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Abstract 

Purpose:  To construct machine learning models for predicting progression free survival (PFS) and overall survival 
(OS) with esophageal squamous cell carcinoma (ESCC) patients.

Methods:  204 ESCC patients were randomly divided into training cohort (n = 143) and test cohort (n = 61) accord-
ing to the ratio of 7:3. Two radiomics models were constructed by radiomics features, which were selected by LASSO 
Cox model to predict PFS and OS, respectively. Clinical features were selected by univariate and multivariate Cox 
proportional hazards model (p < 0.05). Combined radiomics and clinical model was developed by selected clinical 
and radiomics features. The receiver operating characteristic curve, Kaplan Meier curve and nomogram were used to 
display the capability of constructed models.

Results:  There were 944 radiomics features extracted based on volume of interest in CT images. There were six radi-
omics features and seven clinical features for PFS prediction and three radiomics features and three clinical features for 
OS prediction; The radiomics models showed general performance in training cohort and test cohort for prediction 
for prediction PFS (AUC, 0.664, 0.676. C-index, 0.65, 0.64) and OS (AUC, 0.634, 0.646.C-index, 0.64, 0.65). The combined 
models displayed high performance in training cohort and test cohort for prediction PFS (AUC, 0.856, 0.833. C-index, 
0.81, 0.79) and OS (AUC, 0.742, 0.768. C-index, 0.72, 0.71).

Conclusion:  We developed combined radiomics and clinical machine learning models with better performance than 
radiomics or clinical alone, which were used to accurate predict 3 years PFS and OS of non-surgical ESCC patients. The 
prediction results could provide a reference for clinical decision.
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Introduction
Esophageal cancer (EC) is the seventh incidence and 
sixth mortality malignant tumors in the world, Easten 
Asia shows the highest regional incidence rates in the 
worldwide [1]. Especially in China, which is the main 
cause of the heavy burden for Easten Asia [1].The main 
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subtype of EC in China is esophageal squamous cell 
carcinoma (ESCC), which has a proclivity for earlier 
lymphatic spread, and is associated with a poorer prog-
nosis [2]. Due to most ESCC patients are diagnosed 
at an advanced stage, the 5  years overall survival rate 
is less than 20% [3]. Furthermore, most patients with 
advanced or medial stage ESCC always lost the opera-
tion opportunity [4, 5].Therefore, chemoradiotherapy 
(CRT) or neoadjuvant  chemoradiotherapy (NCRT) are 
effectively strategies to treat with ESCC [6]. Even though 
there are different treatment strategies, the recurrence 
and metastasis are still the main factors that affects the 
prognosis and patient’s survival [7]. Currently, the meth-
ods to predict prognosis of ESCC patients are mostly 
based on clinic risk factors, pathology and image, such 
as the patients characteristics like age, gender, treatment 
response, the tumor characteristics like location, size, dif-
ferential, TNM stage et al., the pathology characteristics 
like lymphovascular invasion, the hematology test results 
like leukocyte, platelet [8–12]. Nevertheless, the predic-
tion of treatment outcomes based on images or clinic risk 
factors alone is too simply to represent the actually thera-
peutic effects.

Radiomics is considered as one of the most vital tech-
nical to predict the efficacy of ESCC treatment. At pre-
sent, the radiomics extracted signatures are mostly based 
on computer tomography (CT) imaging, magnetic reso-
nance imaging (MRI) or18F-flurodeoxyglucose positron 
emission tomography (18F-FDG PET) /CT imaging [13]. 
Nakajo et al [14] found texture features intensity variabil-
ity (IV) and size-zone variability (SZV), and volumetric 
parameters metabolic tumor volume (MTV) and total 
lesion glycolysis (TLG) can predict tumor response. 
And the positive and negative predictive values for non-
responders were 77% and 69% in MTV, 76%and 100% 
in TLG, 78% and 67% in IV and78% and82% in SZV, 
respectively. But none of them was an independent fac-
tor for the prediction of prognosis in the EC patients. 
Furthermore, Li et  al [15] recruited 134 ESCC treated 
by CRT patients to evaluate the prognostic value of 
metabolic parameters of pre-treatment and interim 18F-
FDG PET/CT for overall survival (OS). And they found 
that maximum of standard uptake value (SUVmax2), 
MTV1, △MTV, TLG1, TLG2 and △TLG were associ-
ated with OS. However, the model with more robustness 
is urgently needed develop to predict the prognosis and 
OS of ESCC patients. Chu et al [16] developed an optimal 
model to predict disease-free survival (DFS) and overall 
survival (OS) in patients with ESCC and demonstrated 
MR image combined with clinical features had superior 
performance in both training and test groups for pre-
dicting DFS ([C-Index], 0.714, 0.729) and OS ([C-Index], 
0.730, 0.712). Peng et  al. [17] combined CT radiomics 

