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Abstract 

Background: This study was designed to establish radiation pneumonitis (RP) prediction models using dosiomics 
and/or deep learning-based radiomics (DLR) features based on 3D dose distribution.

Methods: A total of 140 patients with non-small cell lung cancer who received stereotactic body radiation therapy 
(SBRT) were retrospectively included in this study. These patients were randomly divided into the training (n = 112) 
and test (n = 28) sets. Besides, 107 dosiomics features were extracted by Pyradiomics, and 1316 DLR features were 
extracted by ResNet50. Feature visualization was performed based on Spearman’s correlation coefficients, and feature 
selection was performed based on the least absolute shrinkage and selection operator. Three different models were 
constructed based on random forest, including (1) a dosiomics model (a model constructed based on dosiomics 
features), (2) a DLR model (a model constructed based on DLR features), and (3) a hybrid model (a model constructed 
based on dosiomics and DLR features). Subsequently, the performance of these three models was compared with 
receiver operating characteristic curves. Finally, these dosiomics and DLR features were analyzed with Spearman’s cor-
relation coefficients.

Results: In the training set, the area under the curve (AUC) of the dosiomics, DLR, and hybrid models was 0.9986, 
0.9992, and 0.9993, respectively; the accuracy of these three models was 0.9643, 0.9464, and 0.9642, respectively. 
In the test set, the AUC of these three models was 0.8462, 0.8750, and 0.9000, respectively; the accuracy of these 
three models was 0.8214, 0.7857, and 0.8571, respectively. The hybrid model based on dosiomics and DLR features 
outperformed other two models. Correlation analysis between dosiomics features and DLR features showed weak 
correlations. The dosiomics features that correlated DLR features with the Spearman’s rho |ρ| ≥ 0.8 were all first-order 
features.

Conclusion: The hybrid features based on dosiomics and DLR features from 3D dose distribution could improve the 
performance of RP prediction after SBRT.
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Background
Toxicity assessment is a very important step in radiother-
apy. Radiation pneumonitis (RP) is the main complication 
of stereotactic body radiation therapy (SBRT) in patients 
with lung cancer. As per some studies, the incidence of 
RP ranges from 9 to 49% [1–5]. For the fact that patients 
treated with SBRT are prone to a fragile condition, RP 
may impair their quality of life and subsequently increase 
hospitalization and mortality rates [6–8]. Therefore, it is 
necessary to establish a model for predicting RP during 
the initial evaluation and therapeutic regimens.

Recently, the advancement in machine learning (ML) 
and radiomics has provided new methods for RP pre-
diction. Quantitative medical imaging features can be 
extracted for computed tomography (CT) images to pre-
dict RP [9–11]. Kraf et  al. proposed a predictive model 
for RP toxicity using pretreatment CT-based radiom-
ics features extracted from the whole-lung volume [9], 
Kawahara et al. [10] and Hirose et al. [11] used radiom-
ics features from dosimetric-based segmentation to pre-
dict the occurrence of RP. However, the occurrence of 
RP is affected by radiation dose, all the above prediction 
models for RP using radiomics features on pretreatment 
planning CT images rather than dose distribution. Some 
researchers have established RP prediction models based 
on some dose volume histogram (DVH) parameters, such 
as V5, V10, and mean lung dose (MLD) of the radio-
therapy plan [12, 13]. However, it can only summarize 
the two-dimensional dose distribution in the target from 
DVH parameters, and the spatial dose distribution or 
organ architecture cannot be obtained from DVH param-
eters [14]. RP can be clinically controlled by limiting the 
dose to the lungs. However, dose limitation does not 
always prevent serious toxicities in some patients. It has 
been demonstrated in some studies that the voxel dose 
is related to the risk of tumor response, lung injury and 
other complications [15], and hence features extracted 
from the dose distribution may be of predictive signifi-
cance. Thus, radiomics based on 3D dose distribution 
has become a more effective way to explore the toxicity 
induced by the radiation dose [16].

