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Abstract 

The application of radiogenomics in oncology has great prospects in precision medicine. Radiogenomics combines 
large volumes of radiomic features from medical digital images, genetic data from high-throughput sequencing, and 
clinical-epidemiological data into mathematical modelling. The amalgamation of radiomics and genomics provides 
an approach to better study the molecular mechanism of tumour pathogenesis, as well as new evidence-supporting 
strategies to identify the characteristics of cancer patients, make clinical decisions by predicting prognosis, and 
improve the development of individualized treatment guidance. In this review, we summarized recent research on 
radiogenomics applications in solid cancers and presented the challenges impeding the adoption of radiomics in 
clinical practice. More standard guidelines are required to normalize radiomics into reproducible and convincible 
analyses and develop it as a mature field.
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Background
Currently, tumour tissue biopsies are the protocol for 
cancer diagnosis [1]. However, the biopsy method has 
several significant limitations: it is high-risk, highly inva-
sive, expensive, and difficult to perform in serial tests; it 
has technical limitations resulting from the tumour loca-
tion and difficulty in extracting cellular subpopulations; 
and it is unavailable when tumour cells disseminate to 
other organs and tissues [2]. These limitations restrict the 
application of tissue biopsy in cancer screening, diagno-
sis, treatment, and follow-up.

Fortunately, radiomics, a medical imaging method, 
holds great promise to address the problem of spatially 
and temporally heterogeneous solid cancers in a non-
invasive way. Radiomics was first presented by Lambin 

et al. in [3] and involves the high-throughput extraction 
of image features from large numbers of medical images. 
Radiomics hypothesizes that additional information not 
seen by the naked eye could be captured via advanced 
feature analysis from medical imaging. In detail, genomic 
and proteomic expression profiles can probably be visual-
ized and expressed according to quantitative analysis of 
image-based features.

With the success of the Human Genome Project 
(HGP), the application of genomics in medicine shows 
strong feasibility and prospects, which has brought an 
anticipated transformation in the prevention, diagnosis, 
and treatment of diseases. Projects such as The Can-
cer Genome Atlas (TCGA) have witnessed tremendous 
strides towards comprehensively cataloguing human 
genes and mutations. Some specific ones were found to 
be capable of serving essentially as ‘drivers’ of oncogen-
esis, primarily via exome or genome sequencing of large 
numbers of tumour samples matched with normal tis-
sues [4, 5]. According to the definition from the National 
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Human Genome Research Institute, genomic medicine 
is an emerging medical discipline in which an individ-
ual’s genomic information is taken into account in their 
clinical care (for example, for diagnostic or therapeutic 
decision-making, as well as the health effects and policy 
ramifications of that clinical care) [6]. Radiogenomics is 
an approach that combines large volumes of radiomic 
features from medical digital images, genetic data from 
high-throughput sequencing, and clinical-epidemiologi-
cal data into mathematical modelling [7]. The amalgama-
tion of radiomics and genomics provides an approach to 
better study the molecular mechanism of tumour patho-
genesis and develop new evidence-supporting strategies. 
It is beneficial to stratify patients, identify the charac-
teristics of cancer patients, make clinical decisions, and 
guide treatment by predicting prognosis and assessing 
clinical outcomes, thus improving the development of 
precision medicine [8].

Process of radiomics
Generally, the radiomics workflow consists of the follow-
ing main steps: imaging data collection, imaging preproc-
essing, identification and segmentation of the region or 
volume of interest, feature extraction, feature selection, 
model establishment, and model validation [9, 10].

Data collection
The original medical images are necessary for perform-
ing radiomics analysis. Computed tomography (CT), 
magnetic resonance imaging (MRI), and positron emis-
sion tomography (PET) have been extensively applied in 
the field of oncology to assist diagnosis and guide treat-
ment. Images can provide detailed information about 
tumours’ anatomical and functional features. Medical 
imaging technology has made tremendous progress in 
the past, enabling the emergence of radiomics as a prom-
ising methodology for solving the complex problems of 
oncology. The development of medical imaging devices 
has moved from single-slice CT to multi-slice CT, which 
allows dynamic radiomics at multiple time points. In 
addition, dual-energy CT has been explored to improve 
the identification of tissue composition and density [3]. 
Diffusion-weighted MRI can reflect tumour density and 
cellularity, thereby having the capacity to monitor the 
response to cytotoxic treatment [11].

Imaging preprocessing
The preprocessing step is crucial to obtain medical 
images with preferred quality for subsequent analy-
sis [12]. Imaging preprocessing steps generally include 
image normalization, denoising, bias field correction, 
imaging interpolation and resampling, motion correc-
tion, and imaging thresholding [13].

Image normalization is the process of changing the 
range of pixel intensity values, which is the foundation 
of medical image analysis. Conventional normalization 
approaches are generally used per dataset, such as gener-
alized scale normalization, histogram normalization, and 
spatial normalization [14, 15]. Recent research proposed 
a joint normalization function across multiple datasets, 
which provided realism to the normalized images and 
improved image segmentation [16]. The crucial task of 
image denoising is keeping the most significant features 
of the images while simultaneously removing the non-
important features. Classical denoising methods involve 
spatial domain filtering and variational denoising meth-
ods. The present transform domain methods, such as 
Fourier transform, cosine transform, wavelet domain 
methods [17], and sparse 3D filtering [18], were devel-
oped from the initial spatial domain methods [19]. Image 
resampling is divided into upsampling and downsam-
pling. According to the Image Biomarker Standardiza-
tion Initiative (IBSI), data from different modalities may 
fit different methods for image interpolation [20]. Motion 
correction is an approach to remove the motion artefacts 
caused by uncertain motion, which is also a vital preproc-
essing step to obtain reconstructed images with signifi-
cantly improved quality [21].

Imaging segmentation
Three primary approaches are used to segment the 
region of interest (ROI) in two dimensions or the vol-
ume of interest (VOI) in three dimensions: manual, 
semiautomatic, and fully automatic. In comparing these 
approaches, semiautomatic segmentation is considered 
optimal [22]. ROIs/VOIs determine the region where 
radiomic features are extracted and calculated [23]. 
ROI/VOI segmentation through manual delineation 
is common in previous research and does not require 
the use of any sophisticated postprocessing methods 
or software. However, it is time-consuming and thus 
hard to use when analysing massive imaging data [24]. 
In addition, human delineation presents an inevitable 
bias resulting from different observers that cannot be 
ignored, leading to a lack of robustness due to intra- 
and interobserver variations [25]. Semiautomatic delin-
eation uses computer algorithms to segment the ROIs/
VOIs but usually needs to be corrected and calibrated 
manually [26]. Some primary open-source or commer-
cial software could be applied to conduct semiauto-
matic segmentation, such as 3D Slicer [27], ITK-SNAP 
[28], LIFE [29], MITK [30], and ImageJ [31]. Fully auto-
matic segmentation is based on the approach of deep 
learning using artificial neural networks. Deep learning 
has been universally capitalized in many fields associ-
ated with automated image recognition. Convolutional 
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neural networks (CNNs), one of the deep neural net-
works designed for various computer vision tasks, 
have been successfully applied in imaging recognition 
and classification [32, 33]. CNN builds up the mapping 
directly from the input data and output labels, utiliz-
ing a hierarchical network to learn abstract features 
[34]. The advantages of CNN in radiomics are auto-
matic feature extraction and accurate classification per-
formance [35]. However, this method often requires a 
large sample size of medical images for deep learning. It 
is suitable when there is a substantial signal difference 
between the cancer region and the normal tissues [36].

