [7].

Data sources and searches
Databases, including the Cochrane Library, PubMed, 
Embase, and Web of Science, were searched from 

inception until January 2023. Medical Subject Headings 
(MeSH) and text word combinations were employed to 
create three subsets of references: the first subset encom-
passed radiotherapy (such as intensity-modulated radio-
therapy, proton radiotherapy, carbon ion radiotherapy, 
photon radiation, gamma knife, stereotactic radiotherapy, 
etc.); the second subset involved complications related 
to hearing (namely, ototoxicity, hearing impairment, 
and hearing loss); and the third subset pertained to can-
cer. After an initial screening of titles or abstracts, two 
independent reviewers (YH, HZ) assessed the full text 
of relevant publications and the reference lists for final 
inclusion. Additionally, references considered potentially 
relevant were searched and thoroughly evaluated.

Study selection
Studies were included based on the following criteria: 
(1) studies that reported hearing impairment in cancer 
patients due to RT as a first-line treatment; (2) hearing 
outcomes obtained from pure tone audiograms (either 
air and bone conduction or bone conduction alone) con-
ducted before and after treatment; (3) studies providing 
the number of individuals evaluable for toxicity following 
radiotherapy and the number of individuals with hear-
ing impairment; (4) studies that clearly defined hearing 
impairment and offered sufficient irradiation informa-
tion to quantify the effect; and (5) studies that were ran-
domized controlled trials, excluding one-arm trials. All 
criteria needed to be met for study inclusion. Exclu-
sion criteria encompassed postoperative studies, single-
arm studies, case reports, reviews, meeting minutes or 
abstracts, articles not published in English, and studies 
with cisplatin as monotherapy.

Data extraction
Two evaluators independently employed standardized 
forms to extract and summarize the following data: first 
author, year of publication, study ID, country, cancer 
type, radiotherapy design, radiotherapy mode, coch-
lear radiation dose, total number of patients, number of 
patients for safety analysis, standard version of general 
terms for adverse events, rate of hearing impairment, and 
frequency of tinnitus and vertigo symptoms. The stand-
ard for general terms of adverse events served as the 
most commonly used tool to evaluate the type and sever-
ity of adverse events in clinical practice, featuring a grad-
ing scale and clear definitions.

Quality assessment
Two reviewers (AZ, JW) evaluated the risk of bias 
based on the original studies, utilizing the Cochrane 
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Collaboration’s tool. Five aspects of adequacy were 
assessed: random sequence generation, allocation con-
cealment, blinding, outcome assessment, and outcome 
reporting [8]. Each item was assigned an assessment 
indicator related to risk of bias, classified as yes, no, or 
unclear. Any disagreements regarding study selection, 
data extraction, and quality assessment were resolved 
through discussions with statistical experts [9].

Data synthesis and statistical analysis
Meta-analysis was performed using R(4.2.1) statistical 
software (metafor and meta package). Fixed-effect or 
random-effects models were employed to estimate event 
rates and their corresponding 95% confidence intervals. 
Forest plots were constructed to summarize data and 
incidence for each analysis group. The Cochran Q sta-
tistic and the I2 statistic were utilized to assess statistical 
heterogeneity [10]. When I2 exceeded 25%, 50%, or 75%, 
it indicated low, medium, or high heterogeneity, respec-
tively. If significant heterogeneity was present, a random-
effects model was used. A simple analysis of funnel plots 
offered a useful test for possible bias in meta-analyses 
[11]. Otherwise, a fixed-effects model was applied. Meta-
Analyst was used to generate pooled rates of different 
ototoxic events for treatment. Subgroup analysis was 
conducted according to median cochlear radiation dose. 
Finally, sensitivity analysis was performed to evaluate the 
stability of the results.