In some studies, dose-based radiomics based on 3D 
dose distribution is also known as dosiomics features 
[17–21]. Liang [20] and Adachi [21] extracted dosiom-
ics from 3D dose distribution for RP prediction. These 
models for predicting RP expand the application of ML 
in the field of radiotherapy and promote the development 
of RP prediction. To the best of our knowledge, RP after 

SBRT has not been predicted by DLR features based on 
3D dose distribution.

In this study, dosiomics and DLR features were 
extracted from 3D dose distribution of normal lung 
patients with lung cancer, and three prediction mod-
els were constructed based on random forest, including 
(1) a model constructed based on dosiomics features, (2) 
a model constructed based on DLR features, and (3)  a 
hybrid model constructed based on dosiomics and DLR 
features. Besides, the correlation between dosiomics fea-
tures and DLR features from 3D dose distribution was 
analyzed. The establishment of an accurate prediction 
model for RP is expected to realize the dose increase for 
low-risk patients or the treatment optimization for high-
risk patients. This would further minimize the incidence 
of RP and significantly benefit cancer patients receiving 
radiation therapy.

Methods
Study cohort
A total of 140 patients who were admitted to our hospital 
from 2019 to 2021 were included for retrospective analy-
sis. All patients provided written informed consent before 
enrollment. Patients were performed with 4-dimensional 
computed tomography (4D-CT). The gross tumor vol-
ume (GTV) was delineated on ten respiratory phase-
sorted 4D-CT datasets. The internal target volume (ITV) 
was generated by performing the union of the 10-phase 
sorted GTVs. All patients were treated using an ITV-
based strategy with an additional ITV-to-planning target 
volume (PTV) margin of 5 mm. The entire lung, exclud-
ing the ITV (Lung-ITV), was regarded as a normal lung. 
The dose distribution was calculated by Collapsed cone 
Convolution Superposition (CCCs) algorithm on the Pin-
nacle treatment planning system (TPS), with the grid size 
being 2.5 mm × 2.5 mm× 2.5 mm. An example image of 
a dose distribution was shown in Fig. 1. The patients were 
treated with 6 MV X-rays; the prescribed dose was 50 or 
60 Gy in 4–8 fractions at an isocenter, with 95% volume 
of PTV was covered by the prescription dose.

Patients were followed up every month after treatment 
completion until 6 months, and every 3 months thereaf-
ter. Each patient was performed by chest X-ray or CT at 
each follow-up visit. During routine follow-up, the cases 
were evaluated in terms of RP based on clinical findings 
(e.g., dyspnea, cough, pain, and low-grade fever) and radi-
ological findings. Once diagnosed, RP was further graded 
by at least two radiation oncologists according to the 
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Common Toxicity Criteria for Adverse Events (CTCAE) 
version 5.0 [22]. Grade 1: RP with symptoms or radio-
graphic features without the need for steroids; Grade 2: 
RP requiring steroids or with symptoms that interfered 
with daily activities; Grade 3: RP requiring oxygen and 
steroids; Grade 4: RP requiring intubation. A diagnosis of 
RP grade ≥ 2 was defined as the primary end point. CT 
image examples of a CT without/with radiation pneu-
monitis were shown in Fig.  2. Patients with Grade 2 or 
higher (Grade ≥ 2) were labeled as having developed RP. 
A total of 40 patients were assessed as having RP with 
Grade ≥ 2. These 140 patients were randomly divided 
into the training set (n = 112, including 34 RP cases) and 
the test set (n = 28, including 6 RP cases). The design flow 
of this study is shown in Fig. 3.

Dosiomics and DLR feature extraction
The dosiomics features were extracted automatically by 
Pyradiomics (https:// pyrad iomics. readt hedocs. io/ en/ 

latest/) [23], including 14 shape features, 18 first-order 
features, and 75 texture features. ResNet-50 architecture 
was adopted to develop the deep convolutional neural 
networks for DLR feature extraction [24]. The 3D distri-
bution images were cropped and resized to 96*96*96.