features and clinical risk factors to determine recurrence-
free survival (RFS) and OS after surgery in patients with 
ESCC. They revealed that the C-indices of the RFS radi-
omics nomograms were 0.758, 0.722 and 0.684, and the 
C-indices of the OS radiomics nomograms were 0.884, 
0.809 and 0.729 in the training cohort, internal validation 
cohort and external validation cohort, respectively.

This study is aimed to develop and test the radiomics 
models to predict 3 years progression free survival (PFS) 
and OS of no-surgical ESCC patients based on contrast 
enhanced CT(CECT) images, which combined radiomics 
features and clinical features. The models could be used 
in individualized evaluation in pre-treatment and provid-
ing decision-making reference.

Materials and methods
Patients
Our study recruited ESSC patients from February 2012 
and December 2018, who were treated by chemora-
diotherapy (CRT) in Shan Dong first medical univer-
sity affiliated tumor hospital. Inclusion criteria were as 
follows: (1) age ≥ 18; (2) Eastern Cooperative Oncol-
ogy Group performance status (ECOG PS) ≤ 2; (3) his-
topathologically confirmed squamous cell carcinoma; 
(4) cT3-4N0M0/cT1-4N + M0 or cM1 (positive nonre-
gional lymph nodes and irradiated during radiotherapy) 
in accordance with AJCC 7th edition; (5) treated by 
3-dimensional conformal radiation therapy(3D-CRT) or 
intensity-modulated radiation therapy (IMRT) with radi-
ation total doses ≥ 50 Gy using conventional fractionated 
radiotherapy, chemotherapy cycles ≥ 4, chemotherapy 
with cisplatin plus fluorouracil (PF) or docetaxel (DP). 
Exclusion criteria were as follows: (1) patients changed 
chemotherapy regimens during definitive chemoradio-
therapy; (2) CT images quality were poorly; (3) patients 
who underwent radical surgical treatment. This study 
was approved by the ethics committee of Shandong First 
Medical University affiliated tumor hospital according 
to the Declaration of Helsinki. Due to the research was 
a retrospective scientific study, there was no informed 
consent form in our investigation. All the patients were 
randomly divided into training cohort and test cohort 
according to the proportion of 7:3.

The acquisition of CT images and the region of interest
All the ESCC patients were scanned with Philips Big Core 
CT (Phillips Medical Systems, 96 Highland Heights, OH). 
The scanning parameters were as follows: tube voltage: 
120KvP, tube current: 53-400 mA, each scanning period: 
2.8 s, the interval time: 1.8 s. The CT images were recon-
structed with a 512 × 512 image matrix and a voxel size 
of 0.9766 mm × 0.9766 mm × 3 mm. The image thickness 
was 3  mm. Patients were fixed by a vacuum cushion in 
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the scanning process. Afterwards, the intravenous CECT 
images of each patient for the development of treatment 
planning.

The volume of interest (VOI) was defined as the gross 
tumor volume (GTV), which was the visible primary 
tumor (GTVp) and metastatic lymph nodes (GTVnd) 
detected by CECT. A radiologist with more than 10-year 
work experience delineated the VOI according to the 
National Comprehensive Cancer Network (NCCN) 
guideline. And another senior radiologist reviewed the 
delineation.

