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Abstract
Background In this study, we propose the deep learning model-based framework to automatically delineate 
nasopharynx gross tumor volume (GTVnx) in MRI images.

Methods MRI images from 200 patients were collected for training-validation and testing set. Three popular deep 
learning models (FCN, U-Net, Deeplabv3) are proposed to automatically delineate GTVnx. FCN was the first and 
simplest fully convolutional model. U-Net was proposed specifically for medical image segmentation. In Deeplabv3, 
the proposed Atrous Spatial Pyramid Pooling (ASPP) block, and fully connected Conditional Random Field(CRF) may 
improve the detection of the small scattered distributed tumor parts due to its different scale of spatial pyramid layers. 
The three models are compared under same fair criteria, except the learning rate set for the U-Net. Two widely applied 
evaluation standards, mIoU and mPA, are employed for the detection result evaluation.

Results The extensive experiments show that the results of FCN and Deeplabv3 are promising as the benchmark of 
automatic nasopharyngeal cancer detection. Deeplabv3 performs best with the detection of mIoU 0.8529 ± 0.0017 
and mPA 0.9103 ± 0.0039. FCN performs slightly worse in term of detection accuracy. However, both consume 
similar GPU memory and training time. U-Net performs obviously worst in both detection accuracy and memory 
consumption. Thus U-Net is not suggested for automatic GTVnx delineation.

Conclusions The proposed framework for automatic target delineation of GTVnx in nasopharynx bring us the 
desirable and promising results, which could not only be labor-saving, but also make the contour evaluation more 
objective. This preliminary results provide us with clear directions for further study.

Key points
• The precise delineation of nasopharynx gross tumor volume (GTVnx) is a critical step for nasopharyngeal cancer 
radiotherapy.

Automatic detection and recognition 
of nasopharynx gross tumour volume (GTVnx) 
by deep learning for nasopharyngeal cancer 
radiotherapy through magnetic resonance 
imaging
Yandan Wang1, Hehe Chen2, Jie Lin3, Shi Dong4 and Wenyi Zhang5*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-023-02260-1&domain=pdf&date_stamp=2023-5-2


Page 2 of 9Wang et al. Radiation Oncology           (2023) 18:76 

Introduction
As reported by the International Agency for Research on 
Cancer, there were around 129,000 new cases of naso-
pharyngeal cancer diagnosed in 2018, which accounts 
for 0.7% of all types of cancers [1]. More than 70% of new 
cases are in east and southeast Asia, especially with an 
age standardised rate (world) of 3.0 per 100,000 in China 
[2]. Radiotherapy is the mainstay in the treatment of 
nasopharyngeal cancer, with intensity-modulated radio-
therapy (IMRT) having been a major breakthrough in its 
treatment [3]. Since the anatomical structure and noto-
riously narrow treatment boundaries are complex, the 
target delineation of nasopharyngeal cancer still remains 
challenging. Accurate target delineation is crucial to 
achieving optimal tumour control and sparing of criti-
cal organs. However, manual delineation of nasopharynx 
gross tumour volume (GTVnx) is labour-intensive and 
has low reproducibility.

Automatic delineation of radiotherapy target as well 
as critical organs based on deep learning models have 
become a hot research topic in recent years [4–7]. Fol-
lowing international guidelines [8] and the RTOG 0225 
protocol [9], a contrast-enhanced MRI was fused with 
treatment plan CT images using computer optimiza-
tion to accurately delineate the primary disease. Thus, 
a contrast-enhanced MRI is recommended as the gold-
standard imaging for nasopharyngeal cancer delineation. 
MRI-guided manual GTVnx delineation is challeng-
ing and time consuming due to its complex anatomical 
structure. Moreover, inter-observer variability in tumour 
delineation is not negligible [10]. Therefore, automatic 
delineation based on deep learning models could be a 
desirable alternative to overcome these difficulties. The 
deep learning models can detect tumour invasion more 
accurately and assist junior oncologists in GTVnx delin-
eation. Compared to the conventional method, the pro-
posed method could not only save time but also make the 
contours evaluation more objective.

