RESEARCH

Radiation Oncology

Open Access

The relevance of ototoxicity induced by radiotherapy

Yan Huang^{1,2†}, Hong Zhou^{3†}, Fenglan An⁴, Aimei Zhao⁵, Jian Wu⁶, Meihua Wang^{7*} and Judong Luo^{1*}

Abstract

Background The risk of ototoxicity, characterized by hearing impairment, tinnitus, or middle ear inflammation, is elevated in both child and adult cancer survivors who have undergone head-neck or brain radiation, or a combination of the two. To provide optimal care for these cancer survivors and minimize subsequent complications, it is crucial to comprehend the relationship between radiotherapy and ototoxicity.

Methods A comprehensive search of databases, including the Cochrane Library, PubMed, Embase, and Web of Science, was conducted from the inception of the knowledge base up until January 2023. The metafor-package was employed to compare ototoxicity rates in individuals receiving radiotherapy. Two independent assessors extracted data and analyzed targets using a random-effects model.

Results Out of the 28 randomized controlled trials (RCTs) included in the analysis, 25 were prospective RCTs. Subgroup analysis revealed that mean cochlear radiation dose, primary tumor location, radiotherapy modality, and patient age significantly influenced total hearing impairment. Intensity-modulated radiotherapy was associated with less ototoxicity than 2D conventional radiotherapy (OR, 0.53; 95% CI, 0.47–0.60; P = 0.73; $I^2 = 0\%$). Stereotactic radiotherapy appeared to be a superior option for hearing preservation compared to radiosurgery (OR, 1.44; 95% CI, 1.00–2.07; P = 0.69; $I^2 = 0\%$). Children demonstrated a higher risk of hearing impairment than adults. More than 50% of patients with vestibular neuroadenoma experienced hearing impairment following radiation therapy. A strong association was observed between the average cochlear radiation dose and hearing impairment. Increased cochlear radiation doses may result in a heightened risk of hearing impairment.

Conclusion Several risk factors for radiation-induced hearing impairment were identified in this study. High cochlear radiation doses were found to exacerbate the risk of hearing impairment resulting from radiation therapy.

Keywords Radiation exposure, Radiotherapy, Radiation dose, Ototoxicity, Cochlea

 † Yan Huang and Hong Zhou have contributed equally to this study

*Correspondence: Meihua Wang wangmeihua1234@suda.edu.cn Judong Luo judongluo@163.com ¹ Department of Radiotherapy, The Affiliated Changzhou Second People's

Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China

² Department of Head and Neck Surgery, Graduate School of Dalian Medical University, Dalian, China

³ Department of Otolaryngology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China ⁴ The Third Department of Internal Medicine, Hospital of Traditional Chinese Medicine, Lingcheng, Dezhou, Shandong Province, China ⁵ Department of Obstetrics and Gynecology, Dongchangfu Maternal and Child Health Hospital of Liaocheng, Liaocheng, China ⁶ Department of Head and Neck Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China ⁷ Department of Pathology, Changzhou Tumor Hospital, Changzhou, China

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction

Ototoxicity, which can manifest as hearing impairment, tinnitus, and/or vertigo, is a recognized adverse effect associated with a group of antitumor therapies, including platinum chemotherapy, radiotherapy, or surgery involving the ear and auditory nerves [1]. Hearing impairment can lead to communication and social difficulties, ultimately reducing the quality of life. In children, hearing impairment can severely impair cognitive development as well as language and social skills. Although the structure of the human ear is formed at birth, the maturation of neural pathways and auditory structures continues during infancy and early childhood, making young children particularly vulnerable to radiotherapy-induced ototoxicity [2].

Radiation therapy (RT), which can be utilized as a single treatment modality or as an adjuvant treatment before and after surgery, is commonly used to treat patients with a variety of cancers. Patients with locally advanced and inoperable head and neck tumors are usually treated with cisplatin-based chemoradiotherapy. Cisplatin or carboplatin-based chemotherapy drugs are known to cause ototoxicity [3]. Winther et al. discovered that inner ear radiation in guinea pigs resulted in extensive degeneration of hair cells outside Corti organs. Concurrently, radiation therapy to the temporal bone led to Corti organ damage and auditory vestibular nerve atrophy [4]. In radiation therapy for head, neck, or brain malignancies, the middle ear, inner ear, and brainstem may be exposed to high doses of ionizing radiation [5]. The underlying physiological processes leading to hearing impairment may vary depending on the location of radiation-induced lesions. If hearing impairment arises from damage to middle ear components, such as eustachian tubes or ossicles, it is classified as conductive. In contrast, sensorineural hearing loss (SNHL) results from lesions in the cochlea or the auditory system's posterior section [6].

Despite the prevalence and severity of ototoxicity following radiotherapy, it has seldom been reported in radiation oncology literature. The correlation between cochlear radiation dose and subsequent morbidity has rarely been documented. The objective of this study is to assess the incidence of various factors that may contribute to radiotherapy-induced ototoxicity.

Methods

This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [7].

Data sources and searches

Databases, including the Cochrane Library, PubMed, Embase, and Web of Science, were searched from inception until January 2023. Medical Subject Headings (MeSH) and text word combinations were employed to create three subsets of references: the first subset encompassed radiotherapy (such as intensity-modulated radiotherapy, proton radiotherapy, carbon ion radiotherapy, photon radiation, gamma knife, stereotactic radiotherapy, etc.); the second subset involved complications related to hearing (namely, ototoxicity, hearing impairment, and hearing loss); and the third subset pertained to cancer. After an initial screening of titles or abstracts, two independent reviewers (YH, HZ) assessed the full text of relevant publications and the reference lists for final inclusion. Additionally, references considered potentially relevant were searched and thoroughly evaluated.

Study selection

Studies were included based on the following criteria: (1) studies that reported hearing impairment in cancer patients due to RT as a first-line treatment; (2) hearing outcomes obtained from pure tone audiograms (either air and bone conduction or bone conduction alone) conducted before and after treatment; (3) studies providing the number of individuals evaluable for toxicity following radiotherapy and the number of individuals with hearing impairment; (4) studies that clearly defined hearing impairment and offered sufficient irradiation information to quantify the effect; and (5) studies that were randomized controlled trials, excluding one-arm trials. All criteria needed to be met for study inclusion. Exclusion criteria encompassed postoperative studies, singlearm studies, case reports, reviews, meeting minutes or abstracts, articles not published in English, and studies with cisplatin as monotherapy.

Data extraction

Two evaluators independently employed standardized forms to extract and summarize the following data: first author, year of publication, study ID, country, cancer type, radiotherapy design, radiotherapy mode, cochlear radiation dose, total number of patients, number of patients for safety analysis, standard version of general terms for adverse events, rate of hearing impairment, and frequency of tinnitus and vertigo symptoms. The standard for general terms of adverse events served as the most commonly used tool to evaluate the type and severity of adverse events in clinical practice, featuring a grading scale and clear definitions.

Quality assessment

Two reviewers (AZ, JW) evaluated the risk of bias based on the original studies, utilizing the Cochrane Collaboration's tool. Five aspects of adequacy were assessed: random sequence generation, allocation concealment, blinding, outcome assessment, and outcome reporting [8]. Each item was assigned an assessment indicator related to risk of bias, classified as yes, no, or unclear. Any disagreements regarding study selection, data extraction, and quality assessment were resolved through discussions with statistical experts [9].

Data synthesis and statistical analysis

Meta-analysis was performed using R(4.2.1) statistical software (metafor and meta package). Fixed-effect or random-effects models were employed to estimate event rates and their corresponding 95% confidence intervals. Forest plots were constructed to summarize data and incidence for each analysis group. The Cochran Q statistic and the I² statistic were utilized to assess statistical heterogeneity [10]. When I^2 exceeded 25%, 50%, or 75%, it indicated low, medium, or high heterogeneity, respectively. If significant heterogeneity was present, a randomeffects model was used. A simple analysis of funnel plots offered a useful test for possible bias in meta-analyses [11]. Otherwise, a fixed-effects model was applied. Meta-Analyst was used to generate pooled rates of different ototoxic events for treatment. Subgroup analysis was conducted according to median cochlear radiation dose. Finally, sensitivity analysis was performed to evaluate the stability of the results.

Results

Systematic review and characteristics

After 5192 duplicates were deleted and filtered by title and abstract, 286 of the 3134 records initially searched were reviewed in full. Due to insufficient data or lack of full text in meta-analysis, we excluded 20 studies. Finally, 28 eligible studies were included, including 25 prospective randomized controlled trial and 3 retrospective randomized controlled trials [12-14]. The radiotherapy modes included IMRT (intensity-modulated radiotherapy), SRT (Stereotactic radiotherapy), 3D-CRT (three-dimensional conformal RT), Conventional-RT, Proton-RT, Radiosurgery, HFRT (hyperfractionated RT), ART (accelerated RT). The median age ranged from 3 to 87. Patients under 18 years old participated in 3 studies, and the median age of the adult groups was greater than 18 years old. Twelve countries were included in the study: China (n=9), U.S.A (n=7), UK (n=2), Sweden (n=2), Canada (n=1), Germany (n=1), Japan (n=1), Thailand (n=1), Norway (n=1), Singapore (n=1), Spain (n=1), Netherlands (n=1). CTCAE (Common Terminology Criteria for Adverse Events) grading system was used to define ototoxic effects in 15 studies (i.e., Grade 1: Threshold shift of 15–25 dB averaged at two contiguous frequencies; Grade 2: Threshold shift of > 25 dB averaged at two contiguous frequencies; Grade 3: Threshold shift of > 25 dB averaged at three contiguous frequencies; Grade 4: > 80 dB at 2 kHz and above). Two study used Brock criteria to evaluate ototoxicity (i.e., Grade 0 to 1: < 40 dB on all frequencies or \geq 40 dB at 8 kHz; Grade 2: \geq 40 dB at 4 kHz; Grade 3 to 4: \geq 40 dB at 2-1 kHz). Two studies used Gardner Robertson scale to judge ototoxicity. One study used the Pediatric Oncology Group (POG) to define the effects of ototoxicity. More information about the included study population and programs has been listed in Table 1.The detailed process of retrieval was shown in Fig. 1.