Feature extraction
Quantitative radiomics features extracted from seg-
mented ROIs/VOIs can be divided into several major 
categories, including shape, statistical, and texture fea-
tures [37]. Shape features mainly include elongation, 
flatness, sphericity, surface area, surface volume, and 
voxel volume [38]. Statistical features are the first-order 
features obtained from a grey-level histogram, which 
presents the distribution of grey-level intensity values 
and reveals the tumour’s overall heterogeneity without 
considering spatial information. Texture features are 
second-order features that represent the spatial rela-
tionships between the voxels from matrices, including 
the grey-level run-length matrix (GLRLM), grey-level 
size zone matrix (GLSZM), grey-level co-occurrence 
matrix (GLCM), neighbourhood grey-tone difference 
matrix (NGTDM), size of homogeneous greyscale 
areas, length of greyscale ranges, and greyscale depend-
ence. Feature extraction is commonly conducted using 
radiomic tools, such as PyRadiomics [39, 40], IBEX 
[41], MIRP [42], RaCaT [43], and RadiomiCRO [44]. 
These platforms are based on different languages of 
Python or MATLAB. However, the lack of standardiza-
tion in the definition and calculation of radiomic fea-
tures among these tools has hindered the application 
of radiomics in clinical practice. The IBSI addressed 
some of the questions and was thus recommended dur-
ing feature extraction [45]. The IBSI is composed of a 
set of 169 standardized radiomics features, which could 
be verified and calibrated across different radiomics 
software. It provided standardized image biomarker 
nomenclature and definitions. Some new tools tend to 
conform to the IBSI, such as S-IBEX, an adaptation of 
IBEX to IBSI guidelines [46]. Recent research proposed 
a novel approach for evaluating the agreement among 
seven radiomics tools. They found that discrepancies 
still existed among standardized radiomic programs. 
Therefore, further efforts are needed to accelerate the 
use of radiomic models in clinical practice [47].

Analysis and modelling
The core of the radiomics approach is to establish a pre-
dictive model. The modelling process is based on the 
training data analysis. It is indispensable to apply the 
model on testing data to evaluate its extrapolation per-
formance, proving the model’s precision, fit, and feasi-
bility. Generally, hundreds of radiomics features can be 
extracted from images. Therefore, feature selection needs 
to be performed to identify the most valuable traits to 
avoid overfitting, since the incorporation of redundant 
features into a model will degrade the performance of 
model extrapolation. Least absolute shrinkage and selec-
tion operator (LASSO) plays a prominent role in select-
ing informative features [48]. Principal component 
analysis (PCA) is also one of the preferable methods to 
reduce the dimensions of radiomics features but preserve 
their informative content [49]. Machine learning (ML) is 
a branch of artificial intelligence (AI) in which a machine 
is trained to learn from data without being explicitly 
programmed and can make decisions with minimal 
human intervention [50]. A variety of machine learning 
approaches are used for constructing radiomics models, 
such as support vector machine (SVM), random forest 
(RF), k-nearest neighbours (KNN), decision tree (DT), 
conditional inference trees (CIT), Bayes and back-prop-
agation neural network (BPNet) [51]. One of the most 
technical steps is hyperparameter tuning and optimiza-
tion for the learning algorithm to improve the perfor-
mance of ML models [52]. The common approaches to 
tuning the hyperparameters [53] of the models included 
grid search, repeated stratified k-fold cross-validation, 
genetic algorithms (GAs), random search [54], sequential 
search, the Gaussian process approach (GP), tree-struc-
tured Parzen estimator (TPE), and Bayesian optimization 
[55, 56]. Recent research reported that model-based opti-
mization (MBO) could be an excellent tuning strategy 
for RF. The R package tuneRanger was used to automati-
cally tune RF with MBO [57]. Another study developed 
a metaheuristic algorithm using grey wolf optimiza-
tion (GWO) and GA to tune the hyperparameters of 
ML algorithms and neural networks [58]. Notably, the 
metaheuristic methods displayed better and faster per-
formance than other algorithms and are appropriate for 
datasets with unknown distributions. Traditional sta-
tistical methods, specifically univariate and multivariate 
analyses, are used to identify the statistically significant 
variables and radiomics signatures associated with the 
outcome [59]. Afterwards, logistic regression and Cox 
proportional hazards regression are often used to build a 
radiomics-clinical predictive signature that incorporates 
clinical risk factors and radiomics features, providing a 
basis for diagnosis, clinical treatment options, and prog-
nostic prediction [60, 61].
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In addition, deep learning provides a non-engineered 
radiomics modelling methods and has been applied in 
various medical image analysis tasks, including super-
vised learning, unsupervised learning, and semi-super-
vised learning [62]. Models are trained on labelled images 
in supervised learning, such as CNNs. In contrast, models 
in unsupervised learning analyse the underlying informa-
tion in the images without any labels, such as autoencod-
ers (AE) [63] and generative adversarial networks (GANs) 
[64]. In the semi-supervised learning, only a part of the 
training datasets is labelled, and the model will perform 
better through learning the unlabelled images [65]. Deep 
learning models based on artificial neural networks such 
as CNNs can be established to classify target lesions 
delineated in medical images, such as the discrimina-
tion of tumours as benign or malignant. The processes of 
data learning and classification are performed jointly in 
the deep learning approach [33]. Existing structures such 
as VGG [66], Resnet [67] or self-designed networks can 
be used for CNN. Transfer learning can be performed by 
tuning hyperparameter depending on the data size, pro-
viding a convenient approach to apply the existing deep 
learning algorithms.

The last step of the radiomics approach is assessing 
performance and external validation based on other data-
sets to prove the credibility of the established model. The 
performance can be evaluated using the receiver operat-
ing characteristic (ROC) curve, the area under the ROC 
curve (AUC), and the C-index to assess the discrimina-
tion of the model, and calibration curves can be used to 
appraise the calibration in the training and validation 
sets. The model’s potential clinical value can be estimated 
by using decision curve analysis (DCA) [68]. In addition, 
resampling methods (for instance, cross-validation and 
bootstrapping) can also be applied to evaluate model per-
formance [69].