The collection of clinical features
The clinical features were collected, which involved: 
age, gender, tumor location, TNM stage, differentia-
tion, therapeutic  model, radiotherapy technology and 
dose, chemotherapy plan and cycles, the hematology test 
results, radiation pneumonia (RP), radiation esophagitis 
(RE), nausea or vomiting (NV), cardiac disorders, clini-
cal response, Objective Response Rate (ORR), Disease 
Control Rate (DCR). Patients were followed up every 1 to 
3 months after completion of chemotherapy for the first 
2 years and every 6 to 12 months thereafter.

Tumor’s location and clinical TNM stage was evaluated 
by the medical imaging examination, such as CT, PET-
CT. All the patients were treated with four different CRT 
therapeutic models, which included induction chemo-
therapy followed by concurrent chemoradiotherapy 
(I-CCRT), concurrent chemoradiotherapy followed by 
consolidation chemotherapy (CCRT-C), induction chem-
otherapy followed by concurrent chemoradiotherapy 
and consolidation chemotherapy (I-CCRT-C), sequential 
chemoradiation (SCRT). The ECOG PS of ESCC patients 
were assessed by the patient’s performance. The differen-
tiation of cancer cell was estimated by the pathological 
examination. Some hematology test values were involved 
in our research, such as carcinoembryonic antigen (CEA), 
Cytokeratin-19-fragment CYFRA21-1 (Cyfra21). Others 
hematology test results were also classified to different 
grades by the Common Terminology Criteria for Adverse 
Events Version 4.0 (CTCAE 4.0), which included anemia, 
leukopenia, thrombocytopenia, neutropenia, aspartate 
aminotransferase (AST), alanine transaminase (ALT), 
total bilirubin (TBIL). What’s more, the RE, RP, NV and 
Cardiac disorders were classified or showed in the study. 
Such as ORR, DCR, response, the efficacy was evalu-
ated by the Response Evaluation Criteria in Solid Tumors 
Version 1.0. And clinical response was classified as com-
plete response (CR), partial response (PR), no response 
(NR), or progressive disease (PD). PFS was defined as the 
period from the start of the anticancer treatment to the 
time of the first diagnostic progression or death or last 
follow-up. OS was defined from the start of the initial 

antitumor treatment to the date of death from any cause, 
regardless of disease status or last follow-up.

Feature extraction
We extracted the radiomics features from the basal CT 
before any therapy and the clinical parameters collected 
from the first follow-up CTs. Patients were followed up 
every 1 to 3  months after completion of chemotherapy 
for the first 2 years and every 6 to 12 months thereafter. 
Total of 944 features based on patient CT images were 
extracted by Radiomics software based on 3D slicer, 
which were divided into two categories: without preproc-
essing and after wavelet transform. In addition, these fea-
tures include 14 shape features, 180 first-order features 
and 750 texture features. The resampled voxel sizes were 
set to 3 × 3 × 3 mm3 to standardize the slice thickness. 
The radiomics features were generated from the original, 
wavelet-filtered, and Laplacian of Gaussian (LoG)-filtered 
images. And the Log-kernel size was set to 3 × 3. The fea-
tures included shape, shape2D, First-order and texture 
feature. Texture features included Gray Level Cooccur-
rence Matrix (GLCM), Gray Level Dependence Matrix 
(GLDM), Gray Level Run Length Matrix (GLRLM), Gray 
Level Size Zone Matrix (GLSZM) and Neighborhood 
Gray-tone Difference Matrix (NGTDM) [18].

Feature selection and model development
A total of 204 ESCC patients were divided into training 
and test cohorts to evaluate 3 years PFS and OS. Based 
on the training cohort, radiomics features were selected 
by the least absolute shrinkage and selection opera-
tor (LASSO) Cox model with tenfold cross validation, 
respectively. According to the selected radiomics fea-
tures, two radiomics models with good prediction per-
formance for PFS and OS were established.