Risk of bias assessment

The risk of bias was assessed for each included study (Additional file 1: Fig. S1). The overall risk of bias was low. Two studies did not mention the randomization process [18, 26, 34], while the third study did not conceal selective reporting bias [34]. Another study did not report measurements or determinations of whether results differed between experimental groups [30]. Despite these inclusions, some concerns regarding the risk of bias remained.

Ototoxicity

Hearing impairment

The 28 included studies compared the risk of all levels of hearing impairment effects in cancer patients receiving first-line therapy as radiation therapy (Fig. 2). The ratio between the experimental group and the control group under the random-effect model was 0.85 (95% CI, 0.71–1.00; P < 0.01; $I^2 = 75\%$). All RCTs were combined to compare the ratio of the experimental arm to the control arm, and the heterogeneity was high. Since the experimental design of each included RCT varied, subgroup analyses were performed based on population characteristics, original tumor, radiotherapy modality, and mean cochlear dose to explore potential sources of heterogeneity.

Subgroup analysis of the association of RT with hearing impairment by irradiation design mode Four trials involved the combination of Cetuximab and RT compared to the combination of Cisplatin and RT (Fig. 3A). Three trials were designed with Cetuximab+IMRT versus Cisplatin+IMRT, and one trial with Cetuximab+Conventional-RT versus Cisplatin+Conventional-RT. The combined OR (Odds Ratio) value was 0.42 (95% CI, 0.29–0.6; P=0.65; $I^2=0\%$). The result suggested that Cetuximab combined with radiotherapy

First) author	fear Country	Trial Number trial type name	Primary site,No. (%)	T stage (%)	Pathologic stage (%)	Radiotherapy dose	Control arm treatment	Patients in control arm (n)	Age, median (IQR)	i ECOG status, No. (%)	Experimental arm treatment	Patients in experimental arm (n)	Age
Kiyota [15] 2	2022 Japan	Prospec-JCOG1008 tive, Phase III Trial	Oral cavity 121(46) Larynx 23(9) Oropharynx 35(14) Hypopharynx 82(31)	T1+T2 (33) T3+T4 (67)	III (8) IVA (88) IVB (3)	3D-CRT OR IMRT: 66 Gy in 33 fractions over 65 weeks	3-weekly Cispl- atin + RT	132	62(55–68)	= 0 92(70) = 1 40(30)	Weekly Cispl- atin + RT	129	61(53–66)
You [16]	2020 China	Prospec-NCT02111460 tive, Phase III Trial	Naso- pharyngeal Carcinoma	T1 + T2 (11.1) T3 + T4 (88.9)	¥ Z	IMRT: Prescribed doses were 70 Gy to GTVnx, 5 times per week	Chemo	63	47(39–52)	NA	Chemo + RT	63	46 (37–52)
Nichols [17] 2	2019 Canada	Prospec-ORATOR tive, Phase II Trial	Oropharyn- geal carci- noma	T1 (44) T2 (56)	Ч	IMRT: 70 Gy in 35 frac- tions over 7 weeks	TORS + ND	34	58.1 (52.6–64.5)	=0 30(88) =1 4 (12)	IMRT	34	60.0 (53.2–65.2)
Brown [18] 2	2017 USA	Prospec-NCCTG N107C/ tive, CEC.3 Phase III Trial	metastatic brain disease	A	AN	SRS: 12–20 Gy fraction with dose by surgical cavity volume WBRT: 30 Gy in ten fractions	WBRT	96	62 (54–68)	= 0 33 (34) = 1 56 (58) = 2 7 (7)	SRS	86	61 (54–66)
Wong Kein 2 Low [19]	2006 Singapore	Prospec-NA tive Trial	Naso- pharyngeal Carcinoma	ЧN	NA	Conventional-RT: a dose of 70 Gy in 35 fractions, 2 Gy per fraction	Chemoradio- therapy	51	47(15–74)	NA	Radiotherapy	44	43(30–70)
Breivik [20] 2	2013 Norway	Prospec-NA tive, Phase II Trial	Vestibular schwannoma	A	NA	GKRS: dose was 12 Gy to the periphery of the tumor with minimum 95% coverage	Conservative management	124	55.7	¥ Z	GKRS	113	57.7
Nutting [21] 2	2018 United Kingdom	Prospec-COSTAR; tive, CRUK/08/004 Phase III Trial	Parotid	T1 +T2 (62.7) T3 +T4 (32.7)	NA	3D-CRT or CS- IMRT dose of 60 Gy or 65 Gy in 30 daily fractions	3D-CRT	54	59 (19–88)	Ч	CS-IMRT	56	57 (20–87)
Lee [12] 2	2009 China	Retro- NA spective study	Naso- pharyngeal Carcinoma	T1+T2 (40) T3+T4 (60)	-IIB	(15) III-IVB (85)	3D-CRT 2-Gy daily fraction to a total dose of 70 Gy	Chemo + 3D-CRT s	196	48(17–76)	NA	3D-CRT	171

 Table 1
 Characteristics of included documents

Table 1 (continued)

First Yea author												
	ar Country	Trial Number trial type name	Primary T stage site,No. (%) (%)	Pathologic stage (%)	Radiotherapy dose	Control arm treatment	Patients in control arm (n)	Age, mediai (IQR)	n ECOG status, No (%)	Experimental .arm treatment	Patients in experimental arm (n)	Age
Buckner 20([22]	06 USA	Prospec-NA tive, Phase III Trial	Glioblastoma NA multiforme	₹ Z	Conventional RT: 1.80 Gy for 36 days (64.8 Gy) ART: 1.60 Gy twice daily for 15 days (48.0 Gy)	Chemo + ART	103	55	=0 40(38.8) =148 (46.6) =215 (14.6)	Chemo+Con- ventional-RT	86	56
Mandell 199 [23]	ASU 96	Prospec-POG-9239 tive, Phase III Trial	Brainstem NA tumor	Ч И	Conventional- RT:180 cGy/d to 5400 cGy HFRT:117 cGy/d to 7020 cGy	HFRT	64	3–21	₹ Z	Conventional-RT	QQ	3–21
Wai-Tong 201 Ng [13]	8 China	Retro- NPC-9901 NPC- spective 9902 study	Naso- pharyngeal Carcinoma	III-IVB(100)	3DCRT: 2 Gy per fraction, 5 fractions per week. total dose of 66 Gy	Chemo + 3D-CRT	223	>70	≤2(100)	3D-CRT	218	> 70
Lertbut- 20: sayanukul [24]	8 Thailand	Prospec- NA tive, Phase III Trial	Naso- T1+T2 pharyngeal (60) Carcinoma T3+T4 (40)	I-II(14.8) III-IVA (69.4) IVB (15.7)	SEQ- IMRT:2 Gy × 25 fractions to low- risk target SIB-IMRT:doses of 56 and 70 Gy in 33 fractions	SIB-IMRT	107	50.4	Υ X	SEQ-IMRT	102	48.3
Lannering 20; [25]	2 Sweden	Prospec-HIT-SIOP PNET 4 tive, Phase III Trial	Medulloblas- NA toma	A	Conventional- RT:42 days in 30 fractions of 1.8 Gy; HFRT:68 frac- tions,1.0 Gy twice per day	HFRT + Chemo	68	4–21	¥ N	Conventional- RT + Chemo	78	4–21
(26) [26]	22 China	Prospec-NCT02871518 tive, Phase II Trial	Naso- T1+T2 pharyngeal (12:4) Carcinoma T3+T4 (87.6)	III(79.8) Na(8.7) Nb(11.4)	IMRT:target volume (PTV) nx, PTVnd, PTV1, and PTV2 were 68–70 Gy, 60–64 Gy, and 50–54 Gy	Three-Cycle cispl- atin + RT	166	46 (38–53)	Ϋ́	Two-Cycle cispl- atin + RT	166	48(38–53)
Kessel [27] 20;	7 Germany	Prospec-NA tive, Phase II Trial	Vestibular NA schwannoma	NA	RS:median dose of 12 Gy SRT:median dose of 54 Gy and a median single dose of 1.8 Gy	S	56	63(16-85)	۲	SRT	128	59(17–82)