A few studies have applied deep learning-associated 
models to nasopharyngeal cancer. A deep learning based 
model was used to predict achievable dose-volume 
histograms(DVHs) of organs at risk(OARs) for automa-
tion of inverse planning in nasopharyngeal cancer [11]. 
A modified deep learning model called U-Net was used 
to automatically segment and delineate tumour targets in 
CT images in nasopharyngeal cancer [12]. In this paper, 
MRI was used for its better resolution when it comes to 

soft tissues, perineural and skull base invasion as com-
pared to CT [13]. We trained three different deep learn-
ing models to delineate GTVnx in MRI images with 
thoroughly comparison and analysis.

In this paper, we proposed deep learning based frame-
work with three popular network models (FCN [14], 
U-Net [15], Deeplabv3[16]) aimed at achieving high-level 
semantic feature extraction for nasopharyngeal cancer 
contouring. In our work, we collect the nasopharynx 
cancer MRI image dataset, and manually draw the mac-
roscopic tumour by using the expert graphical image 
annotation tool “Labelme [18]”, which was open sourced 
by CSAIL lab of MIT. The tool allows us to manually 
delineate the macroscopic tumour in MRI image with 
class annotated as ground truth training data aiming at 
training the deep learning based models. We propose 
the framework with three popular deep learning models 
based to automatically contour the GTVnx. The models 
are fed with large high resolution of 512 × 512 sized MRI 
images which capture various slices images for each indi-
vidual patient.

Methods
Data collection and GTVnx contours
We retrospectively collected 2088 enhanced T1-weighted 
turbo spin echo sequence MR images with an axial slice 
thickness of 5 millimetres sized of 512 × 512 from 200 
patients treated at The First Affiliated Hospital of Wen-
Zhou Medical University between January 2020 and 
December 2021. All the image data was acquired from 
3.0T MRI (GE signa HDxt, USA or Philips Achieva, Hol-
land). The final diagnosis of nasopharyngeal cancer was 
proven by pathology and immunohistochemical analysis. 
The macroscopic GTVnx contours were manually delin-
eated by radiation oncologists with more than 10 years 
of clinical experience. To guarantee delineation accuracy, 
all the GTVnx contours were reviewed and rectified by 
more senior radiation oncologists together with other 
two radiation experts. Once the entire cohort of images 
datasets (2088 images of 200 patients) had been manu-
ally drawn, we followed the 90%-10% split rules to ran-
domly split the data as training-validation and testing set. 
To make the testing independent from the training data-
set, the 90%-10% random split was performed over the 
200 patients rather than the entire 2088 images. The set 
split over patients could avoid the images from the same 
patient appear in both train-validation and testing set, 

• Three deep learning models were trained to automatically delineate GTVnx.
• Automatic detection and recognition of GTVnx based on those models revealed desirable results and brought a positive 
impact on improving delineation accuracy and reducing workload.

Keywords Deep learning, Automatic detection and recognition, Nasopharyngeal cancer, Magnetic resonance 
imaging, Target delineation
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which will make the model overfit and result in false high 
delineation accuracy.

The proposed ACNC framework
Figure  1. shows the framework of our proposed Auto-
matic Contour of Nasopharynx Cancer (ACNC). We 
first collect the nasopharynx cancer MRI dataset, and 
manually annotate the contour of tumour location gen-
erating ground truth mask images for each raw image. 
The raw images are then fed into the training system for 
some specified epochs in the guidance of the ground 
truth masks to search for the optimized weights solu-
tions for the training system. Our training system include 
three deep neural networks, which are Fcn8s, U-Net and 
deeplabv3. Once the models are well trained with the 
180 patients examples under the guidance of the corre-
sponding ground truth, we then fed the trained system 
with the remaining 20 patients to test the performance 
of the trained system. As shown in Fig. 1. the raw image 
will pass the trained networks, the system will classify 
each pixel into binary that “1” denotes the tumour and 
“0” denotes the background. Finally, the one-dimen-
sional binary classification result array will be reshaped 
to the original size of the raw input image producing the 

predicted tumour contour locations. To observe the pre-
diction results better visually, we merge the raw image, 
ground truth mask image and the predicted result into 
one with ground truth in red and predicted result in 
green.