Feature selection
First, redundant features were eliminated through Spear-
man’s correlation coefficient (CC) analysis. Normaliza-
tion may reflect the difference of prescribed dose. Here, 
as there was no significant difference in prescribed dose 
between the RP and non-RP groups, the normalized 
z-score was used for feature selection and RP classifica-
tion in this study. Subsequently, Spearman’s CCs were 
calculated. One of the two features that were highly 
correlated with the other remaining features would be 
eliminated if the CC between two kinds of features was 
≥ 0.9 [25]. Next, least absolute shrinkage and selection 

Fig. 1 An example image of a dose distribution

Fig. 2 CT image examples of a CT without/with RP

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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operator (LASSO) [26] was employed to select a subset of 
features with predictive significance for each of the three 
binary classification models.

Model construction and performance
A random forest model was selected as the classifier 
that was widely used in radiomics and achieved good 
performance in many studies [27]. The area under the 
curve (AUC) score was used to test the performance 
of the prediction model. The optimal cut-off value by 
Youden index was calculated in the process of model 
construction and integrated into the calculation of the 
accuracy, sensitivity, and specificity.

Dosiomics and DLR feature correlation
In this study, we correlated the dosiomics features and 
DLR features through Spearman’s rank CCs. Besides, 
the correlation analysis was visualized by the Circos 
software (http:// circos. ca)[28]. The feature sets with a 
correlation coefficient larger than 0.8 were selected to 
avoid over-cluttering during visualization.

Statistical analysis
The Spearman’s correlation, LASSO regression, random 
forest classifier, and ROC curve analysis (evaluating 
the performance of binary classifiers) were conducted 
by the “sklearn” package, and the DLR features were 
extracted by the “PyTorch” package. The differences 
in clinical characteristics between patients with RP 

and without RP were evaluated by the t-test and Chi-
square test. P value < 0.05 was considered statistically 
significant.

Fig. 3 Overall workflow of RP prediction performed in this study

Table 1 Patient clinical and treatment characteristics

Clinical and treatment 
characters

RP Non-RP P

  Age (years) 67 (33–84) 65 (47–85) 0.141

  Sex 0.367

 Male 27 75

 Female 13 23

  Tumor location 0.165

 Left 16 53

 Right 24 47

  ITV Volume (cc) 9.84 ± 9.00 10.89 ± 12.02 0.411

  Dose fractionations 0.626

 60 Gy/8 fractions 12 31

 50 Gy/4 fractions 6 18

 50 Gy/5fractions 21 48

 Others 1 3

Volume dose 

 V5 18.02 ± 7.54 15.27 ± 6.64 0.221

 V10 11.08 ± 4.70 8.74 ± 3.95 0.250

 V20 5.49 ± 2.85 4.34 ± 2.53 0.547

 MLD (Gy) 3.39 ± 1.54 3.28 ± 1.41 0.394

http://circos.ca
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Results
Plan and clinical characteristics
A total of 140 patients (102 males and 38 females; median 
age: 65.5) were included in this study, including 40 RP 
patients (27 males and 13 females; median age: 67) Grade 
≥ 2. There was no significant difference in age, gender, 
tumor location, ITV volume, dose fractionations, V5, 
V10, V20, and MLD between RP and Non-RP. The plan 
and clinical characteristics of these patients are listed in 
Table 1.

Model performance
There were 22, 10 and 12 features in the dosiomics model, 
DLR model and hybrid model, respectively. The optimal 
cut-off value of the dosiomics, DLR, and hybrid models 
was 0.60, 040, and 0.50, respectively, in the training set, 
while that of dosiomics, DLR, and hybrid models in the 
test set was 0.60, 0.40, and 0.60, respectively.

The ROC curve of different models in the training and 
test sets are presented in Fig. 4. The AUC of three models 
was larger than 0.99 in the training set; While, the AUC 

of the dosiomics, DLR, and hybrid models was 0.8462, 
0.8750, and 0.900, respectively, in the test set. The accu-
racy, AUC, sensitivity, and specificity of dosiomics, DLR, 
and hybrid models in the training and test sets are listed 
in Table 2. The accuracy of dosiomics, DLR, and hybrid 
models in the training set was 0.9643, 0.9464, and 0.9642, 
respectively; While that of dosiomics, DLR, and hybrid 
models in the test set was 0.8214, 0.7857, and 0.8571, 
respectively. This indicated that combining dosiomics 
and DLR features could improve the model performance 
of RP prediction.