Time Number rate instance Frime No. Apple	contir	iued)													
	fear Country Trial type	type		Number trial name	Primary site,No. (%) (T stage (%)	Pathologic stage (%)	Radiotherapy dose	Control arm treatment	Patients in control arm (n)	Age, median (IQR)	ECOG status, No. (%)	Experimental arm treatment	Patients in experimental arm (n)	Age
cvk/T01540136 Nuss- metricum T+T2 Lit12 2.0-2.33 Gyper (actionum Mediation+ET 201 44 (8-65) 99-100 Gpatin+ET 201 45 (2 m Centrom T3+13 Nife2 Fectoring Prevents 70-80 (4) 70-80 (4) 70-80 (4) 70-80 (4) 75-80 (4) 70-80 (4) 75-80 (4)	2018 USA Retro- spectiv study	Retro- spectiv study		Z a	Medulloblas- I toma	AN	Υ Z	Standard-risk Staients received 18–23.4 Gy/ CGE high-risk patients received 36–39.6 Gy/CGE	Proton-RT	œ	7.6 (2.9–14.5)	¥ Z	MRT	46	9.0 (3.0–18.0)
ee.M Globistoma M M Conventional-RT 113 528±118 N Clemon+Corr 117 558. II April 50 c5y side day for 5 days April 50 c5y side	2018 China Prosp tive, Phase Trial	Prospi tive, Phase Trial	ы =	c- NCT01540136	Naso- pharyngeal (Carcinoma 1 (T1+T2 (23.5) T3+T4 (76)	II (12) III (67) IVA(14.5) IVB(5.5)	2.0–2.33 Gy per fraction with five fractions per week for 6–7 weeks	Nedaplatin + RT	201	44 (18–65)	90–100 (96) 70–80 (4)	Cisplatin + RT	201	45 (20–64)
pec NCT0233901 Naso- plaryngal (actionna carcionna (actionna carcionna (actionna carcionna (actionna (actionna mec) MRT 28 48 (29-64) = 08(80) (2000) 0 43 (3 (3000) carcionna (actionna (actionna mec) MRT 28 48 (29-64) = 08(80) (2000) - 09 (40) - 49 (4 (40) carcionna (actionna mec) MRT Endoscopic naso- fractions/weeks 11+12 (2000) MRT - 00 (50) <td>2005 USA Pros tive, Phas Trial</td> <td>Prosl tive, Phas Trial</td> <td>e II</td> <td>AN</td> <td>Glioblastoma I</td> <td>NA</td> <td>A</td> <td>Conventional-RT: 180 cGy once a day for 36 days ART:160 cGy twice daily for 15 days</td> <td>Chemo + ART</td> <td>113</td> <td>52.8±11.8</td> <td>¥ Z</td> <td>Chemo + Con- ventional-RT</td> <td>117</td> <td>55.8±11.5</td>	2005 USA Pros tive, Phas Trial	Prosl tive, Phas Trial	e II	AN	Glioblastoma I	NA	A	Conventional-RT: 180 cGy once a day for 36 days ART:160 cGy twice daily for 15 days	Chemo + ART	113	52.8±11.8	¥ Z	Chemo + Con- ventional-RT	117	55.8±11.5
	2021 China Pros tive	Pros	Pec	NCT02339701	Naso- pharyngeal (Carcinoma	T1 + T2 (100)	I (47.7) II (52.3)	IMRT: 66/60 Gy in 33 fractions Conventional- RT:40 Gy in 20 fractions/4 weeks	IMRT	28	48 (29–64)	= 0 8(80) = 1 2 (20)	Conventional-RT	28	43 (30–59)
spec-ISRCTN33522080Oropharyn-T1+T2NAIMRT:Cetuximab+IMRT 168 $57(51-64)$ $= 0.149(91)$ Gsplatin+IMRT166565sellT3+T4adose of 65 Gy orT3+T4moreadose of 65 Gy or $= 115(9)$ </td <td>2021 China Pro tive Pho Tria</td> <td>Pro tive Tria</td> <td>spec , ase II</td> <td>с- ChiCTR- TRC-11001573 I</td> <td>Naso- pharyngeal (carcinoma 7</td> <td>T1+T2 (32) T3+T4 (48)</td> <td>II(21.5) III-IV(58.5)</td> <td>IMRT: 60–70 Gy in 27–35 fractions</td> <td>Endoscopic naso- pharyngectomy</td> <td>100</td> <td>46 (38–55)</td> <td>90-100(95) 70-80(5)</td> <td>MRT</td> <td>100</td> <td>49 (41–54)</td>	2021 China Pro tive Pho Tria	Pro tive Tria	spec , ase II	с- ChiCTR- TRC-11001573 I	Naso- pharyngeal (carcinoma 7	T1+T2 (32) T3+T4 (48)	II(21.5) III-IV(58.5)	IMRT: 60–70 Gy in 27–35 fractions	Endoscopic naso- pharyngectomy	100	46 (38–55)	90-100(95) 70-80(5)	MRT	100	49 (41–54)
spec-RTOG 1016 Oropharyn- T1+T2 II (7) IMRT: Cetuximab+IMRT 399 58 (52-63) = 0 300 Giplatin+IMRT 406 58 (53-63) = 0 300 Giplatin+IMRT 406 58 (54-63) = 0 300 Giplatin+IMRT 406 58 (54-63) = 0 300 Giplatin+IMRT 406 58 (54-63) = 0 132(90)Gisplatin+IMRT 406 58 (54-63) = 0 132(90)Gisplatin+IMRT 406 66 (43-73) = 0 132(90)Gisplatin+IMRT 406 66 (43-73) = 0 132(90)Gisplatin+IMRT 414(10) 406 406 406 406 406 406	2019 United Pro Kingdom tive Pha Tria	Pro Pha Tria	spec ase II	c-ISRCTN33522080 I	Oropharyn- geal cancer (1	T1+T2 (65) T3+T4 (35)	NA	IMRT: a dose of 65 Gy or more	Cetuximab + IMRT	168	57(51–64)	=0 149(91) =1 15(9)	Cisplatin + IMRT	166	56.5 (52–62)
spec-ARTSCAN III Head and T1+T2 II (105) IMRT: Cetuximab+IMRT 146 61(33-77) = 0 132(90)Cisplatin+IMRT 145 61(4) e: neck squa- (52.5) N (89.5) 680 Gy to the primary tumor > 114(10) > 114(10) ase III mous cell T3+T4 primary tumor > 114(10) > 114(10) > 114(10) arcinomas (47) and lymph node metastases > 114(10) > 114(10) spec-NA Head and T1-3(38.3) III (7.3) 2 Gy per fraction Cetuximab+Con- 202 58 (29-71) = 0.141/70)Cisplatin+Con- 205 57 (4) ese III meck cancer T4(61.1) MA(72.7) for a total of 35 ventional-RT = 1.61 (30) ventional-RT 57 (4)	2019 USA Pro tive Phi	Pro tive Trië	spec e, ase II al	c- RTOG 1016	Oropharyn- geal cancer (T1+T2 (62) T3+T4 (38)	III (7) IV (93)	IMRT: 70 Gy in 35 fractions over 6 weeks at six frac- tions per week	Cetuximab + IMRT	399	58 (52–63)	= 0 300 (75) = 1 99 (25)	Cisplatin + IMRT	406	58 (52–63)
Ispec-NA Head and T1-3(38.3) III (7.3) 2 Gy per fraction Cent value 202 58 (29–71) = 0 141(70)Cisplatin + Con- 205 57 (4 e, neck cancer T4(61.1) WA(72.7) for a total of 35 ventional-RT = 1 61 (30) ventional-RT = 57 (4 ase III NB(19.6) fractions fractions = 1 61 (30) ventional-RT = 1 61 (30)	2021 Sweden Pro tive Phi	Pro tive Triă	spec e, ase II al	c-ARTSCAN III	Head and neck squa- mous cell carcinomas (T1 + T2 (52.5) T3 + T4 (47)	III (10.5) IV (89.5)	IMRT: 68.0 Gy to the primary tumor and lymph node metastases	Cetuximab + IMRT	146	61(33–77)	= 0 132(90) ≥ 1 14(10)	Cisplatin + IMRT	145	61(45–75)
	2022 Spain Pro tive Pha Tria	Pro tive Pha Tria	spec	AN	Head and neck cancer	T1-3(38.3) T4(61.1)	III (7.3) NA(72.7) NB(19.6)	2 Gy per fraction for a total of 35 fractions	Cetuximab + Con- ventional-RT	202	58 (29–71)	= 0 141(70) = 1 61 (30)	Cisplatin + Con- ventional-RT	205	57 (40–73)

Page 6 of 17

\sim
$\overline{\mathbf{O}}$
ă
₽
_
· —
Ę
~
0
\cup
9
~
•
œ
-
_
-

First author	Year Country	Trial Number trial type name	Primary T s site,No. (%) (%	stage Pa 5) sta	thologic age (%)	Radiotherapy dose	Control arm treatment	Patients in control arm (n)	Age, median (IQR)	ECOG status, No. (%)	Experimental arm treatment	Patients in experimental arm (n)	Age
Peng [36]	2012 China	Prospec- NA tive Trial	Naso- NA pharyngeal carcinoma		(1) 228 20) 1::	IMRT optic chiasm was 54 Gy, 45 Gy for the spinal cord Conventional-RT 56 Gy with 2.0 Gy/ raction	IMRT	306	46.7 ± 12.5	=0-1 288 ≥218	Conventional-RT	310	44.8±13.6
Fu [37]	2000 USA	Prospec-RTOG 9003 tive Trial	Head and T1 neck squa- (33 mous cell T3 carcinomas (67	+ 12 = = (3) + 14 = = (7) = ((66) (66) (66)	Conventional- RT:70 Gy/35 frac- tions/7 weeks ART:5 days/week to 81 6 Gy/68 frac- Interris7.2 Gy/42 HERT:67.2 Gy/42 fractions/6 weeks	ART,HFRT	263	09	50-80 (38) 90-100 (62)	Conventional-RT	268	9
Lee [38]	2015 China	Prospec-NPC-0501 tive Trial	Naso- T1 pharyngeal (21 carcinoma T3 (79	+ T2 + T2 + T4 () ()	(71) A-IVB (29) 1	66 Gy for T1-T2a tumors	ART	104	49	=0 70 (67) =1 33 (32) =2 1 (1)	Conventional-RT	160	48
Meijer [39]	2003 Nether- lands	Prospec-NA tive Trial	Vestibular NA schwannoma	7N K		2500 cGy was given(5*500 cGy)	RS	49	63	AN	SRT	80	43
ECOG sta score	tus or Karnofs	cy Outcome meas	ure	Mei	an Cochlea	ar radiation dos	ė	Outcome defin	ition			Median foll	dn-wo
=0 93(72) =1 36(28)		Audiometry		NA				NA				26.4(IQR,14.2	:-42.7)mo
NA		Audiometry		NA				CTCAE(3.0)				26.7 (IQR, 17.2	:–33.5)mo
= 0.30(88) = 1.4(12)		Audiogram		ΑN				CTCAE(4.0)				25(IQR, 20–3	3)mo
=0 39 (40) =1 49 (50) =2 10 (10)	0.05	Audiometry		Ч				CTCAE(4.0)				11.1 (IQR, 5.1-	-18.0)mo
NA		Pure-tone audio	grams	ΝA				NA				24mo	
ΝA		Audiometry		ΝA				Gardner-Roberts	ion scale (GR)	_		55(IQR,10-1	32)mo
AN		Audiometry		3D- CS-II	CRT: 56.2 G MRT: 35.7 G			CTCAE(3.0)				49.9(IQR, 37.	7–61.9)mo
52(20-84)		AN		Aud	liometry			RT:51 Gy Chemo + RT:56 C	Š			CTCAE(3.0)	
=0 38(38.3 =1 47(48.0 =2 13(13.3	3) ()	Audiometry		ΥA				NA				ЧN	
NA		Audiograms;BAE	Ϋ́	NA				standard NCI coi	mmon toxicit	y criteria		6-44mo	
≤2(100)		Audiometry		NA				NA				NA	