FCN8s
Fully Convolutional Network (FCN)[14] was proposed 
for semantic image segmentation in 2015. Compared to 
traditional Convolution Neural Network (CNN), the fully 
convolutional network replaces the fully connection lay-
ers with the convolutional layers. Our backbone is using 
the vgg19 architecture that starts with two blocks con-
sisting of two convolution layers with one Maxpooling 
operation, then followed by three blocks consisting of the 
four convolution layers with one Maxpooling operation. 
All the convolutional outputs are activated by the ReLU 
activation function. The network architecture is very sim-
ilar to the one shown in Supplementary Fig. S1, the vgg16 
architecture.

U-Net architecture
U-Net [15], mainly for biomedical image segmenta-
tion, was proposed in 2015 right two months after FCN 

Fig. 1 Automatic contour of nasopharynx cancer framework

 



Page 4 of 9Wang et al. Radiation Oncology           (2023) 18:76 

proposed. To date, It has been widely applied for biomed-
ical image segmentation due to its simplicity and superior 
performance. U-Net is well-known by its U-like network 
architecture, which is the process of encoding on the left 
half part of “U” and decoding on the right half part of “U”. 
The left half of “U” is used to extract the feature details of 
our nasopharyngeal tumour images, and the right half of 
“U” with skip connection of left part feature maps is used 
to recover the location information of each pixel. Then 
output the tumour contoured image with the same size 
as the original’s. Supplementary Fig. S1 shows the details 
architecture of the left down sampling “U”-Net which 
applies vgg16 as the backbone. The backbone consists 
two types of repeating blocks that are two convolutional 
layers followed by one max pooling layers and three con-
volutional layers followed by one max pooling layers 
respectively. The details of the kernel size, stride and pad-
ding information please refer to Supplementary Fig. S1. 
The detail of up sampling on the right part of U-Net is 
shown in Supplementary Fig. S2. To show how the Max-
pool results are contracted as the up-sampling path, we 
present it in Supplementary Fig. S1. As shown in Supple-
mentary Fig. S2, the number in braces is the feature layer 
derived from Supplementary Fig. S1. For example (4) and 
(9) as shown in Fig. 2. are derived by the repeating blocks 
of two convolutional layers and ReLU layers, then fol-
lowed by one Maxpool. 64 and 128 beside to (4) and (9) 
are the outputs channels after passing the repeats blocks. 
The arrow path derives total channels by the concatena-
tion of the channels from two paths. Furthermore, the 
features from left path will be randomly cropped for fea-
tures augmentation purpose.

DeepLabv3
Deeplabv3[16] was proposed for semantic image seg-
mentation in 2017. It was improved based on the former 
two versions, we will brief the former two versions first 
to introduce the general knowledge of the Deeplab archi-
tecture, then highlight the key improvements of the third 
version. Deeplabv1 was derived by improving the DCNN 
by combining the responses at the final DCNN layer with 
a fully connected Conditional Random Field (CRF) to 
solve the poor localization problem existing in DCNN. 
In Deeplabv2, the backbone of VGG-16 was replaced 
by ResNet. Besides, Atrous Spatial Pyramid Pooling 
(ASPP) was proposed to solve the problem of detecting 
the object with various scales. Supplementary Fig. S3 and 
Supplementary Fig. S4 show the ASPP blocks of Deep-
labv2 and Deeplabv3 respectively. From those figures, we 
can clearly see the improvements of ASPP proposed in 
Deeplabv3. In Deeplabv2, the ASPP block consists of four 
same sized 3 × 3 conv2d. Whilst in Deeplabv3, it starts 
with the block of one Conv2d sized at 3 × 3 stacked up 
by BN and RELU, then followed by another three blocks 
with same sized 3 × 3 Conv3d attached by BN and ReLU 
as well, finally it ends up with the block of AdaptiveAvg 
Pool2d, stack up with Conv2d, BN, ReLU and Bilinear 
Interpolate. Since ASPP is the main improvement of 
Deeplabv3, the rest of details please refer to the paper of 
interest. However, in our experiment, we use resnet101 
to replace the backbone of Xception mentioned in paper 
[16].