Current applications of radiogenomics in cancer
The literature on radiogenomics has greatly expanded in 
the past decade. Radiogenomics has been applied in vari-
ous types of cancer, including lung cancer [70–72], breast 
cancer [73–75], genitourinary cancer [76–78], digestive 
system cancer [79–81], and brain cancer [82–84]. The 
comprehensive analysis method of radiogenomics can 
be used to diagnose and predict patient outcomes such 
as recurrence, metastasis, and survival of patients with 
cancer; predict the tumour microenvironment; identify 
potential molecular biomarkers and targets for clinical 
diagnosis and treatment; and establish a molecular typ-
ing system of variable cancers. A selection of papers was 
compiled for illustrative purposes and the characteristics 
of the representative papers are displayed in Table 1.

Diagnostic value
Radiomics predictive models have diagnostic value capa-
ble of assisting clinicians in making decisions based 
on big data evidence. Chen et  al. [85] established mod-
els to identify clear cell renal cell carcinomas (ccRCCs) 
and non-clear cell renal cell carcinomas (non-ccRCCs). 
The combined diagnostic model incorporated texture 
features extracted from CT images and other non-tex-
ture features. They found that the model significantly 
improved the predictive efficacy of ccRCC, with the AUC 
values for differentiating the two groups ranging from 
0.864–0.900. The results showed a good capability for 
discriminating ccRCCs from non-ccRCCs. An integrative 
model combining imaging features and genomic infor-
mation provides an insightful biological explanation from 
the molecular perspective for lesions on medical images 
directly visible to the naked eye. Smedley et  al. [86] 
explored deep feedforward neural networks to identify 
gene expression profiles in an interpretable way, being 
capable of anticipating the quantitative radiomic features 
of CT and histological types (adenocarcinoma, squamous 
cell, and other) of non-small cell lung cancer (NSCLC). 
The study enrolled 262 and 89 patients from two pub-
lic databases for training and testing, respectively. The 
results suggested that neural networks performed better 
than other classifiers, classifying histopathological types 
with AUCs of 0.86 (adenocarcinoma), 0.91 (squamous 
cell), and 0.71 (other) in the testing cohort. The AUCs 
for the classification performance of radiomics features 
ranged from 0.42 to 0.89. Gene sets of cardiac, immune 
system, and cell development processes were predictive 
(AUC > 0.70) of certain dissimilar radiomic features. In 
contrast, tumour necrosis factor (TNF), AKT signalling, 
and Rho gene sets could forecast the features of tumour 
textures. The research demonstrated that neural net-
works could be utilized to map the expression of genes 
to radiomic characteristics and further to histopathologi-
cal types in NSCLC, which could explain how the mod-
els could recognize predictable genes related to various 
imaging features or histological types.

Predicting the patient outcome
Recurrence
Cancers can be devastating on account of the high 
recurrence rate. Recently, Shim et  al. [87] proposed 
two different radiomics-based models through a neu-
ral network to predict the relapse pattern in glioblas-
toma, namely, local and distant recurrences. They 
used high-dimensional radiomics profiles based on 
dynamic susceptibility contrast-enhanced perfusion 
MRI. The AUCs were 0.969 (95% confidence inter-
val: 0.903–1.000) for local recurrence and 0.864 (95% 
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confidence interval: 0.726–0.976) for distant recurrence 
for patients in the validation cohort. Another recent 
study conducted by Kirienko et  al. [88] evaluated the 
correlations of information from radiogenomics analy-
ses with histotype and patient outcome in NSCLC using 
an ML algorithm. The results showed that two radiom-
ics features, standardized uptake value and kurtosis, 

and the expression levels of TP63, EPHA10, FBN2, and 
IL1RAP were associated with the histology of NSCLC. 
They also identified robust PET radiomic features and 
gene expression profiles capable of predicting recur-
rence (with AUC = 0.87). Radiogenomics analysis may 
provide valuable evidence for predicting the histologi-
cal type, invasiveness, and progression when making 
clinical decisions for patients with NSCLC.

Table 1  Characteristics of studies on the current applications of radiogenomics in cancer

ccRCC​: clear cell renal cell carcinoma; NSCLC: non-small cell lung cancer; MB: medulloblastoma; ESCC: oesophageal squamous cell carcinoma; CRC​: colorectal cancer; 
OC: ovarian cancer; BC: breast cancer; CT: computed tomography; MRI: magnetic resonance imaging; PET: positron emission tomography; NN: neural network; GLM: 
generalized linear model; ML: machine learning; LASSO-COX: least absolute shrinkage and selection operator penalized Cox proportional hazards regression; RF: 
random forest; LR: logistic regression; SVM: support vector machine; AUC​: area under the curve; OS: overall survival; PFS: progression-free survival; DFS: disease-free 
survival

Research Cancer type Application Sample size Images Methods Features in 
models

Results

Chen et al.
[85]

ccRCC​ Diagnosis 197 CT LR Radiomics; 
genomics

AUC: 0.864–0.900

Smedley et al.
[86]

NSCLC Diagnosis 351 CT NN Radiomics; 
genomics

AUC: 0.86 (adeno-
carcinoma), 0.91 
(squamous cell), and 
0.71 (other)

Shim et al.
[87]

Glioblastoma Recurrence 192 MRI NN Radiomics; AUC: 0.969 for local 
recurrence and 
0.864 for distant 
recurrence

Kirienko et al
[88]

NSCLC Recurrence 151 PET/CT GLM;
ML

Radiomics; 
genomics

AUC: 0.87

Yan et al.
[89]

MB Survival 166 MRI LASSO-COX Radiomics; clinico-
molecular

C-index: 0.762 for OS 
and 0.697 for PFS

Xie et al.
[81]

ESCC Survival 106 CT ML Radiomics;
clinical factors

AUC: 0.852 for 5-year 
DFS;
Significant risk 
stratification for DFS 
(p < 0.001)

Huang et al
[90]

ccRCC​ Survival 205 Contrast-
enhanced CT

RF Radiomic; genom-
ics

AUC: 0.84, 0.81, and 
0.75 for 1, 3, and 
5-year OS, respec-
tively

Liu et al.
[80]

CRC​ Metastasis 134 CT LR Radiomics; 
genomics;
clinical factors

AUC: 0.752 (95% CI 
0.608–0.896)

Kim et al
[92]

Paediatric osteo-
sarcoma

Chemotherapy 
response

73 PET/CT ML Radiomics; 
genomics;

AUC: 0.89

Yi et al.
[93]

OC Platinum resist-
ance

102 CT SVM Radiomics; 
genomics;
clinical factors

AUC: 0.967 (95% CI 
0.83–0.98)

Zeng et al.
[77]

ccRCC​ Molecular sub-
types

382 Contrast-
enhanced CT

ML Radiomics; 
genomics; 
transcriptomics; 
proteomics

AUC: 0.973 (m1), 
0.968 (m2), 0.961 
(m3), 0.953 (m4)

Park et al.
[94]

Glioblastoma Molecular charac-
teristics

121 MRI ML Radiomics;
clinical factors

AUC: 0.863

Li et al.
[95]