Table 1 (continued)				
ECOG status or Karnofsky score	Outcome measure	Mean Cochlear radiation dose	Outcome definition	Median follow-up
NA	Audiometry	SEQ-IMRT:45.14±9.26 Gy SIB-IMRT:44.28 ±8.60 Gy	CTCAE(4.03)	NA
NA	Audiometry	Conventional-RT:46.7 Gy HFRT:56.8 Gy	HIT;Brock	57.6 (range,1.2–99.6)mo
NA	Audiometry	NA	CTCAE(4.0)	37.7 (IQR, 33.0–46.1)mo
NA	Audiometry	NA	Gardner-Robertson Scale	90(range,0–172.8)mo
NA	Audiometry,ABR	IMRT: 37.5±5.8 Gy Proton-RT:31.6±8.5 Gy	Brock; CTCAE(3.0); POG; SIOP Boston	56 (range,13–101)mo
90–100(95) 70–80 (5)	Audiometry	NA	CTCAE(3.0)	48(IQR, 43–55)mo
NA	Audiometry	NA	NCI Common Toxicity Criteria grading (2.0)	NA
=0 11(100)	Audiometry	NA	NA	186(IQR,180–189.6)mo
90-100(94) 70-80(6)	Audiometry	NA	CTCAE(3.0)	56.0(IQR, 42.0–69)
=0142(87) =122(13)	Audiometry	NA	CTCAE(4.0)	25.9(IQR,25.5-26.0)
=0 295 (73) =1 111 (27)	Audiometry	NA	CTCAE(4.0)	54mo
= 0 133(92) ≥ 1 12(8)	Audiometry	NA	CTCAE(4.0)	39(IQR, 30–54)mo
= 0 155(76) = 1 50 (24)	Audiometry	NA	CTCAE(3.0)	43.9(IQR,64.4–21.2)mo
==0-1 300 ≥210	Audiometry	NA	CTCAE(3.0)	42(range,1–83)mo
60–80 (38) 90–100 (61)	Audiometry	NA	NA	23mo
=0 116 (73) =1 43 (27) =2 1 (0.6)	Audiometry	NA	CTCAE(3.0)	39,6(range,1.2–85.2)mo
NA	Audiometry	NA	NA	33(range,12–107)mo
IQR interquartile range; RT radiot. FCOG Fastern Connerative Oncol	herapy; <i>Chemo</i> chemotherapy; <i>3D-CRT</i> th oov Groun: <i>WRRT</i> Whole hrain radiother	ree-dimensional conformal radiation therapy; <i>IMRT</i> in any: <i>RT</i> stereotartic radiotherany: <i>RS</i> radiostirciery:	itensity-modulated radiotherapy; TORS + ND = transoral robotic <i>GKR</i> S ramma knife radiosurcerv. <i>CS-IMRT</i> cochlear-snaring MF	: surgery and neck dissection; RT- ART accelerated RT- HERT

ECOG Eastern Cooperative Oncology Group; WBRT Whole brain radiotherapy; SRT stereotactic radiotherapy; RS radiosurgery; GKRS gamma knife radiosurgery; CS-IMRT cochlear-sparing IMRT; ART accelerated RT; HIT enternationated radiotherapy; BAER brain auditory evoked response; SEQ-IMRT Sequential-IMRT; SIB-IMRT simultaneous integrated boost-IMRT; HIT German Hintumor study grading system; SRT stereotactic radio-therapy; RS radiosurgery; ABR auditory brain study grading system; SRT stereotactic radio-therapy; RS radiosurgery; ABR auditory brainstem response; POG Pediatric Oncology Group; SIOP Boston = International Society of Pediatric Oncology Boston; NCI National Cancer Institute; CTCAE Common Terminology Criteria for Adverse Events;mo month

Fig. 1 Flow chart of document screening

resulted in lower hearing impairment than Cisplatin combined with RT.

Two trials compared ART with conventional-RT for ototoxicity (Fig. 3B). Pooled results suggest that hearing impairment after ART irradiation may be more severe than conventional radiotherapy (OR, 1.30, 95% CI, 0.72–2.35; P=0.36; $I^2=0\%$). Two studies demonstrated the combination of ART and chemotherapy compared to conventional radiotherapy and chemotherapy (Fig. 3C). The results of the forest plot also showed that ART combined with chemotherapy is more ototoxic than conventional radiotherapy (OR, 1.08, 95% CI, 0.80–1.45; P=0.94; $I^2=0\%$).

Two studies reported differences in ototoxicity between HFRT and conventional radiotherapy (Fig. 3D). Forest plot results showed that hearing impairment with HFRT was greater than loss with conventional radiotherapy (OR, 1.61, 95% CI, 0.9–2.88; P=0.99; $I^2=0\%$). The advantages of IMRT can be seen in comparison with the hearing impaired population of Conventional-RT (OR, 0.53, 95% CI, 0.47–0.60; P = 0.73; $I^2 = 0$ %) (Fig. 3E).

Compared with SRT, RS irradiation caused more severe hearing damage (OR, 1.44, 95% CI, 1.00–2.07; P=0.69; $I^2=0\%$) (Fig. 3F). Three trials covered chemotherapy combined with radiotherapy and radiotherapy alone. Two items were Chemotherapy+3D-CRT compared with 3D-CRT, and one item was Chemotherapy+Conventional-RT compared with Conventional-RT. A summary analysis showed that chemotherapy combined with radiotherapy had a higher risk of ototoxicity than radiotherapy alone (OR, 1.06, 95% CI, 0.89–1.25; P=0.54; $I^2=0\%$) (Fig. 3G).

In the comparison of surgery with radiotherapy, one trial involved transoral robotic surgery versus IMRT, while the other examined nasal endoscopic surgery versus IMRT. Surgical removal demonstrated higher hearing preservation than IMRT (OR, 0.59, 95% CI, 0.38–0.93; P = 0.28; $I^2 = 15\%$) (Fig. 3H).

	Experin	nental	Co	ontrol				Weight	Weight
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	(common)	(random)
Anthony C Nichols 2019	5	34	13	34		0.38	[0.15: 0.96]	1.5%	2.3%
Paul D Brown 2017	15	93	21	92	<u>#</u>	0.71	[0.39: 1.28]	2.4%	3.9%
Wong Kein Low 2006	68	116	68	114	1 <u>2</u>	0.98	[0.79: 1.22]	7.9%	6.8%
Cathrine Nansdal Breivik 2013	34	53	54	71	1: 	0.84	[0.66; 1.07]	5.3%	6.6%
Christopher M Nutting 2018	11	31	14	36		0.91	[0.49; 1.71]	1.5%	3.7%
Anne W M Lee 2009	25	95	17	82	<u></u>	1.27	[0.74; 2.18]	2.1%	4.2%
Jan C Buckner 2006	20	103	18	98	- 1	1.06	[0.60; 1.88]	2.1%	4.0%
L R Mandell 1999	10	45	7	51		1.62	[0.67; 3.90]	0.8%	2.4%
Wai-Tong Ng 2018	60	233	48	218		1.17	[0.84; 1.63]	5.7%	5.9%
Chawalit Lertbutsayanukul 2018	25	107	26	102		0.92	[0.57; 1.48]	3.1%	4.7%
Birgitta Lannering 2012	68	170	78	180		0.92	[0.72; 1.18]	8.7%	6.6%
Kerstin A Kessel 2018	17	56	29	128	1 <u>-</u>	1.34	[0.80; 2.23]	2.0%	4.5%
Arnold C Paulino 2018	8	38	12	46		0.81	[0.37; 1.77]	1.2%	2.8%
Nicole E. Marshall 2005	43	113	41	117	1	1.09	[0.77; 1.53]	4.6%	5.8%
Darren M C Poon 2021	4	28	9	28		0.44	[0.15; 1.28]	1.0%	1.9%
You-Ping Liu 2021	25	99	38	101		0.67	[0.44; 1.02]	4.3%	5.1%
Hisham Mehanna 2019	12	165	24	162		0.49	[0.25; 0.95]	2.8%	3.5%
Maura L Gillison 2019	8	394	24	398		0.34	[0.15; 0.74]	2.7%	2.8%
Maria Gebre-Medhin 2021	4	145	5	145	<u>_</u>	0.80	[0.22; 2.92]	0.6%	1.4%
Gang Peng 2012	145	306	275	310		0.53	[0.47; 0.61]	31.3%	7.4%
K K Fu 2000	10	261	10	254	i _	0.97	[0.41; 2.30]	1.2%	2.5%
Anne W M Lee 2015	11	104	10	160	1	1.69	[0.75; 3.84]	0.9%	2.7%
Ricardo Hitt 2022	15	202	41	205		0.37	[0.21; 0.65]	4.7%	4.1%
O W M Meijer 2003	19	49	20	80		1.55	[0.92; 2.60]	1.7%	4.4%
Common effect model		3040		3212	A	0.78	[0.72; 0.84]	100.0%	
Random effects model					<u> </u>	0.85	[0.72; 1.00]		100.0%
Heterogeneity: $I^2 = 75\%$, $\tau^2 = 0.093$	36, p < 0.0	01							
					0.2 0.5 1 2 5				

Fig. 2 Summary total hearing impairment for all included studies

Subgroup analysis of the association of RT with hearing impairment by age In the summary analysis of hearing impairment by comparing age groups, three studies included children under 18 years of age, and the combined effect value of hearing impairment was 0.95 (95% CI, 0.75–1.19; P=0.44; I²=0%) (Fig. 4). Twenty-five studies reported hearing loss in adults, with the combined value being 0.83 (95% CI, 0.69–1.00; P<0.01; I²=76%). The probability of hearing toxicity in children is higher than in adults.

