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Abstract
Background Definitive concurrent chemoradiotherapy (CCRT) is the standard treatment for locally advanced non-
small cell lung cancer (LANSCLC) patients, but the treatment response and survival outcomes varied among these 
patients. We aimed to identify pretreatment computed tomography-based radiomics features extracted from tumor 
and tumor organismal environment (TOE) for long-term survival prediction in these patients treated with CCRT.

Methods A total of 298 eligible patients were randomly assigned into the training cohort and validation cohort with 
a ratio 2:1. An integrated feature selection and model training approach using support vector machine combined 
with genetic algorithm was performed to predict 3-year overall survival (OS). Patients were stratified into the high-risk 
and low-risk group based on the predicted survival status. Pulmonary function test and blood gas analysis indicators 
were associated with radiomic features. Dynamic changes of peripheral blood lymphocytes counts before and after 
CCRT had been documented.

Results Nine features including 5 tumor-related features and 4 pulmonary features were selected in the predictive 
model. The areas under the receiver operating characteristic curve for the training and validation cohort were 0.965 
and 0.869, and were reduced by 0.179 and 0.223 when all pulmonary features were excluded. Based on radiomics-
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Introduction
Definitive concurrent chemoradiotherapy (CCRT) is the 
standard treatment for patients with unresectable locally 
advanced non-small cell lung cancer (LANSCLC). In the 
past two decades, concomitant regimens achieved prom-
ising tumor local control and long-term survival. With 
improved outcome, the maintenance of an adequate pul-
monary function is essential to ensure acceptable qual-
ity of life and adjuvant immunotherapy. However, many 
patients with LANSCLC are diagnosed with pre-existing 
lung comorbidities, which significantly increases the risk 
for radiation-induced lung toxicity (RILT) [1, 2].

Most existing RILT prediction models largely focused 
on clinical prognostic factors (CPFs) and dose-volume 
histogram parameters [3–5], but remained insufficient. 
Recently, machine learning methods have been reported 
to improve the capacity of the predictive modelling [6–9], 
compared with logistic regression widely used in normal 
tissue complication probability model.

Moreover, radiomics analysis, attempting to identify 
computational biomarkers potentially hidden within 
high-throughput imaging data [10, 11], has been dem-
onstrated the added predictive value for overall survival 
(OS) [12–14] or RILT [8, 9]. However, most of them rely 
on the radiomic information from tumor or its surround-
ing peritumoral region, few studies have been designed 
based on the radiomics analysis of tumor organismal 
environment (TOE).

Similar to other published reports [15, 16], our previ-
ous study [17] indicated that pulmonary function test 
(PFT) was significantly related to patients’ long-term 
survival. However, it failed to predict progression-free 
survival (PFS). Even though patients with worse FEV1/
FVC% or DLCO% showed a high objective response rate 
(ORR) to CCRT, their survival outcomes were still poor, 
hinting that TOE, the status of lungs in the case of LAN-
SCLC might play an indispensable role in the prognostic 
prediction after CCRT. As some patients could not tol-
erate well with PFT, radiomics analysis using machine 
learning method might be an effective technique to 

investigate the relationship of tumor and TOE, due to its 
accessibility.

In this study, we utilized computed tomography (CT) 
images before CCRT to develop an image-based machine 
learning framework to analyze the relationship of pri-
mary lung tumor and bilateral lungs for long-term sur-
vival prediction in LANSCLC. To balance the training 
accuracy and predictive capability using relative small 
number of patient samples, an integrated feature selec-
tion and model training (IFSMT) approach was devel-
oped to extract the most critical quantitative radiomic 
features from both tumor and lungs. A radiomic-based 
risk stratification was built to distinguish high-risk and 
low-risk patients and provided evidence for clinical deci-
sion making.

Methods
Study population
Consecutive patients irradiated for lung cancer from 
September 2011 to April 2019 in our institution were 
retrospectively screened. Inclusion criteria included: (1) 
histologically confirmed NSCLC; (2) unresectable stage 
III disease (AJCC/UICC 8th staging criteria) proven by 
chest and upper abdominal CT, brain magnetic reso-
nance imaging (MRI), bone scan and/or positron emis-
sion tomography-computed tomography (PET-CT); (3) 
definitive radiotherapy with concurrent chemotherapy 
was administered; (4) stay followed-up no less than 6 
months since the start of radiotherapy (unless death 
or disease progression was documented); (5) complete 
clinical records. Patients that met the inclusion criteria 
were randomly assigned into the training and validation 
cohort, with the numbers at a ratio 2:1.