Results
The dataset from 200 nasopharyngeal cancer patients was 
reviewed. Those patients were scanned by GE signa HDxt 
3.0T and achieva TX 3.0T MRI machines in total of 2088 
MRI images with resolution of 512 × 512. Figure  3 indi-
cates that, among the 200 patients, 65 cases of T1-stag-
ing, 39 cases of T2-staging, 76 cases of T3-staging, and 
20 cases of T4-staging were diagnosed by routine MRI. 

Fig. 3 T-staging diagnosis results of nasopharyngeal carcinoma

 

Fig. 2 The details of skip connection for concatenation of U-Net
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Following the 90%-10% split rules, 180 patients that 1881 
images are split as training-validation data and the rest 
20 patient cases that 207 images are split as the testing 
data, following a widely used methodology [17]. Figure 4. 

shows our raw data examples and their corresponding 
ground truth contour masks drawn by our expert doctor 
with the expert annotation tool “Labelme” [18]. Besides, 
we list the detail of gender and age distribution of col-
lected dataset in Table 1. From the table, we can clearly 
see that the number of male patients is more than three 
times bigger than the one of females. Moreover, the 
patients are mostly distributed between the age of 40 and 
60, then followed by the age more than 60. In table, we 
also list the gender and age distribution in our randomly 
90%-10% split training-validation and testing cohort. 
Please refer to the table for the details.

Our 1881 training images are also follow 90%-10% 
split rules that 90% are split as training data and the rest 
goes for the validation data. The purpose of the valida-
tion data is to avoid model overfitting that might occur 
during the early training phase,. We set the batch size to 
be 9, the learning rate to be 10− 3 for the FCN and Deep-
labv3 model, 10− 5 for the U-Net. 200 epochs are set for 
the training circles, and 209 iterations will be passed for 
each epoch. Algorithm 1 gives the clear steps of the train-
ing, validation and testing process in details. We conduct 
our experiment on ubuntu 18.04 operating system with 
two TitanXp GPUs running in parallel mode. The FCN 
and Deeplabv3 model consumes only one GPU with 12 g 
memory. However, U-Net consumes much more memo-
ries, the two GPUs running in parallel are required.

The experiment results are evaluated in mean Intersec-
tion over Union (mIoU) and mean Pixel Accuracy (mPA) 
system. mIoU, as shown in formula 1, is widely used in 
image segmentation to evaluate the segmentation result 
that shows the mean intersection over union between 
the predicted result and the ground truth mask image. 
The mPA, as shown in formula 2, is the simplest way to 

Table 1 The gender and age distribution of collected dataset
Entire cohort Training-Valida-

tion cohort
Test-
ing 
cohort

Male 156 144 12

Female 44 36 8

Age (years)

≤ 40 27 26 1

> 40 & ≤60 110 99 11

> 60 63 55 8

Algorithm 1 Training, validation and testing steps
1: Read training, validation, testing, and mask set, process them into 
tensor
2: For epoch from 1 to 200
3: For itertraining from 1 to trainingsize/batchsize

4: pass the training data to the training system (FCN, Deeplabv3, U-Net), 
getting the trainresult

5: accumulate the losstrain by the loss function between trainresult and 
ground truth mask
6: update weights Wtraining