Subgroup analysis of the association of RT with hearing impairment by tumor type Oropharyngeal carcinoma appeared to have the lowest hearing impairment associated with radiotherapy (OR, 0.41, 95% CI, 0.26–0.64; P=0.76; $I^2=0\%$). The hearing impairment of glioblastoma patients after irradiation was also relatively evident (OR, 1.08, 95% CI, 0.80–1.45; P=0.94; I2=0%). Radiotherapyassociated hearing impairment in vestibular adenomas was high among all primary tumors included in the literature (OR, 1.14, 95% CI, 0.76–1.70; P=0.05; $I^2=66\%$) (Fig. 5).

Subgroup analysis of the association of RT with hearing impairment by mean cochlear radiation dose One randomized controlled study covered experimental versus control arms and involved different average cochlear doses. Therefore, when calculating cochlear dose-related radiotherapy hearing impairment, it was divided into each arm and its corresponding dose. A total of 887 individuals reported mean cochlear radiation dose and hearing loss in 10 arms. The mean cochlear radiation dose of the 3 arms was in the range of 30-40 Gy, with the probability of total hearing impairment being 27% (95% CI, 0.19–0.35; P=0.42; $I^2=0\%$). When the cochlear radiation dose was 40-50 Gy, the combined value of total hearing impairment was 28% (95% CI, 0.19–0.39; P < 0.01; $I^2=85\%$). When the cochlear radiation dose increased to 50-60 Gy, the probability of total hearing impairment was the highest, at 35% (95% CI, 0.26–0.44) (Additional file 1: Fig. S2).

Publication bias and sensitivity analysis

The funnel plots of hearing impairment included in the study were roughly symmetrical (Additional file 1: Fig. S3). The Egger test was also conducted to assess whether there was publication bias in this study. No significantly different results emerged, with p=0.126 for Egger's test. The combined effect value of the sensitivity analysis was 0.85 (95% CI, 0.72–1.00), indicating that the results were stable (Additional file 1: Fig. S4).

Study	Experim Events	iental Total	Co Events	ontrol Total	Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
Hisham Mehanna 2019	12	165	24	162		0.49	[0.25; 0.95]	25.8%	29.9%
Maura L Gillison 2019	8	394	24	398		0.34	[0.15; 0.74]	25.5%	20.9%
Maria Gebre-Medhin 2021	4	145	5	145	*	0.80	[0.22; 2.92]	5.3%	7.7%
Ricardo Hitt 2022	15	202	41	205		0.37	[0.21; 0.65]	43.4%	41.5%
Common effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, <i>p</i> = 0.65	906		910		0.42 0.42	[0.29; 0.60] [0.29; 0.60]	100.0%	 100.0%

B.ART vs Conventional-RT

Study	Experin Events	nental Total	C Events	ontrol Total	Ris	k Ratio	D	RR	95%-CI	Weight (common)	Weight (random)
K K Fu 2000	10	261	10	254				0.97	[0.41; 2.30]	56.3%	47.7%
Anne W M Lee 2015	11	104	10	160	-	T÷		— 1.69	[0.75; 3.84]	43.7%	52.3%
Common effect model		365		414	-	4		1.29	[0.72; 2.32]	100.0%	
Random effects model					-	+		1.30	[0.72; 2.35]		100.0%
Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	0.36			1						
	.,				0.5	1	2				

C.Chemo+ART vs Chemo+Conventional-RT

Study	Experin Events	nental Total	C Events	ontrol Total	Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
Nicole E. Marshall 2005 Jan C Buckner 2006	43 20	113 103	41 18	117 98		1.09 1.06	[0.77; 1.53] [0.60; 1.88]	68.6% 31.4%	73.9% 26.1%
Common effect model Random effects model Heterogeneity: $J^2 = 0\%$, τ^2	= 0, p = 0	216).94		215	075 1 1	1.08 1.08	[0.80; 1.45] [0.80; 1.45]	100.0% 	 100.0%

D.HFRT vs Conventional-RT

TERT VS Conventiona	I-IK I								
Study	Experim Events	nental Total	Co Events	ontrol Total	Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
K K Fu 2000 L R Mandell 1999	16 10	253 45	10 7	254 51		1.61 - 1.62	[0.74; 3.47] [0.67; 3.90]	60.3% 39.7%	56.5% 43.5%
Common effect model Random effects model Heterogeneity: $l^2 = 0\%$, τ^2	= 0, p = 0	298		305		1.61 1.61	[0.90; 2.88] [0.90; 2.88]	100.0% 	 100.0%
					0.5 1 2				

E.IMRT vs Conventional-RT

Study	Experin Events	nental Total	C Events	ontrol Total		Ris	k Ra	tio		RR	95%-CI	Weight (common)	Weight (random)
Gang Peng 2012	145	306	275	310						0.53	[0.47; 0.61]	96.8%	98.6%
Darren M C Poon 2021	4	28	9	28		-	+			0.44	[0.15; 1.28]	3.2%	1.4%
Common effect model Random effects model		334		338						0.53 0.53	[0.47; 0.60] [0.47: 0.60]	100.0%	
Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	0.73				T	-						
					0.2	0.5	1	2	5				

F.Radiosurgery vs Stereotactic radiotherapy

Study	Experin Events	nental Total	C Events	ontrol Total		Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
Kerstin A Kessel 2018 O W M Meijer 2003	17 19	56 49	29 20	128 80			— 1.34 — 1.55	[0.80; 2.23] [0.92; 2.60]	53.7% 46.3%	50.8% 49.2%
Common effect model Random effects model Heterogeneity: $l^2 = 0\%$, τ^2	= 0, p = 0	105		208	0.5		- 1.44 - 1.44	[1.00; 2.07] [1.00; 2.07]	100.0% 	 100.0%

G.Chemo+RT vs RT

Study	Experin Events	nental Total	C Events	ontrol Total	Risk Ratio	RR	95%-CI	Weight (common)	Weight (random)
Anne W M Lee 2009	25	95	17	82		— 1.27	[0.74; 2.18]	13.4%	10.0%
Wong Kein Low 2006	68	116	68	114		0.98	[0.79; 1.22]	50.3%	63.4%
Wai-Tong Ng 2018	60	233	48	218		1.17	[0.84; 1.63]	36.4%	26.6%
Common effect model		444		414		1.09	[0.91: 1.30]	100.0%	
Random effects mode						1.06	[0.89: 1.25]		100.0%
Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	0.54			r i	Г			
					0.5 1	2			

H.Surgery vs IMRT

	Experin	nental	C	ontrol						Weight	Weight
Study	Events	Total	Events	Total	Ris	sk Ra	tio	RR	95%-CI	(common)	(random)
Anthony C Nichols 2019 You-Ping Liu 2021	5 25	34 99	13 38	34 101		H		0.38 0.67	[0.15; 0.96] [0.44; 1.02]	25.7% 74.3%	22.3% 77.7%
Common effect model Random effects model Heterogeneity: $J^2 = 15\%$, τ	² = 0.022	133 8, p = 0).28	135		>		0.60 0.59	[0.41; 0.88] [0.38; 0.93]	100.0% 	 100.0%
					0.2 0.5	1	2	5			

	Experim	nental	Co	ontrol				Weight	Weight	
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	(common)	(random)	
Age = Adult					81					
Anthony C Nichols 2019	5	34	13	34 ·		0.38	[0.15; 0.96]	1.5%	2.3%	
Paul D Brown 2017	15	93	21	92		0.71	[0.39; 1.28]	2.4%	3.9%	
Wong Kein Low 2006	68	116	68	114		0.98	[0.79; 1.22]	7.9%	6.8%	
Cathrine Nansdal Breivik 2013	34	53	54	71	- <u>i</u> #-	0.84	[0.66; 1.07]	5.3%	6.6%	
Christopher M Nutting 2018	11	31	14	36		0.91	[0.49; 1.71]	1.5%	3.7%	
Anne W M Lee 2009	25	95	17	82	++++	1.27	[0.74; 2.18]	2.1%	4.2%	
Jan C Buckner 2006	20	103	18	98		1.06	[0.60; 1.88]	2.1%	4.0%	
Wai-Tong Ng 2018	60	233	48	218		1.17	[0.84; 1.63]	5.7%	5.9%	
Chawalit Lertbutsayanukul 2018	25	107	26	102		0.92	[0.57; 1.48]	3.1%	4.7%	
Kerstin A Kessel 2018	17	56	29	128	1	1.34	[0.80; 2.23]	2.0%	4.5%	
Nicole E. Marshall 2005	43	113	41	117		1.09	[0.77; 1.53]	4.6%	5.8%	
Darren M C Poon 2021	4	28	9	28	+	0.44	[0.15; 1.28]	1.0%	1.9%	
You-Ping Liu 2021	25	99	38	101		0.67	[0.44; 1.02]	4.3%	5.1%	
Hisham Mehanna 2019	12	165	24	162		0.49	[0.25; 0.95]	2.8%	3.5%	
Maura L Gillison 2019	8	394	24	398 ·		0.34	[0.15; 0.74]	2.7%	2.8%	
Maria Gebre-Medhin 2021	4	145	5	145		0.80	[0.22; 2.92]	0.6%	1.4%	
Gang Peng 2012	145	306	275	310		0.53	[0.47; 0.61]	31.3%	7.4%	
K K Fu 2000	10	261	10	254	;	0.97	[0.41; 2.30]	1.2%	2.5%	
Anne W M Lee 2015	11	104	10	160	<u>+</u>	1.69	[0.75; 3.84]	0.9%	2.7%	
Ricardo Hitt 2022	15	202	41	205		0.37	[0.21; 0.65]	4.7%	4.1%	
O W M Meijer 2003	19	49	20	80	· · · · · · · · · · · · · · · · · · ·	1.55	[0.92; 2.60]	1.7%	4.4%	
Common effect model		2787		2935	4	0.76	[0.70; 0.82]	89.3%		
Random effects model					4	0.83	[0.69; 1.00]		88.2%	
Heterogeneity: $I^2 = 76\%, \tau^2 = 0.11$	00, p < 0.0)1								
Age = Children										
L R Mandell 1999	10	45	7	51		1 62	[0 67:3 90]	0.8%	24%	
Birgitta Lannering 2012	68	170	78	180		0.92	[0.07, 0.00]	8.7%	6.6%	
Arnold C Paulino 2018	8	38	12	46		0.81	[0.72, 1.10]	1.2%	2.8%	
Common effect model	0	253	12	277		0.01	[0.07, 1.77]	10.7%	2.070	
Random effects model		200		211		0.30	[0.76, 1.21]	10.7 %	11 8%	
Hotorogonoity: $l^2 = 0.00$	0.01 - 0	1.1				0.55	[0.75, 1.15]		11.0 /0	
Helefogeneity. $T = 0\%$, $\tau = < 0.00$	$j_{01}, \rho = 0.$	44								
Common effect model		3040		3212	\	0.78	[0.72; 0.84]	100.0%		
Random effects model						0.85	[0.72; 1.00]		100.0%	
Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0936$, $p < 0.01$ 0.2 0.5 1 2 5										