Results
Systematic review and characteristics
After 5192 duplicates were deleted and filtered by title 
and abstract, 286 of the 3134 records initially searched 
were reviewed in full. Due to insufficient data or lack 
of full text in meta-analysis, we excluded 20 studies. 
Finally, 28 eligible studies were included, including 25 
prospective randomized controlled trial and 3 retrospec-
tive randomized controlled trials [12–14]. The radio-
therapy modes included IMRT (intensity-modulated 
radiotherapy), SRT (Stereotactic radiotherapy), 3D-CRT 
(three-dimensional conformal RT), Conventional-RT, 
Proton-RT, Radiosurgery, HFRT (hyperfractionated RT), 
ART (accelerated RT). The median age ranged from 3 
to 87. Patients under 18 years old participated in 3 stud-
ies, and the median age of the adult groups was greater 
than 18 years old. Twelve countries were included in the 
study: China (n = 9), U.S.A (n = 7), UK (n = 2), Sweden 
(n = 2), Canada (n = 1), Germany (n = 1), Japan (n = 1), 
Thailand (n = 1), Norway (n = 1), Singapore (n = 1), Spain 
(n = 1), Netherlands (n = 1). CTCAE (Common Termi-
nology Criteria for Adverse Events) grading system was 
used to define ototoxic effects in 15 studies (i.e., Grade 

1: Threshold shift of 15–25 dB averaged at two contigu-
ous frequencies; Grade 2: Threshold shift of > 25 dB aver-
aged at two contiguous frequencies; Grade 3: Threshold 
shift of > 25 dB averaged at three contiguous frequencies; 
Grade 4: > 80  dB at 2  kHz and above). Two study used 
Brock criteria to evaluate ototoxicity (i.e., Grade 0 to 1: 
< 40 dB on all frequencies or ≥ 40 dB at 8 kHz; Grade 
2: ≥ 40 dB at 4 kHz; Grade 3 to 4: ≥ 40 dB at 2-1 kHz). 
Two studies used Gardner Robertson scale to judge oto-
toxicity. One study used the Pediatric Oncology Group 
(POG) to define the effects of ototoxicity. More informa-
tion about the included study population and programs 
has been listed in Table 1.The detailed process of retrieval 
was shown in Fig. 1.

Risk of bias assessment
The risk of bias was assessed for each included study 
(Additional file 1: Fig. S1). The overall risk of bias was low. 
Two studies did not mention the randomization process 
[18, 26, 34], while the third study did not conceal selec-
tive reporting bias [34]. Another study did not report 
measurements or determinations of whether results dif-
fered between experimental groups [30]. Despite these 
inclusions, some concerns regarding the risk of bias 
remained.

Ototoxicity
Hearing impairment
The 28 included studies compared the risk of all levels of 
hearing impairment effects in cancer patients receiving 
first-line therapy as radiation therapy (Fig.  2). The ratio 
between the experimental group and the control group 
under the random-effect model was 0.85 (95% CI, 0.71–
1.00; P < 0.01; I2 = 75%). All RCTs were combined to com-
pare the ratio of the experimental arm to the control arm, 
and the heterogeneity was high. Since the experimental 
design of each included RCT varied, subgroup analyses 
were performed based on population characteristics, 
original tumor, radiotherapy modality, and mean coch-
lear dose to explore potential sources of heterogeneity.

Subgroup analysis of  the  association of  RT with  hear-
ing impairment by irradiation design mode  Four trials 
involved the combination of Cetuximab and RT com-
pared to the combination of Cisplatin and RT (Fig. 3A). 
Three trials were designed with Cetuximab + IMRT 
versus Cisplatin + IMRT, and one trial with Cetuxi-
mab + Conventional-RT versus Cisplatin + Conven-
tional-RT. The combined OR (Odds Ratio) value was 
0.42 (95% CI, 0.29–0.6; P = 0.65; I2 = 0%). The result 
suggested that Cetuximab combined with radiotherapy 
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resulted in lower hearing impairment than Cisplatin 
combined with RT.