BC Molecular sub-
types

91 MRI Linear classifier Radiomics AUC: 0.89 (ER + vs. 
ER −), 0.69 (PR + vs. 
PR −), 0.65 
(HER2 + vs. HER2 −), 
and 0.67 (triple-neg-
ative vs. others)
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Survival
Based on a radiomics cohort of medulloblastoma (MB) 
patients with MRI data, Yan et al. [89] constructed a radi-
omics signature combining the most prognostic radiom-
ics features identified for survival prediction in a training 
cohort including 83 samples. Another radiogenomics 
cohort with matched MRI images and RNA sequencing 
(RNA-seq) data was used to identify nine vital biological 
pathways significantly related to radiomics characteris-
tics. They also assessed the prognostic prediction value of 
the genes involved in the identified pathways based on an 
open-access dataset with RNA-seq and survival data on 
MB. The results indicated that the signature combining 
radiomics and clinicomolecular factors predicted overall 
survival (OS) (C-index of 0.762) and progression-free sur-
vival (PFS) (C-index of 0.697) more accurately than the 
separate radiomics model (C-indexes of 0.649 for OS and 
0.593 for PFS) or the clinicomolecular model (C-indexes 
of 0.725 for OS and 0.691 for PFS). The research demon-
strated that the radiomics signature was an independent 
predictive factor for survival in MB patients. The signa-
ture was related to dysregulated pathways and provided 
additive value over the clinicomolecular factors model. In 
a recent study of oesophageal squamous cell carcinoma 
(ESCC), Xie et al. [81] concluded that genomics associa-
tion was advantageous for selecting meaningful radiomic 
features to establish CT-based radiomic signatures. This 
could contribute to predicting prognosis in terms of dis-
ease-free survival (DFS), particularly individualized long-
term survival. The study involved 106 patients with ESCC 
who received neoadjuvant chemoradiation (nCRT) at 
two institutions. Radiomic features were selected accord-
ing to their correlation with differentially expressed genes 
(DEGs) identified between relapsed and non-relapsed 
patients and the appended ML approach. A radiomic 
nomogram integrating the radiomic characteristics with 
prognostic clinical factors was established for DFS pre-
diction, which significantly stratified patients into two 
groups, with high risk and low risk for DFS (p < 0.001) 
(AUCs for predicting 5-year DFS of training set: 0.912, 
internal test set: 0.852, and external test set: 0.769). The 
results showed that the radiomic prediction model utiliz-
ing genomics-assisted feature selection performed better 
in DFS prediction.

Contrast-enhanced CT is also a critical imaging exami-
nation method in clinical applications. Huang et  al. 
[90] enrolled 205 patients with ccRCC with accessible 
contrast-enhanced CT images from The Cancer Imag-
ing Archive (TCIA) database and matched transcrip-
tomic data obtained from the TCGA database. They 
conducted research aiming to incorporate radiomic fea-
tures extracted from medical images and correspond-
ing genomics information to predict the OS of ccRCC 

patients. In the results, four prognosis-related imaging 
features (PRIFs) were selected from 107 extracted radi-
omics features by performing LASSO Cox regression and 
SVM-RFE. Four prognosis-related genes were identified 
through weighted gene coexpression network analysis 
(WGCNA). A mixed imaging-genomics prognostic fac-
tor (IGPF) signature was established by the RF algorithm, 
which displayed an enhanced prediction performance 
compared with the PRIF model alone (with average 
AUCs in the test dataset for 1-, 3-, and 5-year survival of 
0.84 vs. 0.81, 0.81 vs. 0.74, and 0.75 vs. 0.68). The results 
suggested that the overall prognosis assessment may be 
credited to the involvement of imaging-genomics prog-
nostic factors for ccRCC patients.

Metastasis
To assess the ability of a model constructed by integrat-
ing radiomics, genomics, and clinical features to predict 
the metastasis of colorectal cancer (CRC) patients, Liu 
et al. [80] retrospectively analysed 134 patients (primary 
cohort: 62, validation set: 28, independent test set: 44) 
clinicopathologically diagnosed with CRC and devel-
oped a multiscale preoperative model through multivari-
able logistic regression analysis for metastasis prediction, 
incorporating the above three types of features. Sixteen 
radiomics features and the expression levels of four iden-
tified genes were included in the multiscale nomogram 
model, which exhibited outstanding prediction perfor-
mance, with AUCs of 0.981 in the primary dataset (95% 
CI 0.953–1.000), 0.822 in the validation dataset (95% CI 
0.635–1.000), and 0.752 in the independent test data-
set (95% CI 0.608–0.896), showing great potential to be 
applied clinically to assist in individualized preoperative 
metastasis evaluation in patients with CRC.

Predicting treatment responses
It is difficult to predict patient response to treatment 
on account of the heterogeneity of solid tumours, the 
absence of consistent and accurate biomarkers, and a 
vague understanding of resistance mechanisms. The 
approach of radiogenomics has shed light on address-
ing these challenges through the untapped and abun-
dant resource of imaging data [91]. Aiming to predict 
the response to chemotherapy and metastasis probabil-
ity, Kim et al. [92] recruited 73 paediatric osteosarcoma 
patients and constructed a prediction model using an ML 
algorithm. The model combined the gene expression data 
of KI67 and EZRIN with image texture features extracted 
from fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) images. The 
results showed that the best test accuracy and AUC for 
predicting chemotherapy response with KI67 and EZRIN 
were 0.85 and 0.89, respectively. In recent research for 



Page 7 of 10Li and Zhou ﻿Radiation Oncology          (2022) 17:217 	

predicting platinum resistance of ovarian cancer (OC), 
Yi et al. [93] generated an ML model incorporating radi-
omics data based on pretreatment CT images, clinico-
pathological data, and genomic data of single-nucleotide 
polymorphisms (SNPs) of human sulfatase 1 (SULF1). 
This combined model showed better classification effi-
ciency, high calibration, and promising clinical utility, 
with AUC values of 0.993 (95% CI 0.83–0.98) in the train-
ing dataset (n = 71) and 0.967 (95% CI 0.83–0.98) in the 
validation dataset (n = 31).

Predicting molecular characteristics
Through the combination of genomics data and CT radi-
omics features, it is likely feasible to predict the molecu-
lar characteristics of patients with cancer. In research on 
ccRCC, Zeng et al. [77] applied ML algorithms to predict 
gene mutations and different mRNA-based molecular 
subtypes according to radiomics features. The research-
ers collected the gene expression information of 207 
ccRCC patients from TCGA and corresponding contrast-
enhanced CT images from TCIA. The results proved 
excellent performance in detecting mutations of VHL 
(AUC: 0.971), PBRM1 (AUC: 0.972), BAP1 (AUC: 0.955), 
and SETD2 (AUC: 0.949), as well as the molecular sub-
types, specifically m1 (AUC: 0.973), m2 (AUC: 0.968), m3 
(AUC: 0.961), and m4 (AUC: 0.953), which were validated 
externally in another population containing 175 patients 
with ccRCC from West China Hospital. The study illus-
trated that integrative analysis of radiogenomics might be 
a practical approach to predict gene mutations or molec-
ular characteristics in ccRCC patients, indicating a fast 
and noninvasive alternative to genetic testing.