Test for subgroup differences (common effect): $\chi_1^2 = 3.52$, df = 1 (p = 0.06) Test for subgroup differences (random effects): $\chi_1^2 = 0.80$, df = 1 (p = 0.37)

Fig. 4 Subgroup Analysis of the Association of RT with hearing impairment by age

Discussion

The study encompassed 28 randomized controlled trials, involving 6,252 patients, to evaluate ototoxic effects in cancer patients after radiotherapy. Factors such as mean cochlear irradiation dose, primary tumor, radiotherapy modality (or technique), and patient age may influence the risk of hearing impairment. IMRT radiotherapy-associated ototoxicity was less common than conventional radiotherapy. Stereotactic radiotherapy appeared to be a better option for hearing protection than radiosurgery. Children are at a higher risk of hearing impairment than adults. Over half of patients with vestibular neuroadenoma experience hearing impairment after radiation therapy. The average cochlear radiation dose is strongly associated with hearing impairment, and the radiation dose to the cochlea must be precisely controlled. To the best of our knowledge, this is the first comprehensive meta-analysis to analyze ototoxic injury caused by radiotherapy.

Previous literature has discussed the relationship between ototoxicity and radiotherapy. Theunissen and others conducted a study on sensorineural hearing loss (SNHL) caused by radiotherapy of head and neck tumors, suggesting that factors influencing the risk of SNHL included cochlear radiation dose, population age, and follow-up time [40]. Radiation-related ototoxicity involving auditory structures is multifactorial in nature. Radiation affecting the external auditory canal may lead to increased soft tissue susceptibility to infection and may necessitate regular removal of the cochlea to keep

	Experim	ental	Co	ontrol				Weight	Weight
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	(common)	(random)
Tumor = Oropharvngeal carci	inoma								
Anthony C Nichols 2019	5	34	13	34 -		0.38	[0.15: 0.96]	1.7%	2.7%
Hisham Mehanna 2019	12	165	24	162		0.49	[0.25: 0.95]	3.1%	4.2%
Maura L Gillison 2019	8	394	24	398 -		0.34	[0.15: 0.74]	3.1%	3.4%
Common effect model		593		594		0.41	[0.26; 0.64]	7.9%	
Random effects model					\sim	0.41	[0.26: 0.64]		10.3%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p =$	= 0.76								
Tumor = Nasopharyngeal car	cinoma								
Wong Kein Low 2006	68	116	68	114	÷+-	0.98	[0.79; 1.22]	8.8%	8.4%
Anne W M Lee 2009	25	95	17	82	+: +	1.27	[0.74; 2.18]	2.4%	5.1%
Wai-Tong Ng 2018	60	233	48	218	÷+=	1.17	[0.84; 1.63]	6.4%	7.2%
Chawalit Lertbutsayanukul 2018	B 25	107	26	102		0.92	[0.57; 1.48]	3.4%	5.7%
Darren M C Poon 2021	4	28	9	28 -		0.44	[0.15; 1.28]	1.2%	2.2%
You-Ping Liu 2021	25	99	38	101		0.67	[0.44; 1.02]	4.8%	6.3%
Gang Peng 2012	145	306	275	310		0.53	[0.47; 0.61]	35.2%	9.2%
Anne W M Lee 2015	11	104	10	160	<u>i</u>	1.69	[0.75; 3.84]	1.0%	3.2%
Common effect model		1088		1115	<	0.74	[0.67; 0.81]	63.2%	
Random effects model						0.87	[0.66; 1.15]		47.3%
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.10$)31, <i>p</i> < 0.0	1							
Tumor = Vestibular schwanne	oma								
Cathrine Nansdal Breivik 2013	34	53	54	71		0.84	[0.66: 1.07]	5.9%	8.2%
Kerstin A Kessel 2018	17	56	29	128		1.34	[0.80; 2.23]	2.3%	5.4%
O W M Meijer 2003	19	49	20	80		1.55	[0.92; 2.60]	2.0%	5.3%
Common effect model		158		279		1.09	[0.88: 1.35]	10.2%	
Random effects model						1.14	[0.76: 1.70]		18.9%
Heterogeneity: $I^2 = 66\%, \tau^2 = 0.07$	92, p = 0.0	5					[1010 /0
Tumor = Glioblastoma									
lan C Buckner, 2006	20	103	18	98		1.06	IO 60· 1 881	2.4%	4.8%
Nicole E. Marshall 2005	43	113	41	117		1.00	[0.00, 1.00]	5.2%	7.1%
Common effect model	-0	216		215		1.00	[0.77, 1.00]	7.6%	7.170
Random effects model		210		215		1.00	[0.80: 1.45]		12 0%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p =$	= 0.94					1.00	[0.00, 1.40]		12.070
Tumor = Medulloblastoma									
Birgitta Lannering 2012	68	170	78	180		0 92	[0 72. 1 18]	9.8%	8 1%
Arnold C Paulino 2018	8	38	12	46		0.32	[0.72, 1.10]	1.4%	3.4%
Common effect model	0	208	12	226		0.01	[0.07, 1.17]	11 2%	J.+ /0
Random effects model		200		220		0.01	[0.72, 1.15]		11 5%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p =$	= 0.75					0.01	[0.72, 1.10]		11.570
Common effect model		2263		2429		0.79	[0.73: 0.86]	100.0%	
Random effects model						0.87	[0.73; 1.04]		100.0%
Heterogeneity: $I^2 = 79\%$, $\tau^2 = 0.08$	874, <i>p</i> < 0.0	1	04.77	- 4 /	0.2 0.5 1 2 5				

Test for subgroup differences (common effects): $\chi_4^2 = 14.84$, df = 4 (p < 0.01)

Fig. 5 Subgroup Analysis of the Association of RT with hearing impairment by Tumor type

it dry [41]. Sensorineural hearing loss typically occurs at doses greater than 30 Gy [42, 43]. The risk of ototoxicity increases in patients receiving combined treatments, such as radiotherapy and platinum chemotherapy [44, 45].

Discussions about the optimal treatment strategy for techniques, prescription dosing, and segmentation are based on the need to prioritize curing the tumor while maintaining an acceptable risk of complications. Pediatric brain and head and neck malignancies requiring dose escalation, as well as adult skull base malignancies, are internationally recognized indications for proton therapy, exhibiting good local control, survival, and acceptable toxicity rates [46, 47]. Due to the lack of robust prediction models of photons and protons for this toxicity, it is impossible to predict the risk of hearing loss based on the patient's disease and treatment characteristics. The Normal Tissue Complication Probability

(NTCP) model has been employed in previous studies to guide clinical judgment of proton beam therapy (PBT) [48]. In S. Gaito et al's study, the risk reduction of secondary tumors with PBT was estimated to be considerable compared with conventional photon radiotherapy through modeling studies. The clinical benefit of PBT primarily depends on the location of the tumor relative to the organ at risk and on the prescribed dose [48]. A multicenter study evaluating proton therapy and volumetric modulated arc therapy (VMAT) by establishing an NTCP model demonstrated that the reduction of NTCP in the population had a significant impact on auditory toxicity (VMAT: 8.0%; Proton: 3.3%). A significant reduction in the median population was observed in the proton-radiotherapy program, which provided auditory complications as well as a reduced risk of secondary brain cancer [49]. Previous research has also shown that proton therapy can effectively lower the dose of normal tissue surrounding patients with low-grade glioma (LGG). Compared with proton therapy, IMRT poses a two-fold higher risk of secondary intracranial tumors [50]. Fortin et al. conducted photon intensity modulation and proton radiotherapy in 50 children. Using proton and photon RT dose distributions, the intelligence quotient (IQ) and hearing loss probability of each ear were estimated by a Monte Carlo model. They concluded that compared with photon RT, proton RT is expected to reduce the adverse effects of RT on IQ and hearing [51].

Early radiation-induced ototoxicity is associated with mucosal edema, inflammation, and scaling of the outer, middle, and inner ear tissues [52]. The outer ear, middle ear, and inner ear may be affected, but otitis media is more common. It is related to middle ear effusion and can cause hearing loss, earache, and otorrhea, which usually subside after a few weeks [53]. The most prevalent toxicity is sensorineural hearing impairment. Arterial microvascular fibrosis and obliterative endarteritis often occur in the blood vessels of the inner ear's spirochetes, leading to degeneration and atrophy of the smooth muscle of the inner ear and the outer hair cells of the cochlea [54]. These hair cells are located at the base of the cochlea and are more sensitive to ionizing radiation than internal hair cells. They are responsible for hearing high frequencies, so high frequencies are more susceptible than low frequencies [55].