Clinical features were selected by univariate and mul-
tivariate Cox proportional hazards model (p < 0.05). The 
selected clinical features were added into the multivari-
able Cox proportional hazards model based on radiom-
ics features to improve the predictive ability. Finally, two 
combined models were established by selected radiomics 
and clinical features to predict PFS and OS.

The optimum cutoff value was the median of pre-
dicted value. Consequently, patients were divided into a 
high-risk group and a low-risk group in the training set. 
After the survival curves of the two groups were evalu-
ated by the Kaplan Meier (KM) method, the differences 
between the survival curves were tested by the log-rank 
test (p < 0.05). The prediction ability of the survival rate 
was evaluated by the concordance index (C-index) and 
receiver operator characteristic (ROC) curve. Nomo-
grams and calibration curve were built based on the two 
clinical and radiomics models. Calibration curves were 
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calculated to evaluate the consistency between the nom-
ogram-predicted results and recorded survival results. 
The flowchart of survival model construction is pre-
sented in Fig. 1.

Statistical analysis
Feature extraction was implemented in 3DSlicer (Ver-
sion 4.11, https://​www.​slicer.​org/). Statistical analyses 
were performed using R software (Version 3.4.0, https://​
www.r-​proje​ct.​org/). The Kruskal–Wall test performed 
in MATLAB (2013b, https://​www.​mathw​orks.​com/) was 
used to analyze the different groups, and P values less 
than 0.05 were considered statistically significant. All sta-
tistical tests were two-sided.

Results
Patient demographics and clinicopathological 
characteristics
A total of 204 patients were analyzed to predict 3 years 
PFS and OS, respectively. The clinicopathological charac-
teristics for survival analysis (training and test cohort) are 
shown in Additional file 5: Table S1. There were no signif-
icant differences between training cohort and test cohort 
of the clinical variables, except ECOG PS and Differentia-
tion in PFS prediction model and response, DCR, ORR 
in OS prediction model. All of the advanced non-surgical 
ESCC patients were followed up for the full length of the 
follow-up period. In end of the last follow-up, 87 patients 
(60.84%) in the training set and 38 patients (62.30%) in 
the test set had disease progression. The survival time of 
61 patients (42.66%) in the training set and 35 patients 

(57.38%) in the test was less than three years. There 
was no statistically significant difference in PFS and OS 
between the two groups (χ2 = 0.038, P = 0.845; χ2 = 3.719, 
P = 0.054, respectively).

The establishment of models to predict PFS
There were 944 radiomics features extracted from the 
VOI of CT images. Six radiomics features were selected 
by LASSO Cox model (Additional file 1: Figure S1a, 1b). 
Radiomics model was built by these features. Univari-
ate and multivariate Cox hazard regression models were 
used to select clinical features, including ECOG PS, N 
stage, differentiation, RE, ORR, DCR, clinical response, 
(p < 0.05, respectively). The analysis of all clinical fea-
tures was shown in Table S2. The radiomics features were 
shown in Additional file  7: Table  S3. Combined model 
was built by selected radiomics and clinical features.

As the KM curves shown (Fig. 2a, b), selected radiom-
ics and clinical features discriminated between high-risk 
group and low-risk group. In the training cohort, the 
C-index of radiomics model, clinical model, combined 
model was 0.65, 0.79 and 0.81, the AUC was 0.664, 0.835 
and 0.856 respectively (Fig.  2c). In the test cohort, the 
C-index of radiomics model, clinical model, combined 
model was 0.64, 0.78 and 0.79, the AUC was 0.676, 0.823 
and 0.833, respectively (Fig.  2d). The nomogram was 
constructed by combined model (Additional file  2: Fig. 
S2a). Then, the calibration curves of the nomogram for 
PFS showed that the predicted value of 3  years of PFS 
was roughly consistent with the actual value (Additional 
file 2: Fig. S2b, 2c).