Another multi-institutional retrospective study con-
ducted by Park et al. [94] showed that preoperative MR 
imaging features may identify isocitrate dehydrogenase 
(IDH) wild-type lower-grade gliomas that have consist-
ent molecular features as glioblastoma. The molecular 
features specifically included amplification of epidermal 
growth factor receptor (EGFR) or telomerase reverse 
transcriptase (TERT) promoter mutation. The research 
enrolled 64 patients in the training cohort and 57 patients 
in the validation cohort who were clinicopathologically 
diagnosed with IDH wild-type lower-grade gliomas. In 
the external test dataset, a model integrating both radi-
omic features and Visually AcceSAble Rembrandt Images 
revealed superior predictive performance (AUC of 0.854) 
than either that merely with clinical factors or Visu-
ally AcceSAble Rembrandt Images (AUCs of 0.514 and 
0.648, respectively; P < 0.001, both). The predictive model 
showed the best performance when clinical features were 
added (AUCs of 0.514 vs. 0.863, P < 0.001).

Radiomics analysis is also capable of helping with 
the establishment of a molecular typing system. By 

performing quantitative radiomics analysis, Li et al. [95] 
demonstrated that MR image-based tumour phenotypes 
could predict the molecular classification of invasive 
breast cancers. The results revealed that the tumour phe-
notypes extracted by the computer allowed the distinc-
tion between molecular prognostic indicators, with AUC 
values of 0.89, 0.69, 0.65, and 0.67 when distinguishing 
ER + vs. ER − , PR + vs. PR − , HER2 + vs. HER2 − , and 
triple-negative vs. others, respectively.

Challenges and future development
Despite the great potential shown by radiomics in clini-
cal guidance, no developed radiomics signature is cur-
rently applied in the clinical field. There are still many 
challenges regarding the application of radiomics. A sig-
nificant variation exists in every step during the whole 
analysis process derived from different sources, lead-
ing to the poor generalizability and reproducibility of 
the radiomics signatures previously published [96, 97]. 
For instance, the various settings in each stage of image 
acquisition, such as scanners, scanning techniques, and 
reconstruction parameters, might affect the extracted 
radiomics features. In recent research on renal clear cell 
carcinoma, Lu et  al. [98] asserted that multiple uncon-
trolled confounders, including feature redundancy and 
image acquisition settings, especially tumour size and 
slice thickness, may bring about false or overvalued radi-
omics signatures. Considering the urgent need to stand-
ardize the radiomics process and accelerate its translation 
to clinical application, Lambin et  al. [9] proposed the 
radiomics quality score (RQS) composed of sixteen cri-
teria to evaluate both past and future radiomics studies, 
including well-documented image protocols that allow 
reproducibility or replicability, multiple segmentations, 
feature reduction or adjustment for multiple testing to 
decrease the overfitting risk, reporting discrimination 
statistics and calibration statistics, performing validation 
without retraining and adaptation of the cut-off value, 
etc. In summary, more standard guidelines are needed to 
normalize radiomics into reproducible and convincible 
analyses and to develop it as a mature field.

Conclusions
The application of radiogenomics in oncology shows 
great prospects in precision medicine. The methodol-
ogy of radiogenomics integrates large volumes of quan-
titative yet significant imaging phenotypes extracted 
from medical digital images and tumour genetic profiles 
derived from high-throughput sequencing, together 
with clinical-epidemiological data, into mathematical 
modelling. The amalgamation of radiomics and genom-
ics provides an approach to better study the molecu-
lar mechanism of tumour pathogenesis, as well as new 
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evidence-supporting strategies to identify the charac-
teristics of cancer patients, make clinical decisions by 
predicting prognosis, and improve the development of 
individualized treatment guidance. However, many chal-
lenges hinder the application of radiomics in real clinical 
situations, such as the poor generalizability and repro-
ducibility of the previously published radiomics models. 
Therefore, more standard guidelines are needed in future 
research to normalize radiomics into reproducible and 
convincible analysis and develop it as a mature discipline.

Abbreviations
HGP: Human Genome Project; CT: Computed tomography; MRI: Magnetic 
resonance imaging; PET: Positron emission tomography; ROI: Region of inter-
est; VOI: Volume of interest; CNN: Convolutional neural network; LASSO: Least 
absolute shrinkage and selection operator; PCA: Principal component analysis; 
GLM: Generalized linear model; ML: Machine learning; RF: Random forest; LR: 
Logistic regression; SVM: Support vector machine; ROC: Receiver operating 
characteristic; AUC​: Area under the curve; DCA: Decision curve analysis; OS: 
Overall survival; PFS: Progression-free survival; DFS: Disease-free survival; 
ccRCC​: Clear cell renal cell carcinoma; NSCLC: Non-small cell lung cancer; 
MB: Medulloblastoma; ESCC: Oesophageal squamous cell carcinoma; CRC​: 
Colorectal cancer; OC: Ovarian cancer; BC: Breast cancer.

Acknowledgements
Not applicable.

Author contributions
SML prepared the original manuscript; BSZ conceptualized and critiqued the 
draft. Both authors read and approved the final manuscript.

Funding
This research received no external funding.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 September 2022   Accepted: 27 December 2022

References
	1.	 Fernández-Lázaro D, Hernández JLG, García AC, Castillo ACD, Hueso MV, 

Cruz-Hernández JJ. Clinical perspective and translational oncology of 
liquid biopsy. Diagnostics (Basel). 2020;10(7):E443.

	2.	 Mazouji O, Ouhajjou A, Incitti R, Mansour H. Updates on clinical use of 
liquid biopsy in colorectal cancer screening, diagnosis, follow-up, and 
treatment guidance. Front Cell Dev Biol. 2021;9: 660924.

	3.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, 
Granton P, et al. Radiomics: extracting more information from medical 
images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

	4.	 Shendure J, Findlay GM, Snyder MW. Genomic medicine-progress, pitfalls, 
and promise. Cell. 2019;177(1):45–57.

	5.	 Singh A, Chitalia R, Kontos D. Radiogenomics in brain, breast, and lung 
cancer: opportunities and challenges. J Med Imaging (Bellingham). 
2021;8(3): 031907.

	6.	 Genomics and Medicine [Internet]. Genome.gov. [cited 2022 Aug 30]. 
https://​www.​genome.​gov/​health/​Genom​ics-​and-​Medic​ine

	7.	 Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, et al. The era of radiogenomics in 
precision medicine: an emerging approach to support diagnosis, treat-
ment decisions, and prognostication in oncology. Front Oncol. 2020;10: 
570465.

	8.	 Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. 
Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY). 
2019;44(6):1960–84.

	9.	 Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Tim-
meren J, et al. Radiomics: the bridge between medical imaging and 
personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.

	10.	 Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and 
radiogenomics in breast cancer: new approaches toward diagnosis and 
treatment. Radiology. 2018;287(3):732–47.