In this meta-analysis, the influence of age, radiotherapy mode, primary tumor, and mean cochlear dose on ototoxic hearing impairment is discussed. It can be concluded that the dose delivered to the inner ear (more precisely, the cochlea), radiotherapy technique (three-dimensional conformation), tumor type, and the age of the radiotherapy population are closely related to radiation-induced ototoxicity. The primary sites of radiation-induced ototoxicity are the paranasal sinuses, nasal cavity, nasopharynx, and parotid glands [56]. In the case of large tumors, the risk is undoubtedly greater. The ototoxicity of radiotherapy alone is related to the total dose received by the cochlea. Most authors in this study selected a threshold dose between 30 and 60 Gy. The probability of total hearing loss between 30 and 40 Gy was 27% (95% CI: 0.19–0.35), while the probability of total ototoxicity between 50 and 60 Gy was 35% (95% CI: 0.26-0.44). Charlotte et al. performed pure-tone audiometry at 0.250-16 kHz before and after treatment in 101 patients with head and neck cancer treated with modulated radiotherapy. They indicated that high frequencies might be affected early [57]. Keilty et al. assessed hearing in 340 children receiving radiotherapy. Mean cochlear dose, time after radiotherapy, cisplatin dose, and carboplatin dose were associated with increased assessment grades of hearing loss. If the mean cochlear dose is >4 Gy, the cumulative incidence of high-frequency hearing impairment (>5 kHz) at 50 years after radiotherapy is greater than 30%. Children who are treated with RT, especially those also receiving chemotherapy, are at a higher risk of hearing impairment and should have lower cochlear restraint [58]. They recommend an average cochlear dose of \leq 30 Gy as a target for reducing Hodgkin's lymphoma risk [58]. To understand ototoxicity in radiotherapy patients, it is important to collect results reported by the clinician at baseline and during followup, in addition to tests such as audiograms, as this may partially overcome the inadequacy of hearing testing [59].

In this study, the subgroup analysis of hearing impairment with different radiotherapy techniques was analyzed. From the results, it is evident that the impact of carbon ions on hearing loss is minimal, making it a more reliable choice. Before the advent of IMRT, traditional two-dimensional radiation therapy was used. The response to radiation therapy depends on the sensitivity of tumor cells to radiation. In theory, higher radiation sensitivity leads to better therapeutic effects. However, the damage caused by treatment to the surrounding normal tissues also increases. Heavy particles, such as carbon ions, release energy to centrally explode tumor cells, maximizing the effect of radiotherapy and reducing damage to surrounding healthy tissues. Huang et al. divided 26 pediatric patients receiving medulloblastoma treatment into two groups, receiving conventional radiotherapy or IMRT, respectively. The pure tone audiogram was detected, and hearing function was graded from 0 to 4 according to the toxicity standard of the pediatric oncology group. They concluded that, compared to the traditional RT group, the IMRT group had a lower average decibel hearing threshold at each frequency. The overall incidence of ototoxicity in the IMRT group was

low. Thirteen percent of the IMRT group had grade 3 or 4 hearing loss, compared with 64% of the conventional RT group [60]. In the study by Erner et al., 54 patients with low-grade and middle-grade chondrosarcoma of the skull base received carbon ion radiotherapy. After a median follow-up period of 33 months, only one tumor patient had sensory hearing loss in the inner ear. The patient retained useful hearing and did not use hearing aids [61].

The first-line treatment for radiation ototoxicity is drugs, which can be injected into the ear with a vasoconstrictor [52]. If this treatment is not effective, tympanoplasty may be required to treat middle ear effusion. Bone conduction hearing aids can be provided if symptoms associated with damage to the outer or middle ear persist, such as when mucosa is irreversibly damaged. They allow bypassing of the outer and middle ear, directly stimulating the sensory cells of the cochlea. Hyperbaric oxygen therapy can also be used as a treatment option for most subjects. Xu et al. discussed the treatment of 96 nasopharyngeal carcinoma patients with effusion otitis media after radiotherapy. They were divided into 3 groups: simple auricular point plus aspiration, tympanic membrane fenestration plus cauterization, tympanic membrane fenestration plus tympanic membrane tube insertion. Finally, they concluded that intensive local care after eardrum insertion can effectively reduce the incidence of ear complications after radiotherapy [62].

Limitations

This study had several limitations. First, there are few RCTs providing average doses of cochlea, making it difficult to analyze the link between doses and ototoxicity on a large scale. Second, potential bias may exist due to differences in tumor stage and underlying disease in the included population. Third, the number of RCTs involved in each radiotherapy technique is small.

Conclusions

In this study, randomized controlled trials were analyzed to compare the association of various factors with radiotherapy-related ototoxicity. Radiation design patterns and doses, population characteristics, and tumor characteristics are all intricately linked to ototoxicity. Children treated with RT, particularly those receiving chemotherapy, have a higher risk of hearing impairment; therefore, their cochlear restraint should be lower. To gain a better understanding of hearing toxicity, it is crucial to collect clinician-reported results at baseline and during follow-up, in addition to tests such as audiograms.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13014-023-02268-7.

Additional file 1. Fig.S1. Bias risk assessment chart. Fig.S2. Subgroup Analysis of the Association of RT With Hearing Loss by Cochlear irradiation dose. Fig.S3. Funnel chart of total hearing loss. Fig.S4. Sensitivity analysis of hearing loss.

Acknowledgements

Not applicable.

Author contributions

Conceptualization: YH. Data curation: HZ. Formal analysis: AZ. Funding acquisition: JL. Investigation: JL. Project administration: JW. Software: FA. Supervision: MW. Writing—original draft: YH. Writing—review, and editing: YH. All authors read and approved the final manuscript.

Funding

This work was supported by National Natural Science Foundation of China (82073339); Scientific Projects of Changzhou Medical Center raised by Nanjing Medical University (CMCB202201); partly by Changzhou Sci & Tech Program (CJ20220224; CJ20220092).

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

Declarations

Ethics approval and consent to participate

The study was approved by the Human Research Ethics Committees of The Affiliated Changzhou No. 2. People's Hospital of Nanjing Medical University, Changzhou, China.

Consent for publication

All authors agree to publish.

Competing interests

The authors have no competing interests.

Received: 4 April 2023 Accepted: 21 April 2023 Published online: 03 June 2023

References

- 1. Landier W. Ototoxicity and cancer therapy. Cancer. 2016;122(11):1647–58.
- Clemens E, van den Heuvel-Eibrink MM, Mulder RL, Kremer LCM, Hudson MM, Skinner R, et al. Recommendations for ototoxicity surveillance for childhood, adolescent, and young adult cancer survivors: a report from the international late effects of childhood cancer guideline harmonization group in collaboration with the PanCare consortium. Lancet Oncol. 2019;20(1):e29–41.
- Rabiço-Costa D, Gil-da-Costa MJ, Barbosa JP, Bom-Sucesso M, Spratley J. Platinum-drugs ototoxicity in pediatric patients with brain tumors: a 10-year review. J Pediatr Hematol Oncol. 2020;42(1):e25–31.
- Winther FO. X-ray irradiation of the inner ear of the guinea pig. Early degenerative changes in the cochlea. Acta Oto-laryngol. 1969;68(1):98–117.
- Grewal S, Merchant T, Reymond R, McInerney M, Hodge C, Shearer P. Auditory late effects of childhood cancer therapy: a report from the children's oncology group. Pediatrics. 2010;125(4):e938–50.
- 6. Wakisaka H, Yamada H, Motoyoshi K, Ugumori T, Takahashi H, Hyodo M. Incidence of long-term ipsilateral and contralateral ototoxicity following

radiotherapy for nasopharyngeal carcinoma. Auris Nasus Larynx. 2011;38(1):95–100.

- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clin Res Ed). 2009;339:b2700.
- Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:Ed000142.
- Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.
- Hoaglin DC. Misunderstandings about Q and 'Cochran's Q test' in metaanalysis. Stat Med. 2016;35(4):485–95.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ (Clin Res Ed). 1997;315(7109):629–34.
- Lee AW, Ng WT, Hung WM, Choi CW, Tung R, Ling YH, et al. Major late toxicities after conformal radiotherapy for nasopharyngeal carcinomapatient- and treatment-related risk factors. Int J Radiat Oncol Biol Phys. 2009;73(4):1121–8.
- Ng WT, Ngan RKC, Kwong DLW, Tung SY, Yuen KT, Kam MKM, et al. Prospective, multicenter, phase 2 trial of induction chemotherapy followed by bio-chemoradiotherapy for locally advanced recurrent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2018;100(3):630–8.
- Paulino AC, Mahajan A, Ye R, Grosshans DR, Okcu MF, Su J, et al. Ototoxicity and cochlear sparing in children with medulloblastoma: proton vs. photon radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2018;128(1):128–32.
- Kiyota N, Tahara M, Mizusawa J, Kodaira T, Fujii H, Yamazaki T, et al. Weekly cisplatin plus radiation for postoperative head and neck cancer (JCOG1008): a multicenter, noninferiority, phase II/III randomized controlled trial. J Clin Oncol Off J Am Soc Clin Oncol. 2022;40(18):1980–90.
- You R, Liu YP, Huang PY, Zou X, Sun R, He YX, et al. Efficacy and safety of locoregional radiotherapy with chemotherapy vs chemotherapy alone in de novo metastatic nasopharyngeal carcinoma: a multicenter phase 3 randomized clinical trial. JAMA Oncol. 2020;6(9):1345–52.
- Nichols AC, Theurer J, Prisman E, Read N, Berthelet E, Tran E, et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial. Lancet Oncol. 2019;20(10):1349–59.
- Brown PD, Ballman KV, Cerhan JH, Anderson SK, Carrero XW, Whitton AC, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/ CEC-3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1049–60.
- Low WK, Toh ST, Wee J, Fook-Chong SM, Wang DY. Sensorineural hearing loss after radiotherapy and chemoradiotherapy: a single, blinded, randomized study. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(12):1904–9.
- Breivik CN, Nilsen RM, Myrseth E, Pedersen PH, Varughese JK, Chaudhry AA, et al. Conservative management or gamma knife radiosurgery for vestibular schwannoma: tumor growth, symptoms, and quality of life. Neurosurgery. 2013;73(1):48–56.
- Nutting CM, Morden JP, Beasley M, Bhide S, Cook A, De Winton E, et al. Results of a multicentre randomised controlled trial of cochlear-sparing intensity-modulated radiotherapy versus conventional radiotherapy in patients with parotid cancer (COSTAR; CRUK/08/004). Eur J Cancer (Oxf, Engl: 1990). 2018;103:249–58.
- 22. Buckner JC, Ballman KV, Michalak JC, Burton GV, Cascino TL, Schomberg PJ, et al. Phase III trial of carmustine and cisplatin compared with carmustine alone and standard radiation therapy or accelerated radiation therapy in patients with glioblastoma multiforme: north central cancer treatment group 93–72-52 and southwest oncology group 9503 trials. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(24):3871–9.
- 23. Mandell LR, Kadota R, Freeman C, Douglass EC, Fontanesi J, Cohen ME, et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a pediatric oncology group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys. 1999;43(5):959–64.