Planning CT image acquisition
The four-dimensional (4D) planning CT scan was per-
formed 1–2 weeks prior to treatment, using multiple CT 
simulation positioning machines with varied parameter 
settings in our institution (detailed in Additional File 1). 
Ten phases of the breathing cycle were reconstructed, 

derived stratification, the low-risk group yielded better 3-year OS (68.4% vs. 3.3%, p < 0.001) than the high-risk group. 
Patients in the low-risk group had better baseline FEV1/FVC% (96.3% vs. 85.9%, p = 0.046), less Grade ≥ 3 lymphopenia 
during CCRT (63.2% vs. 83.3%, p = 0.031), better recovery of lymphopenia from CCRT (71.4% vs. 27.8%, p < 0.001), lower 
incidence of Grade ≥ 2 radiation-induced pneumonitis (31.6% vs. 53.3%, p = 0.040), superior tumor remission (84.2% vs. 
66.7%, p = 0.003).

Conclusion Pretreatment radiomics features from tumor and TOE could boost the long-term survival forecast 
accuracy in LANSCLC patients, and the predictive results could be utilized as an effective indicator for survival risk 
stratification. Low-risk patients might benefit more from radical CCRT and further adjuvant immunotherapy.

Trial registration: retrospectively registered.

Keywords Locally advanced non-small cell lung cancer, Radiomics, Machine learning, Long-term survival prediction, 
Tumor organismal environment.
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including: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 
and 90%. The segmentation and radiomics were then per-
formed on the 20% phase (middle exhale phase) with a 
consistent mediastinum/lung window level setting.

Radiotherapy and concurrent chemotherapy
Patients were positioned supine and immobilized in a 
vacuum pad. They were scanned from the Atlas to the 
second lumbar vertebra level with 0.3-0.5  cm thickness 
slices to obtain the stimulation CT images. The respira-
tion motion was recorded by performing 4DCT scan-
ning. The maximum intensity projection images were 
reconstructed using the images collected in 10 phases of 
respiratory cycle. Gross tumor volume (GTV) was delin-
eated to cover the tumor and involved regional nodes 
visible on each phase of the 4DCT. The total volumes of 
GTVs across the 10 respiratory phases CT composed the 
internal target volume (ITV). Planning target volumes 
(PTVs) were created by expanding GTV and clinical tar-
get volume with 6  mm. Lungs were delineated accord-
ing to the atlases for organs at risk (OARs) in thoracic 
radiation therapy [18], but GTV was excluded from the 
lung delineation. A dose of 60-76  Gy was prescribed to 
PTV-GTV in 22–33 fractions, with 2-3  Gy per fraction 
performed once daily, using intensity modulated radia-
tion therapy technique. The dose constraints for OARs 
were: V20 < 35% for lungs; mean lung dose < 19 Gy; maxi-
mun dose (Dmax) of esophagus < 105% prescription dose; 
Dmax of spinal cord < 46 Gy; V30 < 40% for heart.

All patients received platinum-based double agents 
weekly or every three weeks. The regimens included 
docetaxel/paclitaxel/etopside/pemetrexed plus platinum.

Evaluation and follow-up
The baseline characteristics of each patient before entry 
were reviewed attentively and extracted from their 

medical records, including blood tests, PFT, blood gas 
analysis (BGA) and radiologic tests. All included patients 
received regular radiologic follow-up, including chest 
and upper abdominal CT and brain MRI performed 
every 3 ~ 6 months in the first 2 years, and every 6 ~ 12 
months thereafter. PET-CT, bone scan, and biopsy were 
recommended if clinically required. The responses to 
CCRT were first assessed by an independent radiation 
oncologist and confirmed by a senior physician at 4 ~ 6 
weeks post CCRT, based on Response Evaluation Crite-
ria in Solid Tumors 1.1. Another senior radiologist was 
consulted for disagreement. Therapeutic toxicities were 
graded and recorded according to Common Terminology 
Criteria for Adverse Events 4.0.