7: End iter training
8: For iterval from 1 to valsize/batchsize

9: pass the validation data to the trained system, getting valresult

10: accumulate lossval by the loss function between valresult and ground 
truth mask
11: End iter validation

12: print the average loss by losstrain/(epoch + 1) and lossval/(epoch + 1)

13: End training and val
14: load the model with trained Wweights

15: pass testing data to the model and get testresult

16: compute the mIoU, and mPA
17: merge the images of raw data with testresult and ground truth

Fig. 4 The samples of raw data and ground truth mask generated by “labelme” tools
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evaluate the result by computing the average correct clas-
sified pixels over all pixels within each class.

 
mIoU =

1
n + 1

n∑

i=0

pii∑n
j=0pij +

∑n
j=0pji − pii

 (1)

 
mPA =

1
n + 1

n∑

i=0

pii∑n
j=0pij

 (2)

From Table 2, we can clearly see our experiment results 
based on FCN, Deeplabv3 and U-Net model. Deeplabv3 
performs best in both mIoU and mPA evaluation cri-
teria with 0.8529 and 0.9103 mean results respectively 
over repeating experiments five times. Although FCN 
performs better than that of U-Net with mean 0.8497 of 
mIoU and 0.8936 of mPA respectively, it also gets higher 
result deviations with the deviation of mPA approach-
ing to 0.0088, which is more than two times compared 
to that of U-Net and Deeplabv3. Besides, in the term of 
GPU memory consuming, U-Net consumes almost twice 
of that of FCN and Deeplabv3. Overall, Deeplabv3 is sug-
gested in terms of recognition accuracy and GPU mem-
ory consumptions. Meanwhile, it also presents stable 
results with deviation considered. Visually, we present 
the automatic contour results of T1-staging, T2-staging, 
T3-staging, T4-staging in Figs.  5 and 6 respectively, by 
using the models of FCN, U-Net, and Deeplabv3. Each 
staging, we randomly outline four contour samples com-
ing from the same patient in different slices. The first 
column layouts four raw MRI, followed by correspond-
ing ground truth contour (red) in second column, the last 
three columns present the corresponding automatic con-
tour (green) by using the models of FCN, U-Net, Deep-
labv3 respectively. The results encourage us to look into 
this work further.

Discussion
In our study, the automatically contoured primary lesion 
of nasopharyngeal cancer were firstly performed by the 
three popular deep learning models (U-Net, Deeplabv3, 
FCN8s). We included 200 patient cases as the contouring 
dataset. DeepLabv3 was the best among the three deep 
learning models due to its ASPP block which is able to 
detect the target at various pyramid scales. For a fair com-
parison across the 3 models, we ensured regular param-
eters consistency, such as same epoch, learning rate, and 
batch size etc. However, we found that the learning rate of 

10− 3 was completely not working for U-Net, while work-
ing well with Deeplabv3 and FCN8s. In U-Net model, 
the learning rate of 10− 5 performs almost 40% better 
than that of 10− 3 with the rest of parameters remain no 
changes. The result in Table 2 of U-Net comes from the 
learning rate of 10− 5. Theoretically, the larger learning 
rate could make the training converge earlier. However, 
practically, in our observation of the training and valida-
tion loss reached to the value of thousands at first train-
ing epoch. When the smaller learning rate of 10− 5 was 
applied to the U-Net model with the rest parameters not 
touched, the training and validation loss dropped rapidly 
to less than the value of one. The testing data passed to 
the trained model also generated the promising result as 
shown in Figs. 5 and 6 of the U-Net part. Besides, in our 
practical training experiment, U-Net also feedback us the 
GPU out of memory problem. The problem was solved by 
training the U-Net on two NVIDIA TitanXp 12 g GPUs 
in parallel. The reason why U-Net consumes much more 
memories could attribute to more weights from encod-
ing phase are joined during the decoding phase when 
the concatenation operation happens. In the price of the 
memory consumption dramatically increased, U-Net did 
not bring us improved contour accuracy compared to the 
simplest FCN. Thus, practically, we conclude that U-Net 
is not suitable for the nasopharyngeal tumour delineation 
in spite of the model is classical and specifically proposed 
for the medical image segmentation. Though FCN is sim-
ple that stacked up with full convolutional layers only, it 
performs much better than U-Net in terms of both accu-
racy and memory consumption. Among the three mod-
els, although Deeplabv3 performs best, FCN is favoured 
considering the aspect of the complexity of the network 
architecture. We would like to further explore deeper in 
FCN architecture in our future work to seek the possibil-
ity to enhance the contour performance while remains 
the network architecture as simple as FCN does.