- 24. Lertbutsayanukul C, Prayongrat A, Kannarunimit D, Chakkabat C, Netsawang B, Kitpanit S. A randomized phase III study between sequential versus simultaneous integrated boost intensity-modulated radiation therapy in nasopharyngeal carcinoma. Strahlenther Onkol Organ Dtsch Rontgenges [et al]. 2018;194(5):375–85.
- Lannering B, Rutkowski S, Doz F, Pizer B, Gustafsson G, Navajas A, et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(26):3187–93.
- Li XY, Luo DH, Guo L, Mo HY, Sun R, Guo SS, et al. Deintensified chemoradiotherapy for pretreatment Epstein-Barr virus DNA-selected low-risk locoregionally advanced nasopharyngeal carcinoma: a phase II randomized noninferiority trial. J Clin Oncol Off J Am Soc Clin Oncol. 2022;40(11):1163–73.
- Kessel KA, Fischer H, Vogel MM, Oechsner M, Bier H, Meyer B, et al. Fractionated vs. single-fraction stereotactic radiotherapy in patients with vestibular schwannoma: hearing preservation and patients' self-reported outcome based on an established questionnaire. Strahlenther Onkol Organ Dtsch Rontgenges [et al]. 2017;193(3):192–9.
- Tang LQ, Chen DP, Guo L, Mo HY, Huang Y, Guo SS, et al. Concurrent chemoradiotherapy with nedaplatin versus cisplatin in stage II-IVB nasopharyngeal carcinoma: an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncol. 2018;19(4):461–73.
- Marshall NE, Ballman KV, Michalak JC, Schomberg PJ, Burton GV, Sandler HM, et al. Ototoxicity of cisplatin plus standard radiation therapy vs accelerated radiation therapy in glioblastoma patients. J Neuro-oncol. 2006;77(3):315–20.
- Poon DMC, Kam MKM, Johnson D, Mo F, Tong M, Chan ATC. Durability of the parotid-sparing effect of intensity-modulated radiotherapy (IMRT) in early stage nasopharyngeal carcinoma: a 15-year follow-up of a randomized prospective study of IMRT versus two-dimensional radiotherapy. Head Neck. 2021;43(6):1711–20.
- Liu YP, Wen YH, Tang J, Wei Y, You R, Zhu XL, et al. Endoscopic surgery compared with intensity-modulated radiotherapy in resectable locally recurrent nasopharyngeal carcinoma: a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(3):381–90.
- Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet. 2019;393(10166):51–60.
- Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet. 2019;393(10166):40–50.
- 34. Gebre-Medhin M, Brun E, Engström P, Haugen Cange H, Hammarstedt-Nordenvall L, Reizenstein J, et al. ARTSCAN III: a randomized phase III study comparing chemoradiotherapy with cisplatin versus cetuximab in patients with locoregionally advanced head and neck squamous cell cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2021;39(1):38–47.
- 35. Hitt R, Mesía R, Lozano A, Iglesias Docampo L, Grau JJ, Taberna M, et al. Randomized phase 3 noninferiority trial of radiotherapy and cisplatin vs radiotherapy and cetuximab after docetaxel-cisplatin-fluorouracil induction chemotherapy in patients with locally advanced unresectable head and neck cancer. Oral Oncol. 2022;134:106087.
- 36. Peng G, Wang T, Yang KY, Zhang S, Zhang T, Li Q, et al. A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;104(3):286–93.
- 37. Fu KK, Pajak TF, Trotti A, Jones CU, Spencer SA, Phillips TL, et al. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys. 2000;48(1):7–16.
- 38. Lee AW, Ngan RK, Tung SY, Cheng A, Kwong DL, Lu TX, et al. Preliminary results of trial NPC-0501 evaluating the therapeutic gain by changing from concurrent-adjuvant to induction-concurrent chemoradiotherapy, changing from fluorouracil to capecitabine, and changing from conventional to accelerated radiotherapy fractionation in patients

with locoregionally advanced nasopharyngeal carcinoma. Cancer. 2015;121(8):1328–38.

- Meijer OW, Vandertop WP, Baayen JC, Slotman BJ. Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study. Int J Radiat Oncol Biol Phys. 2003;56(5):1390–6.
- 40. Theunissen EA, Bosma SC, Zuur CL, Spijker R, van der Baan S, Dreschler WA, et al. Sensorineural hearing loss in patients with head and neck cancer after chemoradiotherapy and radiotherapy: a systematic review of the literature. Head Neck. 2015;37(2):281–92.
- Million RR, Parsons JT, Mendenhall WM. Effect of radiation on normal tissues in the head and neck. Bone, cartilage, and soft tissue. Front Radiat Ther Oncol. 1989;23:221–37.
- Merchant TE, Gould CJ, Xiong X, Robbins N, Zhu J, Pritchard DL, et al. Early neuro-otologic effects of three-dimensional irradiation in children with primary brain tumors. Int J Radiat Oncol Biol Phys. 2004;58(4):1194–207.
- Hua C, Bass JK, Khan R, Kun LE, Merchant TE. Hearing loss after radiotherapy for pediatric brain tumors: effect of cochlear dose. Int J Radiat Oncol Biol Phys. 2008;72(3):892–9.
- Warrier R, Chauhan A, Davluri M, Tedesco SL, Nadell J, Craver R. Cisplatin and cranial irradiation-related hearing loss in children. Ochsner J. 2012;12(3):191–6.
- Rivelli TG, Mak MP, Martins RE, e Silva VTDC, de Castro G. Cisplatin based chemoradiation late toxicities in head and neck squamous cell carcinoma patients. Discov Med. 2015;20(108):57–66.
- Hwang E, Gaito S, France A, Crellin AM, Thwaites DI, Ahern V, et al. Outcomes of patients treated in the UK proton overseas programme: non-central nervous system group. Clin Oncol. 2023;35(5):292–300.
- Gaito S, Hwang EJ, France A, Aznar MC, Burnet N, Crellin A, et al. Outcomes of patients treated in the UK proton overseas programme: central nervous system group. Clin Oncol. 2023;35(5):283–91.
- 48. Gaito S, Burnet N, Aznar M, Crellin A, Indelicato DJ, Ingram S, et al. Normal tissue complication probability modelling for toxicity prediction and patient selection in proton beam therapy to the central nervous system: a literature review. Clin Oncol. 2022;34(6):e225–37.
- Stokkevåg CH, Indelicato DJ, Herfarth K, Magelssen H, Evensen ME, Ugland M, et al. Normal tissue complication probability models in plan evaluation of children with brain tumors referred to proton therapy. Acta Oncol. 2019;58(10):1416–22.
- Dennis ER, Bussiere MR, Niemierko A, Lu MW, Fullerton BC, Loeffler JS, et al. A comparison of critical structure dose and toxicity risks in patients with low grade gliomas treated with IMRT versus proton radiation therapy. Technol Cancer Res Treat. 2013;12(1):1–9.
- Fortin D, Tsang D, Ng A, Laperriere N, Hodgson DC. Monte Carlo-driven predictions of neurocognitive and hearing impairments following proton and photon radiotherapy for pediatric brain-tumor patients. J Neurooncol. 2017;135(3):521–8.
- 52. Jereczek-Fossa BA, Zarowski A, Milani F, Orecchia R. Radiotherapy-induced ear toxicity. Cancer Treat Rev. 2003;29(5):417–30.
- Grau C, Møller K, Overgaard M, Overgaard J, Elbrønd O. Sensori-neural hearing loss in patients treated with irradiation for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 1991;21(3):723–8.
- Honoré HB, Bentzen SM, Møller K, Grau C. Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2002;65(1):9–16.
- Low WK, Tan MG, Sun L, Chua AW, Goh LK, Wang DY. Dose-dependant radiation-induced apoptosis in a cochlear cell-line. Apoptosis Int J Program Cell Death. 2006;11(12):2127–36.
- Raaijmakers E, Engelen AM. Is sensorineural hearing loss a possible side effect of nasopharyngeal and parotid irradiation? A systematic review of the literature. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2002;65(1):1–7.
- Zuur CL, Simis YJ, Lamers EA, Hart AA, Dreschler WA, Balm AJ, et al. Risk factors for hearing loss in patients treated with intensity-modulated radiotherapy for head-and-neck tumors. Int J Radiat Oncol Biol Phys. 2009;74(2):490–6.
- Keilty D, Khandwala M, Liu ZA, Papaioannou V, Bouffet E, Hodgson D, et al. Hearing loss after radiation and chemotherapy for CNS and head-and-neck tumors in children. J Clin Oncol Off J Am Soc Clin Oncol. 2021;39(34):3813–21.

- Hwang E, Burnet NG, Crellin AM, Ahern V, Thwaites DI, Gaito S, et al. A novel model and infrastructure for clinical outcomes data collection and their systematic evaluation for UK patients receiving proton beam therapy. Clin Oncol. 2022;34(1):11–8.
- Huang E, Teh BS, Strother DR, Davis QG, Chiu JK, Lu HH, et al. Intensitymodulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys. 2002;52(3):599–605.
- 61. Schulz-Ertner D, Nikoghosyan A, Hof H, Didinger B, Combs SE, Jäkel O, et al. Carbon ion radiotherapy of skull base chondrosarcomas. Int J Radiat Oncol Biol Phys. 2007;67(1):171–7.
- Xu YD, Ou YK, Zheng YQ, Chen Y, Ji SF. The treatment for postirradiation otitis media with effusion: a study of three methods. Laryngoscope. 2008;118(11):2040–3.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