Two trials compared ART with conventional-RT for 
ototoxicity (Fig.  3B). Pooled results suggest that hear-
ing impairment after ART irradiation may be more 
severe than conventional radiotherapy (OR, 1.30, 95% 
CI, 0.72–2.35; P = 0.36; I2 = 0%). Two studies demon-
strated the combination of ART and chemotherapy com-
pared to conventional radiotherapy and chemotherapy 
(Fig. 3C). The results of the forest plot also showed that 
ART combined with chemotherapy is more ototoxic than 
conventional radiotherapy (OR, 1.08, 95% CI, 0.80–1.45; 
P = 0.94; I2 = 0%).

Two studies reported differences in ototoxic-
ity between HFRT and conventional radiotherapy 
(Fig.  3D). Forest plot results showed that hearing 
impairment with HFRT was greater than loss with con-
ventional radiotherapy (OR, 1.61, 95% CI, 0.9–2.88; 
P = 0.99; I2 = 0%). The advantages of IMRT can be seen 
in comparison with the hearing impaired population 

of Conventional-RT (OR, 0.53, 95% CI, 0.47–0.60; 
P = 0.73; I2 = 0%) (Fig. 3E).

Compared with SRT, RS irradiation caused more 
severe hearing damage (OR, 1.44, 95% CI, 1.00–2.07; 
P = 0.69; I2 = 0%) (Fig.  3F). Three trials covered chem-
otherapy combined with radiotherapy and radiother-
apy alone. Two items were Chemotherapy + 3D-CRT 
compared with 3D-CRT, and one item was Chemo-
therapy + Conventional-RT compared with Con-
ventional-RT. A summary analysis showed that 
chemotherapy combined with radiotherapy had a 
higher risk of ototoxicity than radiotherapy alone (OR, 
1.06, 95% CI, 0.89–1.25; P = 0.54; I2 = 0%) (Fig. 3G).

In the comparison of surgery with radiotherapy, one 
trial involved transoral robotic surgery versus IMRT, 
while the other examined nasal endoscopic surgery 
versus IMRT. Surgical removal demonstrated higher 
hearing preservation than IMRT (OR, 0.59, 95% CI, 
0.38–0.93; P = 0.28; I2 = 15%) (Fig. 3H).

Fig. 1  Flow chart of document screening



Page 10 of 17Huang et al. Radiation Oncology           (2023) 18:95 

Subgroup analysis of  the  association of  RT with  hearing 
impairment by  age  In the summary analysis of hear-
ing impairment by comparing age groups, three studies 
included children under 18  years of age, and the com-
bined effect value of hearing impairment was 0.95 (95% 
CI, 0.75–1.19; P = 0.44; I2 = 0%) (Fig. 4). Twenty-five stud-
ies reported hearing loss in adults, with the combined 
value being 0.83 (95% CI, 0.69–1.00; P < 0.01; I2 = 76%). 
The probability of hearing toxicity in children is higher 
than in adults.

Subgroup analysis of  the  association of  RT with  hearing 
impairment by  tumor type  Oropharyngeal carcinoma 
appeared to have the lowest hearing impairment asso-
ciated with radiotherapy (OR, 0.41, 95% CI, 0.26–0.64; 
P = 0.76; I2 = 0%). The hearing impairment of glioblastoma 
patients after irradiation was also relatively evident (OR, 
1.08, 95% CI, 0.80–1.45; P = 0.94; I2 = 0%). Radiotherapy-
associated hearing impairment in vestibular adenomas 
was high among all primary tumors included in the lit-
erature (OR, 1.14, 95% CI, 0.76–1.70; P = 0.05; I2 = 66%) 
(Fig. 5).