As it is known that deep learning models highly rely on 
training data, since they are big data driven models. Thus 
analysing on data samples will also significantly impact 
the performance of the models. From Table 1, we can see 
the obvious imbalance lined in collected data of gender 
and ages. The imbalanced data will result in unfair cohort 
performance analysis that make the analysis invalid. 
However, from the category data, it roughly made us 
pond over the following problems,

  • Is nasopharyngeal cancer more common among 
men?

  • Does nasopharyngeal cancer incidence peak between 
40 and 60?

However, the two questions are derived from the catego-
rized cohort data over 200 patients. The small size of the 
collected data may not be enough to answer the above 
two questions. We then learned the answers from the 

Table 2 The experiment result
Models mIoU mPA
FCN 0.8497± 0.0040 0.8936± 0.0088

U-Net 0.8272± 0.0031 0.8770± 0.0038

Deeplabv3 0.8529±0.0017 0.9103± 0.0039
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further reading key statistics of American Cancer Society 
reported that there are as many as 25 to 30 nasopharyn-
geal cancer cases per 100,000 men and 15 to 20 cases per 
100,000 women in some parts of China. Meanwhile, the 
peak age of people being diagnosed is typically between 
45 and 59. The key statistics for Nasopharyngeal Cancer 
of large-scale data samples ensures us the above-men-
tioned two questions.

The above two statistics also ensure us our further 
expansion of studies by employing the automatic deep 
learning based contour models to reveal the relation-
ship between the complexity of the tumour structures 

(contours) and the biased genders/ages. As such, we 
could enhance the automatic delineation performance via 
more targeted data samples.

Conclusion
In this paper, we proposed the deep learning model based 
framework to automatically draw the contours of the 
nasopharynx tumour in MRI images. In our framework, 
we proposed the three classic and popular deep learning 
models to evaluate the effectiveness of the deep learn-
ing model performing on the automatic detecting the 
nasopharynx tumour contours in MRI images. From the 

Fig. 5 The automatic contour result (green) of T1 and T2-staging samples by using FCN, U-Net and Deeplabv3 respectively
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experiment results, Deeplabv3 performs better than the 
remaining two models. However, either from the preci-
sion results or visual results, there are still many cases in 
testing data not able to be well contoured, we attribute 
the problem to the lack of training data and the imbal-
ance of the data distribution. To make our framework 
practical enough to assist radiation oncologists in saving 
time and making decisions, the promising preliminary 
results provide us with a clear clue for the further deeper 
study expansion.

In future work, we will keep collecting data on a more 
heterogenous and balanced patient cohort to improve 

model robustness. We will also try to design and improve 
the network architecture by analysing the reasons on the 
poor testing results derived by the automatic delineation 
proposed in this paper.

Abbreviations
ACNC:  Automatic Contour of Nasopharynx Cancer
ASPP:  Atrous Spatial Pyramid Pooling
CNN:  Convolution Neural Network
CRF:  Conditional Random Field
DVHs:  dose-volume histograms
FCN:  Fully Convolutional Network
GTVnx:  nasopharynx Gross Tumour Volume
IMRT:  Intensity-Modulated Radiotherapy

Fig. 6 The automatic contour result (green) of T3 and T4-staging samples by using FCN, U-Net and Deeplabv3 respectively
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