	11.	 Hsu JBK, Lee GA, Chang TH, Huang SW, Le NQK, Chen YC, et al. Radiomic 
immunophenotyping of GSEA-assessed immunophenotypes of glioblas-
toma and its implications for prognosis: a feasibility study. Cancers (Basel). 
2020;12(10):E3039.

	12.	 Smits M. MRI biomarkers in neuro-oncology. Nat Rev Neurol. 
2021;17(8):486–500.

	13.	 Shur JD, Doran SJ, Kumar S, ap Dafydd D, Downey K, O’Connor 
JPB, et al. Radiomics in oncology: a practical guide. Radiographics. 
2021;41(6):1717–32.

	14.	 Isaksson LJ, Raimondi S, Botta F, Pepa M, Gugliandolo SG, De Angelis SP, 
et al. Effects of MRI image normalization techniques in prostate cancer 
radiomics. Phys Med. 2020;71:7–13.

	15.	 He H, Razlighi QR. Landmark-guided region-based spatial normaliza-
tion for functional magnetic resonance imaging. Hum Brain Mapp. 
2022;43(11):3524–44.

	16.	 Delisle PL, Anctil-Robitaille B, Desrosiers C, Lombaert H. Realistic image 
normalization for multi-Domain segmentation. Med Image Anal. 2021;74: 
102191.

	17.	 Pizurica A, Philips W, Lemahieu I, Acheroy M. A versatile wavelet domain 
noise filtration technique for medical imaging. IEEE Trans Med Imaging. 
2003;22(3):323–31.

	18.	 Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 
3-D transform-domain collaborative filtering. IEEE Trans Image Process. 
2007;16(8):2080–95.

	19.	 Fan L, Zhang F, Fan H, Zhang C. Brief review of image denoising tech-
niques. Vis Comput Ind Biomed Art. 2019;2(1):7.

	20.	 Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte 
A, et al. The image biomarker standardization initiative: standardized 
quantitative radiomics for high-throughput image-based phenotyping. 
Radiology. 2020;295(2):328–38.

	21.	 Jang S, Kim S, Kim M, Son K, Lee KY, Ra JB. Head motion correction based 
on filtered backprojection in helical CT scanning. IEEE Trans Med Imaging. 
2020;39(5):1636–45.

	22.	 El Ayachy R, Giraud N, Giraud P, Durdux C, Giraud P, Burgun A, et al. The 
role of radiomics in lung cancer: from screening to treatment and follow-
up. Front Oncol. 2021;11: 603595.

	23.	 van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radi-
omics in medical imaging-"how-to" guide and critical reflection. Insights 
Imaging. 2020;11(1):91.

	24.	 Kuo MD, Jamshidi N. Behind the numbers: decoding molecular pheno-
types with radiogenomics–guiding principles and technical considera-
tions. Radiology. 2014;270(2):320–5.

	25.	 Baeßler B, Weiss K, Pinto Dos Santos D. Robustness and reproducibility 
of radiomics in magnetic resonance imaging: a phantom study. Invest 
Radiol. 2019;54(4):221–8.

	26.	 Xie CY, Pang CL, Chan B, Wong EYY, Dou Q, Vardhanabhuti V. Machine 
learning and radiomics applications in esophageal cancers using non-
invasive imaging methods-A critical review of literature. Cancers (Basel). 
2021;13(10):2469.

	27.	 Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, 
et al. 3D slicer as an image computing platform for the quantitative imag-
ing network. Magn Reson Imaging. 2012;30(9):1323–41.

https://www.genome.gov/health/Genomics-and-Medicine


Page 9 of 10Li and Zhou ﻿Radiation Oncology          (2022) 17:217 	

	28.	 Yushkevich PA, Gao Y, Gerig G. ITK-SNAP: an interactive tool for semi-
automatic segmentation of multi-modality biomedical images. Annu Int 
Conf IEEE Eng Med Biol Soc. 2016;2016:3342–5.

	29.	 Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. 
LIFEx: a freeware for radiomic feature calculation in multimodality imag-
ing to accelerate advances in the characterization of tumor heterogene-
ity. Cancer Res. 2018;78(16):4786–9.

	30.	 Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, et al. The 
medical imaging interaction toolkit. Med Image Anal. 2005;9(6):594–604.

	31.	 Broeke J, Mateos Pérez JM, Pascau J. Image processing with ImageJ: 
extract and analyze data from complex images with ImageJ, the world’s 
leading image processing tool. Second edition. Birmingham Mumbai: 
Packt Publishing open source; 2015. 231 p. (Community experience 
distilled).

	32.	 Binczyk F, Prazuch W, Bozek P, Polanska J. Radiomics and artifi-
cial intelligence in lung cancer screening. Transl Lung Cancer Res. 
2021;10(2):1186–99.

	33.	 Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural 
networks: an overview and application in radiology. Insights Imaging. 
2018;9(4):611–29.

	34.	 Zhang B, Qi S, Pan X, Li C, Yao Y, Qian W, et al. Deep CNN model using CT 
radiomics feature mapping recognizes EGFR gene mutation status of 
lung adenocarcinoma. Frontiers Oncol. 2021. https://​doi.​org/​10.​3389/​
fonc.​2020.​598721.

	35.	 Zhou Y, Xu J, Liu Q, Li C, Liu Z, Wang M, et al. A radiomics approach with 
CNN for shear-wave elastography breast tumor classification. IEEE Trans 
Biomed Eng. 2018;65(9):1935–42.

	36.	 Chaddad A, Kucharczyk MJ, Cheddad A, Clarke SE, Hassan L, Ding S, et al. 
Magnetic resonance imaging based radiomic models of prostate cancer: 
a narrative review. Cancers (Basel). 2021;13(3):552.

	37.	 Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with 
artificial intelligence for precision medicine in radiation therapy. J Radiat 
Res. 2019;60(1):150–7.

	38.	 Bak SH, Park H, Lee HY, Kim Y, Kim HL, Jung SH, et al. Imaging genotyping 
of functional signaling pathways in lung squamous cell carcinoma using 
a radiomics approach. Sci Rep. 2018;8(1):3284.

	39.	 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan 
V, et al. Computational radiomics system to decode the radiographic 
phenotype. Cancer Res. 2017;77(21):e104–7.

	40.	 Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of 
primary and metastatic liver cancer via machine learning-based ultra-
sound radiomics. Eur Radiol. 2021;31(7):4576–86.

	41.	 Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open 
infrastructure software platform to facilitate collaborative work in radiom-
ics. Med Phys. 2015;42(3):1341–53.

	42.	 Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, et al. Assess-
ing robustness of radiomic features by image perturbation. Sci Rep. 
2019;9(1):614.

	43.	 Pfaehler E, Zwanenburg A, de Jong JR, Boellaard R. RaCaT: an open 
source and easy to use radiomics calculator tool. PLoS ONE. 2019;14(2): 
e0212223.