Subgroup analysis of  the  association of  RT with  hear-
ing impairment by  mean cochlear radiation dose  One 

randomized controlled study covered experimental ver-
sus control arms and involved different average cochlear 
doses. Therefore, when calculating cochlear dose-related 
radiotherapy hearing impairment, it was divided into each 
arm and its corresponding dose. A total of 887 individu-
als reported mean cochlear radiation dose and hearing 
loss in 10 arms. The mean cochlear radiation dose of the 3 
arms was in the range of 30-40 Gy, with the probability of 
total hearing impairment being 27% (95% CI, 0.19–0.35; 
P = 0.42; I2 = 0%). When the cochlear radiation dose was 
40-50 Gy, the combined value of total hearing impairment 
was 28% (95% CI, 0.19–0.39; P < 0.01; I2 = 85%). When the 
cochlear radiation dose increased to 50-60 Gy, the prob-
ability of total hearing impairment was the highest, at 35% 
(95% CI, 0.26–0.44) (Additional file 1: Fig. S2).

Publication bias and sensitivity analysis
The funnel plots of hearing impairment included in the 
study were roughly symmetrical (Additional file  1: Fig. 
S3). The Egger test was also conducted to assess whether 
there was publication bias in this study. No significantly 
different results emerged, with p = 0.126 for Egger’s test. 
The combined effect value of the sensitivity analysis was 
0.85 (95% CI, 0.72–1.00), indicating that the results were 
stable (Additional file 1: Fig. S4).

Fig. 2  Summary total hearing impairment for all included studies
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Fig. 3  Subgroup Analysis of the Association of RT with Hearing impairment by Irradiation design mode
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Discussion
The study encompassed 28 randomized controlled trials, 
involving 6,252 patients, to evaluate ototoxic effects in 
cancer patients after radiotherapy. Factors such as mean 
cochlear irradiation dose, primary tumor, radiotherapy 
modality (or technique), and patient age may influence 
the risk of hearing impairment. IMRT radiotherapy-asso-
ciated ototoxicity was less common than conventional 
radiotherapy. Stereotactic radiotherapy appeared to be a 
better option for hearing protection than radiosurgery. 
Children are at a higher risk of hearing impairment than 
adults. Over half of patients with vestibular neuroad-
enoma experience hearing impairment after radiation 
therapy. The average cochlear radiation dose is strongly 
associated with hearing impairment, and the radiation 

dose to the cochlea must be precisely controlled. To 
the best of our knowledge, this is the first comprehen-
sive meta-analysis to analyze ototoxic injury caused by 
radiotherapy.

Previous literature has discussed the relationship 
between ototoxicity and radiotherapy. Theunissen and 
others conducted a study on sensorineural hearing 
loss (SNHL) caused by radiotherapy of head and neck 
tumors, suggesting that factors influencing the risk of 
SNHL included cochlear radiation dose, population age, 
and follow-up time [40]. Radiation-related ototoxicity 
involving auditory structures is multifactorial in nature. 
Radiation affecting the external auditory canal may lead 
to increased soft tissue susceptibility to infection and 
may necessitate regular removal of the cochlea to keep 

Fig. 4  Subgroup Analysis of the Association of RT with hearing impairment by age
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it dry [41]. Sensorineural hearing loss typically occurs at 
doses greater than 30  Gy [42, 43]. The risk of ototoxic-
ity increases in patients receiving combined treatments, 
such as radiotherapy and platinum chemotherapy [44, 
45].

Discussions about the optimal treatment strategy 
for techniques, prescription dosing, and segmentation 
are based on the need to prioritize curing the tumor 
while maintaining an acceptable risk of complications. 

Pediatric brain and head and neck malignancies requir-
ing dose escalation, as well as adult skull base malig-
nancies, are internationally recognized indications for 
proton therapy, exhibiting good local control, survival, 
and acceptable toxicity rates [46, 47]. Due to the lack of 
robust prediction models of photons and protons for 
this toxicity, it is impossible to predict the risk of hearing 
loss based on the patient’s disease and treatment char-
acteristics. The Normal Tissue Complication Probability 