Correlation between dosiomics features and DLR features
The results obtained from correlation analysis based on 
the Spearman’s correlation (represented by ρ) are listed 
in Table  3. For a quantification purpose, the number of 
ρ with an absolute value > 0.8 was counted. Group A was 
the Spearman’s rho |ρ| ≥ 0.8 between dosiomics features 
and DLR features. Group B was the Spearman’s rho 0.5 ≤ 
|ρ| < 0.8 between dosiomics features and DLR features. 
Besides, the ratio of the number of correlated feature 

Fig. 4 AUCs of three models in the training set and test set

Table 2 Performance metrics of three models

Accuracy AUC (95%CI) Sensitivity Specificity

Dosiomics model

 Training 0.9643 0.9986 (0.9962–1.000) 0.9474 1.000

 Test 0.8214 0.8462 (0.7156–0.9767) 1.000 0.9130

DLR model

 Training 0.9464 0.9992 (0.9978–1.000) 1.000 0.9744

 Test 0.7857 0.8750 (0.7508–0.9992) 1.000 0.8095

Hybrid model

 Training 0.9642 0.9992 (0.9977–1.000) 1.000 0.9867

 Test 0.8571 0.9000 (0.7895–1.000) 1.000 0.8750
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pairs to the total number of feature pairs was calculated. 
The results showed that the ratio in Groups A and B was 
0.02% and 4.72%, respectively, which was relatively low in 
both groups. In Group A with the Spearman’s rho |ρ| ≥ 
0.8, the ratio of the number of dosiomics features corre-
lated with DLR features to the total number of radiom-
ics features was higher than the ratio of the number of 
DLR features correlated with dosiomics features to the 
total number of radiomics features. In Group B with the 

Spearman’s rho 0.5 ≤ |ρ| < 0.8, an opposite result was 
obtained.

  In order to avoid over-cluttering, the correlation den-
sity in Group A was visualized by Circos (as shown in 
Fig.  5). The width of the link represents the correlation 
between the two kinds of features. The wider the link, 
the greater the absolute correlation. The positive cor-
relation was represented in red color, while the negative 
correlation was represented in blue. All of the dosiomics 

Table 3 Correlation analyses between the dosiomics and DLR features using the Spearman’s rho

a Setting A: the Spearman’s rho |ρ| ≥ 0.8 between the dosiomics and DLR features and B: the Spearman’s rho 0.5 ≤ |ρ| < 0.8 between the dosiomics and DLR features
b Format (l, m, n): l is the total number of feature pairs that were correlated, m is the number of dosiomics features correlated with DLR features, and n is the number of 
DLR features correlated with dosiomics features
c Format (r,  rr,  rc): r = number of correlations /total number of feature pairs,  rr = number of dosiomics features correlated with DLR features/total number of radiomics 
features, and  rc = number of DLR features correlated with dosiomics features /total number of DLR features used

Settinga No. of features Total feature pairs Correlated pairs and 
 featuresb

Ratio of correlations (%)c

A 107:1316 140,812 (25, 6, 19) (0.02, 5.61, 1.44)

B (6645, 54, 736) (4.72, 50.47, 55.93)

Fig. 5 Visualization of the correlation between dosiomics features and DLR features (the Spearman’s rho |ρ| ≥ 0.8)
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features in Group A that correlated with the DLR features 
were identified as first-order features. The dosiomics fea-
ture with the highest correlation with DLR features was 
original_firstorder_InterquartileRange, original_first-
order_RobustMeanAbsoluteDeviation. The DLR feature 
with the highest correlation with dosiomics features was 
DLR 676.

Discussions
In this study, the RP prediction model for patients with 
lung cancer after SBRT was established based on dosi-
omics features and DLR features from 3D dose distribu-
tion of normal lung. The AUC of the dosiomics, DLR, 
and hybrid models was 0.8462, 0.8750, and 0.900. Both 
the dosiomics and DLR features could be used to predict 
the occurrence of RP after SBRT. Importantly, combin-
ing dosiomics features and DLR features could further 
improve the accuracy of the prediction model. The hybrid 
model is feasible in clinical scenarios. The dosiomics fea-
tures and DLR features can be extracted from 3D dose 
distribution of normal lung, and the occurrence of RP 
can be predicted based on the previously established 
model within a few minutes after the completion of the 
radiotherapy plan. Interestingly, the prediction model 
does not depend on any clinical characteristic data apart 
from 3D dose distribution.