Fig. 1  The flow chart of this study. PFS, progression free survival; OS, overall survival; KM, Kaplan–Meier; ROC, receiver operator characteristic

https://www.slicer.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.mathworks.com/
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The establishment of models to predict OS
Radiomics model was built by three radiomics features 
which were selected by LASSO Cox model (Additional 
file 3: Figure S3a, 3b). Univariate and multivariate Cox 
hazard regression models were used to choose clinical 
features, including N stage, M stage and differentia-
tion (p < 0.05, respectively). The analysis of all clinical 
features was shown in Additional file  5: Table  S2. The 
radiomics features were shown in Additional file  8: 
Table  S4. Combined model was built by selected radi-
omics and clinical features.

As the KM curves shown (Fig. 3a, b), selected radiom-
ics and clinical features discriminated between high-
risk group and low-risk group. In the training cohort, 
the C-index of radiomics model, clinical model, com-
bined model was 0.64, 0.69, 0.72, respectively and the 
AUC was 0.634, 0.720, 0.742, respectively (Fig.  3c). In 
the test cohort, the C-index of radiomics model, clinical 
model, combined model was 0.65, 0.64 and 0.71, respec-
tively. The AUC was 0.646, 0.695 and 0.768, respectively 
(Fig.  3d). The nomogram was constructed by combined 
model (Additional file 4: Fig. S4a). Then, the calibration 

Fig. 2  The KM curve and ROC curve of PFS prediction model. a KM curve in training cohort. b KM curve in test cohort. c ROC curve in training 
cohort. d ROC curve in test cohort. PFS, progression free survival; OS, overall survival; KM, Kaplan–Meier; ROC, receiver operator characteristic
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curves of the nomogram for OS showed that the pre-
dicted value of 3 years of OS was roughly consistent with 
the actual value (Additional file 4: Fig. S4b, 4c).

Discussion
Radiomics studies in EC most focused on the prediction 
of lymph node metastasis, radiation-induced diseases 
in the earlier [19–21]. What’s more, there were still few 
researches in the prediction of both PFS and OS [16, 22–
24]. The establishment of accurate prediction models of 
PFS and OS were conducive to clinical decision-making 
and are expected to improve the survival rate of advanced 

ESCC patients. Therefore, in the present study, we con-
structed and validated machine learning models to pre-
dict PFS and OS of non-surgical ESCC patients, which 
incorporated the clinical variables and CECT images. 
The C-index and AUC showed that combined models 
had a better performance than radiomics or clinic mod-
els alone. The results demonstrated that incorporated the 
clinical variables enhanced the combined models’ pre-
dictive efficacy both in PFS and OS. In other word, the 
pre-treatment CECT images would not provide enough 
information to predict the treatment outcomes and the 
clinical data are essential for patient’s survival prediction.

Fig. 3  The KM curve and ROC curve of PFS prediction model. a KM curve in training cohort. b KM curve in test cohort. c ROC curve in training 
cohort. d ROC curve in test cohort. PFS, progression free survival; OS, overall survival; KM, Kaplan–Meier; ROC, receiver operator characteristic
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As for the prediction of PFS and OS, the combined 
models performed well with the prognostic accuracy 
over 70% based on clinical and radiomics features. 
The C-index of PFS prediction radiomics model, clini-
cal model, combined model in the test cohort was 0.64, 
0.78, 0.79 and AUC was 0.676, 0.823, 0.833, respectively. 
The C-index of OS prediction radiomics model, clinical 
model, combined model in the test cohort was 0.65, 0.64, 
0.71 and the AUC was 0.646, 0.695, 0.768, respectively. 
Bohanes et al. [25] found that gender and age had signifi-
cant influence for the treatment outcomes of EC patients. 
But, in our study, age and sex were not involved in the 
model’s development as they were no statistically signifi-
cant by univariate Cox regression. TNM stage was the 
most commonly prognosis prediction method in clinical. 
MES et al. [26] and Zhao et al. [27] combined TNM stage 
and other clinical factors to improve the prognostic pre-
dictive. In the PFS and OS prediction, N stage was filtered 
to develop clinical model in our study. But for the predic-
tion of OS, M stage was also selected to develop models. 
Li et al. [28] used deep learning to predict the treatment 
response to CCRT for ESCC patients which also included 
the M stage in the progress of model development.