Fig. 5  Subgroup Analysis of the Association of RT with hearing impairment by Tumor type
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(NTCP) model has been employed in previous studies to 
guide clinical judgment of proton beam therapy (PBT) 
[48]. In S. Gaito et  al.’s study, the risk reduction of sec-
ondary tumors with PBT was estimated to be consider-
able compared with conventional photon radiotherapy 
through modeling studies. The clinical benefit of PBT 
primarily depends on the location of the tumor relative to 
the organ at risk and on the prescribed dose [48]. A mul-
ticenter study evaluating proton therapy and volumetric 
modulated arc therapy (VMAT) by establishing an NTCP 
model demonstrated that the reduction of NTCP in the 
population had a significant impact on auditory toxicity 
(VMAT: 8.0%; Proton: 3.3%). A significant reduction in 
the median population was observed in the proton-radio-
therapy program, which provided auditory complications 
as well as a reduced risk of secondary brain cancer [49]. 
Previous research has also shown that proton therapy can 
effectively lower the dose of normal tissue surrounding 
patients with low-grade glioma (LGG). Compared with 
proton therapy, IMRT poses a two-fold higher risk of sec-
ondary intracranial tumors [50]. Fortin et  al. conducted 
photon intensity modulation and proton radiotherapy 
in 50 children. Using proton and photon RT dose distri-
butions, the intelligence quotient (IQ) and hearing loss 
probability of each ear were estimated by a Monte Carlo 
model. They concluded that compared with photon RT, 
proton RT is expected to reduce the adverse effects of RT 
on IQ and hearing [51].

Early radiation-induced ototoxicity is associated with 
mucosal edema, inflammation, and scaling of the outer, 
middle, and inner ear tissues [52]. The outer ear, mid-
dle ear, and inner ear may be affected, but otitis media 
is more common. It is related to middle ear effusion and 
can cause hearing loss, earache, and otorrhea, which usu-
ally subside after a few weeks [53]. The most prevalent 
toxicity is sensorineural hearing impairment. Arterial 
microvascular fibrosis and obliterative endarteritis often 
occur in the blood vessels of the inner ear’s spirochetes, 
leading to degeneration and atrophy of the smooth mus-
cle of the inner ear and the outer hair cells of the cochlea 
[54]. These hair cells are located at the base of the cochlea 
and are more sensitive to ionizing radiation than internal 
hair cells. They are responsible for hearing high frequen-
cies, so high frequencies are more susceptible than low 
frequencies [55].

In this meta-analysis, the influence of age, radio-
therapy mode, primary tumor, and mean cochlear dose 
on ototoxic hearing impairment is discussed. It can 
be concluded that the dose delivered to the inner ear 
(more precisely, the cochlea), radiotherapy technique 
(three-dimensional conformation), tumor type, and the 
age of the radiotherapy population are closely related 
to radiation-induced ototoxicity. The primary sites of 

radiation-induced ototoxicity are the paranasal sinuses, 
nasal cavity, nasopharynx, and parotid glands [56]. In the 
case of large tumors, the risk is undoubtedly greater. The 
ototoxicity of radiotherapy alone is related to the total 
dose received by the cochlea. Most authors in this study 
selected a threshold dose between 30 and 60  Gy. The 
probability of total hearing loss between 30 and 40  Gy 
was 27% (95% CI: 0.19–0.35), while the probability of 
total ototoxicity between 50 and 60 Gy was 35% (95% CI: 
0.26–0.44). Charlotte et al. performed pure-tone audiom-
etry at 0.250–16  kHz before and after treatment in 101 
patients with head and neck cancer treated with modu-
lated radiotherapy. They indicated that high frequencies 
might be affected early [57]. Keilty et  al. assessed hear-
ing in 340 children receiving radiotherapy. Mean coch-
lear dose, time after radiotherapy, cisplatin dose, and 
carboplatin dose were associated with increased assess-
ment grades of hearing loss. If the mean cochlear dose is 
> 4 Gy, the cumulative incidence of high-frequency hear-
ing impairment (> 5  kHz) at 50  years after radiotherapy 
is greater than 30%. Children who are treated with RT, 
especially those also receiving chemotherapy, are at a 
higher risk of hearing impairment and should have lower 
cochlear restraint [58]. They recommend an average 
cochlear dose of ≤ 30 Gy as a target for reducing Hodg-
kin’s lymphoma risk [58]. To understand ototoxicity in 
radiotherapy patients, it is important to collect results 
reported by the clinician at baseline and during follow-
up, in addition to tests such as audiograms, as this may 
partially overcome the inadequacy of hearing testing [59].