	44.	 Avanzo M, Pirrone G, Vinante L, Caroli A, Stancanello J, Drigo A, et al. 
Electron density and biologically effective dose (BED) radiomics-based 
machine learning models to predict late radiation-induced subcutaneous 
fibrosis. Frontiers Oncol. 2020. https://​doi.​org/​10.​3389/​fonc.​2020.​00490.

	45.	 Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisa-
tion initiative. Radiology. 2020;295(2):328–38.

	46.	 Bettinelli A, Branchini M, De Monte F, Scaggion A, Paiusco M. Technical 
note: an IBEX adaption toward image biomarker standardization. Med 
Phys. 2020;47(3):1167–73.

	47.	 Bettinelli A, Marturano F, Avanzo M, Loi E, Menghi E, Mezzenga E, et al. A 
novel benchmarking approach to assess the agreement among radiomic 
tools. Radiology. 2022;303(3):533–41.

	48.	 Wu X, Li J, Mou Y, Yao Y, Cui J, Mao N, et al. Radiomics nomogram for 
identifying sub-1 cm benign and malignant thyroid lesions. Front Oncol. 
2021;11: 580886.

	49.	 Barabino E, Rossi G, Fedeli A, Cittadini G, Genova C. Radiomic-based diag-
nostics in oncology: challenges toward clinical practice. Oncoscience. 
2021;8:72–3.

	50.	 Mun SK, Wong KH, Lo SCB, Li Y, Bayarsaikhan S. Artificial intelligence for 
the future radiology diagnostic service. Front Mol Biosci. 2020;7: 614258.

	51.	 Duan C, Liu F, Gao S, Zhao J, Niu L, Li N, et al. Comparison of radi-
omic models based on different machine learning methods for 
predicting intracerebral hemorrhage expansion. Clin Neuroradiol. 
2022;32(1):215–23.

	52.	 Valsecchi C, Consonni V, Todeschini R, Orlandi ME, Gosetti F, Ballabio D. 
Parsimonious optimization of multitask neural network hyperparam-
eters. Molecules. 2021;26(23):7254.

	53.	 Bergstra JS, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parame-
ter optimization:9.

	54.	 Bergstra J, Bengio Y. Random Search for Hyper-Parameter 
Optimization:25.

	55.	 Olisah CC, Smith L, Smith M. Diabetes mellitus prediction and diag-
nosis from a data preprocessing and machine learning perspective. 
Comput Methods Progr Biomed. 2022;220: 106773.

	56.	 Martinez-Cantin R. Funneled Bayesian optimization for design, 
tuning and control of autonomous systems. IEEE Trans Cybern. 
2019;49(4):1489–500.

	57.	 Probst P, Wright MN, Boulesteix AL. Hyperparameters and tuning strate-
gies for random forest. WIREs Data Min Knowl Discov. 2019;9(3): e1301.

	58.	 Nematzadeh S, Kiani F, Torkamanian-Afshar M, Aydin N. Tuning hyper-
parameters of machine learning algorithms and deep neural networks 
using metaheuristics: a bioinformatics study on biomedical and 
biological cases. Comput Biol Chem. 2022;97: 107619.

	59.	 Yang L, Gu D, Wei J, Yang C, Rao S, Wang W, et al. A radiomics nomo-
gram for preoperative prediction of microvascular invasion in hepato-
cellular carcinoma. Liver Cancer. 2019;8(5):373–86.

	60.	 Pei X, Wang P, Ren JL, Yin XP, Ma LY, Wang Y, et al. Comparison of differ-
ent machine models based on contrast-enhanced computed tomog-
raphy radiomic features to differentiate high from low grade clear cell 
renal cell carcinomas. Front Oncol. 2021;11: 659969.

	61.	 Hong D, Zhang L, Xu K, Wan X, Guo Y. Prognostic value of Pre-
treatment CT radiomics and clinical factors for the overall survival of 
advanced (IIIB-IV) lung adenocarcinoma patients. Front Oncol. 2021;11: 
628982.

	62.	 Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, et al. 
Machine and deep learning methods for radiomics. Med Phys. 
2020;47(5):e185-202.

	63.	 Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with 
neural networks. Science. 2006;313(5786):504–7.

	64.	 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, 
et al. Generative Adversarial Networks [Internet]. arXiv; 2014 [cited 2022 
Dec 16]. http://​arxiv.​org/​abs/​1406.​2661

	65.	 Chen X, Wang X, Zhang K, Fung KM, Thai TC, Moore K, et al. Recent 
advances and clinical applications of deep learning in medical image 
analysis. Med Image Anal. 2022;1(79): 102444.

	66.	 Simonyan K, Zisserman A. Very deep convolutional networks for large-
scale image recognition [Internet]. arXiv; 2015 [cited 2022 Dec 16]. http://​
arxiv.​org/​abs/​1409.​1556

	67.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR) [Internet]. Las Vegas, NV, USA: IEEE; 2016 [cited 2022 Dec 16]. p. 
770–8. http://​ieeex​plore.​ieee.​org/​docum​ent/​77804​59/

	68.	 Wu S, Zheng J, Li Y, Wu Z, Shi S, Huang M, et al. Development and 
validation of an MRI-based radiomics signature for the preoperative 
prediction of lymph node metastasis in bladder cancer. EBioMedicine. 
2018;34:76–84.

	69.	 Ligero M, Jordi-Ollero O, Bernatowicz K, Garcia-Ruiz A, Delgado-Muñoz 
E, Leiva D, et al. Minimizing acquisition-related radiomics variability by 
image resampling and batch effect correction to allow for large-scale 
data analysis. Eur Radiol. 2021;31(3):1460–70.

	70.	 Xie D, Wang TT, Huang SJ, Deng JJ, Ren YJ, Yang Y, et al. Radiomics nomo-
gram for prediction disease-free survival and adjuvant chemotherapy 
benefits in patients with resected stage I lung adenocarcinoma. Transl 
Lung Cancer Res. 2020;9(4):1112–23.

	71.	 Ma DN, Gao XY, Dan YB, Zhang AN, Wang WJ, Yang G, et al. Evaluating 
solid lung adenocarcinoma anaplastic lymphoma kinase gene rear-
rangement using noninvasive radiomics biomarkers. Onco Targets Ther. 
2020;13:6927–35.

	72.	 Kim G, Kim J, Cha H, Park WY, Ahn JS, Ahn MJ, et al. Metabolic radiog-
enomics in lung cancer: associations between FDG PET image features 
and oncogenic signaling pathway alterations. Sci Rep. 2020;10(1):13231.

https://doi.org/10.3389/fonc.2020.598721
https://doi.org/10.3389/fonc.2020.598721
https://doi.org/10.3389/fonc.2020.00490
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://ieeexplore.ieee.org/document/7780459/


Page 10 of 10Li and Zhou ﻿Radiation Oncology          (2022) 17:217 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	73.	 Arefan D, Hausler RM, Sumkin JH, Sun M, Wu S. Predicting cell invasion in 
breast tumor microenvironment from radiological imaging phenotypes. 
BMC Cancer. 2021;21(1):370.