SBRT is the standard therapy for NSCLC patients who 
cannot receive surgery and could achieve favorable clini-
cal outcomes [29]. Given that most patients receiving 
SBRT have severe comorbidities or are in a vulnerable 
state, RP should be prevented and/or actively managed. 
It is necessary to predict the occurrence of RP for the 
reason that it may reduce the benefits of SBRT. RP is 
directly related to dose information. Most clinical predic-
tion models for RP only rely on clinical factors and DVH 
parameters. However, DVH cannot effectively explain 
spatial dose distribution or organ structure. Buettner 
et  al. proved the importance of dose distribution rela-
tive to DVH in predicting the toxicity in patients with 
advanced rectal cancer, and the specific information 
provided by 3D dose distribution can better explain the 
relationship between dose information and toxicity [30]. 
Dosiomics features are statistical, geometric, or textural 
measures and they can provide quantitative measure-
ments of the intensity, shape, or heterogeneity of a given 
volume of interest (VOI) in medical images [31]. When 
applied to dose distribution, these features may be related 
to the inhomogeneity of dose distribution [32]. Normali-
zation may reflect the difference of prescribed dose. Here, 
as there was no significant difference between the RP 
and non-RP groups, the normalized to z-score was used 
for feature selection and RP classification in this study. 
DLR features have been applied to disease diagnosis and 

prediction [33, 34]. The results of these studies have con-
firmed the potential of DLR features combined with dosi-
omics features in predicting RP.

The ML- or DL-based prediction models are highly 
dependent on datasets, and hence it is difficult to make 
a direct comparison between different studies due to dif-
ferent data sets. AUC can be used to compare the pre-
diction performance of different models from different 
studies. For instance, the AUC of a model established 
by Liu et  al. based on the clinical and DVH parameters 
was 0.76 [35]. In a study of RP prediction based on 3D 
dose distribution, Adachi et  al. obtained an AUC of 
0.837 ± 0.054 based on dosiomics features [21], which 
was at the same level of accuracy as the AUC of 0.846 in 
our study based on dosiomics features only. In this study, 
the DLR model outperformed the dosiomics model, and 
the hybrid model achieved the best performance. This 
indicated that combining dosiomics features and DLR 
features based on 3D dose distribution can improve the 
accuracy of RP prediction.

To the best of our knowledge, this is the first study to 
extract DLR features from 3D dose distribution to pre-
dict RP after SBRT. The correlation analysis was con-
ducted between dosiomics features and DLR features. In 
this study, 0.8 and 0.5 were selected as the cutoff value, 
and there was a low correlation between dosiomics fea-
tures and DLR features. There was little overlap in the 
RP-discriminative information expressed by these two 
groups of features. For the Spearman’s rho |ρ| ≥ 0.8, the 
dosiomics features that correlated with the DLR features 
were all identified as the first-order features. Among 
them, original_firstorder_Median was applied to model 
established. The DLR features that correlated the origi-
nal_firstorder_Median with the Spearman’s rho |ρ| ≥ 0.8 
included DLR 156, DLR676, DLR 483, and DLR 888, and 
they were not applied to model training. Different from 
dosiomics features, these DLR features have better per-
formance in predicting RP.

However, there is a lack of an external testing cohort in 
this study. Nevertheless, the dosiomics and DLR features 
from 3D dose distributions can still be demonstrated to 
have benefits to RP prediction. Currently, collecting addi-
tional data from new patients represents a significant 
challenge, while it is an essential task for obtaining an 
even greater clinically relevant accuracy in predicting RP. 
Thus, data sharing collaboration and distributed learning 
suggested by Lambin et al. may play a key role in radia-
tion oncology [36]. It is possible to establish an accurate 
prediction model for RP after SBRT based on sufficient 
multi-center data.
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Conclusion
In this study, an ML model based on dosiomics and DLR 
features could effectively predict RP after SBRT, which 
indicates that hybrid radiomics is expected to be applied 
to RP prediction.
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