In this study, the subgroup analysis of hearing impair-
ment with different radiotherapy techniques was ana-
lyzed. From the results, it is evident that the impact 
of carbon ions on hearing loss is minimal, making it a 
more reliable choice. Before the advent of IMRT, tradi-
tional two-dimensional radiation therapy was used. The 
response to radiation therapy depends on the sensitivity 
of tumor cells to radiation. In theory, higher radiation 
sensitivity leads to better therapeutic effects. However, 
the damage caused by treatment to the surrounding 
normal tissues also increases. Heavy particles, such as 
carbon ions, release energy to centrally explode tumor 
cells, maximizing the effect of radiotherapy and reduc-
ing damage to surrounding healthy tissues. Huang et al. 
divided 26 pediatric patients receiving medulloblastoma 
treatment into two groups, receiving conventional radio-
therapy or IMRT, respectively. The pure tone audiogram 
was detected, and hearing function was graded from 0 
to 4 according to the toxicity standard of the pediatric 
oncology group. They concluded that, compared to the 
traditional RT group, the IMRT group had a lower aver-
age decibel hearing threshold at each frequency. The 
overall incidence of ototoxicity in the IMRT group was 
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low. Thirteen percent of the IMRT group had grade 3 or 
4 hearing loss, compared with 64% of the conventional 
RT group [60]. In the study by Erner et  al., 54 patients 
with low-grade and middle-grade chondrosarcoma of 
the skull base received carbon ion radiotherapy. After a 
median follow-up period of 33 months, only one tumor 
patient had sensory hearing loss in the inner ear. The 
patient retained useful hearing and did not use hearing 
aids [61].

The first-line treatment for radiation ototoxicity is 
drugs, which can be injected into the ear with a vasocon-
strictor [52]. If this treatment is not effective, tympano-
plasty may be required to treat middle ear effusion. Bone 
conduction hearing aids can be provided if symptoms 
associated with damage to the outer or middle ear per-
sist, such as when mucosa is irreversibly damaged. They 
allow bypassing of the outer and middle ear, directly 
stimulating the sensory cells of the cochlea. Hyperbaric 
oxygen therapy can also be used as a treatment option 
for most subjects. Xu et  al. discussed the treatment of 
96 nasopharyngeal carcinoma patients with effusion oti-
tis media after radiotherapy. They were divided into 3 
groups: simple auricular point plus aspiration, tympanic 
membrane fenestration plus cauterization, tympanic 
membrane fenestration plus tympanic membrane tube 
insertion. Finally, they concluded that intensive local care 
after eardrum insertion can effectively reduce the inci-
dence of ear complications after radiotherapy [62].

Limitations
This study had several limitations. First, there are few 
RCTs providing average doses of cochlea, making it dif-
ficult to analyze the link between doses and ototoxicity 
on a large scale. Second, potential bias may exist due to 
differences in tumor stage and underlying disease in the 
included population. Third, the number of RCTs involved 
in each radiotherapy technique is small.

Conclusions
In this study, randomized controlled trials were ana-
lyzed to compare the association of various factors with 
radiotherapy-related ototoxicity. Radiation design pat-
terns and doses, population characteristics, and tumor 
characteristics are all intricately linked to ototoxicity. 
Children treated with RT, particularly those receiving 
chemotherapy, have a higher risk of hearing impair-
ment; therefore, their cochlear restraint should be 
lower. To gain a better understanding of hearing toxic-
ity, it is crucial to collect clinician-reported results at 
baseline and during follow-up, in addition to tests such 
as audiograms.
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