	74.	 Wu J, Mayer AT, Li R. Integrated imaging and molecular analysis to 
decipher tumor microenvironment in the era of immunotherapy. Semin 
Cancer Biol. 2022;84:310–28.

	75.	 Fan M, Xia P, Clarke R, Wang Y, Li L. Radiogenomic signatures reveal multi-
scale intratumour heterogeneity associated with biological functions and 
survival in breast cancer. Nat Commun. 2020;11(1):4861.

	76.	 Liu L, Yi X, Lu C, Pang Y, Zu X, Chen M, et al. Background, applications and 
challenges of radiogenomics in genitourinary tumor. Am J Cancer Res. 
2021;11(5):1936–45.

	77.	 Zeng H, Chen L, Wang M, Luo Y, Huang Y, Ma X. Integrative radiogenom-
ics analysis for predicting molecular features and survival in clear cell 
renal cell carcinoma. Aging (Albany NY). 2021;13(7):9960–75.

	78.	 Zhao Y, Liu G, Sun Q, Zhai G, Wu G, Li ZC. Validation of CT radiomics for 
prediction of distant metastasis after surgical resection in patients with 
clear cell renal cell carcinoma: exploring the underlying signaling path-
ways. Eur Radiol. 2021;31(7):5032–40.

	79.	 Liu P, Tan XZ, Zhang T, Gu QB, Mao XH, Li YC, et al. Prediction of 
microvascular invasion in solitary hepatocellular carcinoma ≤ 5 cm 
based on computed tomography radiomics. World J Gastroenterol. 
2021;27(17):2015–24.

	80.	 Liu Q, Li J, Xu L, Wang J, Zeng Z, Fu J, et al. Individualized prediction of 
colorectal cancer metastasis using a radiogenomics approach. Front 
Oncol. 2021;11: 620945.

	81.	 Xie CY, Hu YH, Ho JWK, Han LJ, Yang H, Wen J, et al. Using genomics 
feature selection method in radiomics pipeline improves prognostication 
performance in locally advanced esophageal squamous cell carcinoma-A 
pilot study. Cancers (Basel). 2021;13(9):2145.

	82.	 Di Giannatale A, Di Paolo PL, Curione D, Lenkowicz J, Napolitano A, 
Secinaro A, et al. Radiogenomics prediction for MYCN amplification in 
neuroblastoma: a hypothesis generating study. Pediatr Blood Cancer. 
2021;68(9): e29110.

	83.	 Habib A, Jovanovich N, Hoppe M, Ak M, Mamindla P, R Colen R, et al. 
MRI-based radiomics and radiogenomics in the management of low-
grade gliomas: evaluating the evidence for a paradigm shift. J Clin Med. 
2021;10(7):1411.

	84.	 Zheng S, Tao W. Identification of novel transcriptome signature as a 
potential prognostic biomarker for anti-angiogenic therapy in glioblas-
toma multiforme. Cancers (Basel). 2021;13(5):1013.

	85.	 Chen M, Yin F, Yu Y, Zhang H, Wen G. CT-based multi-phase radiomic 
models for differentiating clear cell renal cell carcinoma. Cancer Imaging. 
2021;21(1):42.

	86.	 Smedley NF, Aberle DR, Hsu W. Using deep neural networks and inter-
pretability methods to identify gene expression patterns that predict 
radiomic features and histology in non-small cell lung cancer. J Med 
Imaging (Bellingham). 2021;8(3): 031906.

	87.	 Shim KY, Chung SW, Jeong JH, Hwang I, Park CK, Kim TM, et al. Radiomics-
based neural network predicts recurrence patterns in glioblastoma using 
dynamic susceptibility contrast-enhanced MRI. Sci Rep. 2021;11(1):9974.

	88.	 Kirienko M, Sollini M, Corbetta M, Voulaz E, Gozzi N, Interlenghi M, et al. 
Radiomics and gene expression profile to characterise the disease and 
predict outcome in patients with lung cancer. Eur J Nucl Med Mol Imag-
ing. 2021;48(11):3643–55.

	89.	 Yan J, Zhang S, Li KKW, Wang W, Li K, Duan W, et al. Incremental prognos-
tic value and underlying biological pathways of radiomics patterns in 
medulloblastoma. EBioMedicine. 2020;61: 103093.

	90.	 Huang Y, Zeng H, Chen L, Luo Y, Ma X, Zhao Y. Exploration of an integra-
tive prognostic model of radiogenomics features with underlying 
gene expression patterns in clear cell renal cell carcinoma. Front Oncol. 
2021;11: 640881.

	91.	 Wang JH, Wahid KA, van Dijk LV, Farahani K, Thompson RF, Fuller CD. 
Radiomic biomarkers of tumor immune biology and immunotherapy 
response. Clin Transl Radiat Oncol. 2021;28:97–115.

	92.	 Kim BC, Kim J, Kim K, Byun BH, Lim I, Kong CB, et al. Preliminary radiog-
enomic evidence for the prediction of metastasis and chemotherapy 
response in pediatric patients with osteosarcoma using 18F-FDF PET/CT, 
EZRIN and KI67. Cancers (Basel). 2021;13(11):2671.

	93.	 Yi X, Liu Y, Zhou B, Xiang W, Deng A, Fu Y, et al. Incorporating SULF1 poly-
morphisms in a pretreatment CT-based radiomic model for predicting 

platinum resistance in ovarian cancer treatment. Biomed Pharmacother. 
2021;133: 111013.

	94.	 Park CJ, Han K, Kim H, Ahn SS, Choi D, Park YW, et al. MRI features may pre-
dict molecular features of glioblastoma in isocitrate dehydrogenase wild-
type lower-grade gliomas. AJNR Am J Neuroradiol. 2021;42(3):448–56.

	95.	 Li H, Zhu Y, Burnside ES, Huang E, Drukker K, Hoadley KA, et al. Quantita-
tive MRI radiomics in the prediction of molecular classifications of 
breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer. 
2016;2:16012.

	96.	 Zhao B. Understanding sources of variation to improve the reproducibil-
ity of radiomics. Front Oncol. 2021;11: 633176.

	97.	 Miles K. Radiomics for personalised medicine: the long road ahead. Br J 
Cancer. 2020;122(7):929–30.

	98.	 Lu L, Ahmed FS, Akin O, Luk L, Guo X, Yang H, et al. Uncontrolled con-
founders may lead to false or overvalued radiomics signature: a proof of 
concept using survival analysis in a multicenter cohort of kidney cancer. 
Front Oncol. 2021;11: 638185.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A review of radiomics and genomics applications in cancers: the way towards precision medicine
	Abstract 
	Background
	Process of radiomics
	Data collection
	Imaging preprocessing
	Imaging segmentation
	Feature extraction
	Analysis and modelling

	Current applications of radiogenomics in cancer
	Diagnostic value
	Predicting the patient outcome
	Recurrence
	Survival
	Metastasis

	Predicting treatment responses
	Predicting molecular characteristics

	Challenges and future development
	Conclusions
	Acknowledgements
	References