Jayaprakasam et  al. [22] established radiomics model 
to predict PFS based on 72 ESCC patient’s PET/CT 
images and the AUC was 0.73 in the test cohort. They 
first included the PET responders into survey. But, PET/
CT examination was highly expensive than CT or MRI 
and the sample was small in the study. Luo et  al. [23] 
also developed a nomogram model for predicting local 
PFS based on CT images and C-index was 0.723 in test 
cohort. This study included clinical response to develop 
model and obtained a fine result. Liu et  al. [29] have 
found that clinical complete response after neoadjuvant 
CRT was significantly correlated with survival of patients 
with ESCC. So, we also selected the clinical response, 
ORR and DCR into model’s building, which significantly 
enhanced the model’s prediction efficacy of PFS. After 
selecting, the tumor differentiation was also chosen to 
develop the PFS and OS prediction models. Barbetta 
et  al. [30] found that poor tumor differentiation was an 
independent risk factor for recurrence in EC patients. 
Qiu et  al. [31]incorporated radiomics and clinical fea-
tures (including tumor differentiation) to predict postop-
erative recurrence risk of ESCC patients.And the C-index 
of test cohort was 0.724 in their combined model. In pre-
vious study, researchers had proved that ECOG PS had 
significant prognostic effects on clinical response and 
survival [32, 33].And RE was regarded as one of the fac-
tors affecting patient’s prognosis [34]. ECOG PS was used 
to evaluated the patient’s physical performance before 
treatment and RE was the radiation-induced esophageal 

disease after treatment. In our study, ECOG PS and RE 
were also selected to predict PFS.

Except the tumor differentiation and N stage described 
above, M stage was also selected to develop the OS pre-
diction models. Shi et al. [35] concluded that metastatic 
lesions were closely related to the prognosis of patients. 
Li et al. [28] used deep learning to predict the treatment 
response to CCRT for ESCC patients and the M stage 
was also involved in the progression of model develop-
ment. Due to the heterogeneity of tumor, the treatment 
outcomes of patients might be different even with the 
same clinical features [11, 36, 37].

Radiomics is defined as the high-throughput extrac-
tion of image features from radiographic images [38, 39]. 
Radiomic features provide abundant additional informa-
tion predictive of underlying tumor biology and behav-
ior [40]. These signatures can be used alone or with other 
patient related data (e.g., pathological data, genomic 
data, clinical data) to predict tumor phenotyping, treat-
ment response prediction and prognosis. Our study finial 
selected one shape texture, two GLSZM textures, two 
GLDM textures and one GLCM texture to develop PFS 
prediction model and one shape texture, one GLSZM 
texture, one GLDM texture to construct OS prediction 
model. Wavelet transformed features contain more infor-
mation and are more difficult to explain than first-order 
and shape features, but also reflect more complex infor-
mation about tumor heterogeneity [16]. Therefore, the 
prediction results based on Wavelet transformed features 
are consistent with the cognition of clinical outcomes.

Although our research developed the survival prediction 
model with good accuracy, there are still some limitations 
in our study. Due to it is a retrospective study, some clini-
cal variables are not comprehensive enough. Furthermore, 
all of the recruited EC patients were confirmed ESCC by 
pathology examination, which were the advanced stage and 
lost the surgery opportunity. Therefore, the constructed 
model may be limited in esophageal adenocarcinoma 
(EAC) or surgery patients. Due to the treatment plan is so 
vital for patient’s survival, our study recruited the patients 
treated with CRT, which might limit the model’s therapy 
decision. Adding the genomics features in the model is will-
ing to improve the accuracy of the treatment outcomes. 
What’s more, the further study of Delta-radiomics model 
could provide better prediction for the PFS and OS [41].

Conclusion
This research displays a great performance for the pre-
diction ESCC patients PFS and OS by combining the 
pre-treatment CECT radiomics signatures with clinical 
features. The prediction results will provide further deci-
sion-marking reference for clinician.
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