OS modelling procedures
The whole procedures were illustrated in Fig. 1. For both 
cohorts of patients, the regions of interest (ROIs) corre-
sponding to GTV and lungs were delineated by an auto-
contouring software tool CezanneDraw™ v1.0 (Homology 
Medical, Ningbo, China, 2020) using the CT slices and 
manually modified by radiation oncologists if necessary. 
One 3D bounding box was fitted for each ROI. And inside 
the bounding box, the CT values of the ROI voxels were 
retained while the values of other voxels were marked 
by zero. CT values of voxels in each bounding box were 
then interpolated to a resolution of 1 mm×1 mm×5 mm 
and resampled into 400 discrete values (called bins) with 
absolute discretization from − 1000 to 3000 Hounsfield 
units, leading to a fixed bin size of 10 Hounsfield units.

A total of 92 tumor-related and lung-related features 
were then computed for both ROIs and used as the input 
feature pool for the machine learning framework by the 
LIFEx software (version 3.44) [19]. The imaging-based 
features covered two categories of texture features and 
first order features. The texture features consisted of four 

Fig. 1 Schematic overview of the integrated feature selection and model training (IFSMT) approach. IFSMT approach consisted of five steps: (1) volumet-
ric data pre-processing; (2) delineation; (3) feature extraction; (4) integrated feature selection and model training; (5) model validation using leave-one-
out cross-validation (LOOCV).
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sub-categories of matrix based texture features. These 
matrices included the grey-level co-occurrence matrix 
(GLCM), neighborhood grey-level different matrix 
(NGLDM), grey-level run length matrix (GLRLM) and 
grey-level zone length matrix (GLZLM). The first order 
features included indices from shape, indices from histo-
gram and conventional indices.

The machine learning based classification method used 
to predict the two-class 3-year survival status for each 
individual patient was support vector machine (SVM) 
[20]. The SVM mapped the features of training data into 
a high-dimensional feature space through a kernel func-
tion and utilizes a hyper-plane to optimally separate the 
training data points into two categories. To reduce the 
possibility of overfitting, only a subset of features from 
the feature pool could be selected for the input of SVM. 
In this study, the IFSMT approach was developed to 
maximize the fitting accuracy and minimize the over-
fitting potential. This posteriori approach applied the 
genetic algorithm (GA) for the feature selection, which 
was illustrated in Fig. 2 and Additional File 2. A chro-
mosome represents a feature template working with 
SVM of certain configuration for diagnosing purpose. 
The SVM is implemented in leave-one-out cross-valida-
tion (LOOCV) fashion to score a chromosome. In each 

generation, the chromosomes of higher scores may go 
through mutation, partially changing feature encoding, 
and crossover, partially exchanging feature encoding, to 
make new ones to replace those of lower scores. Collect 
the chromosome of best score from each generation into 
a group. And the best one in the group is the result of the 
model. Manual reconfiguration of SVM is not included in 
the model.

Once the optimal set of features was determined, the 
SVM models were trained again on the training cohort. 
In this study, after extensive experimental comparisons, 
the linear kernel was chosen for SVM and optimal hyper 
parameters of the SVM (C, ε and γ) were determined 
through exhaustive search in the parametric space. 
Receiver operating characteristics (ROC) curves were 
obtained by varying threshold of the decision variable, 
the signed distance to decision hyper-plane. Area under 
curve (AUC) for each ROC was calculated for training 
cohort. The trained models were then used to predict the 
survival status for each individual patient in the valida-
tion cohort, and ROCs and their corresponding AUCs 
were also calculated. All the above feature selection and 
machine learning approaches were implemented on the 
cloud-based clinical data service platform iRAAS® v2.0 
(Homology Medical, Ningbo, China, 2020).

Fig. 2 Schematic overview of the genetic algorithm (GA) in the integrated feature selection and model training (IFSMT) approach. A chromosome is 
scored with LOOCV-SVM. The chromosomes of higher scores may go through mutation and crossover to make new ones to replace those of lower scores. 
Collect the chromosome of best score from each generation into a group. And the best one in the group is the result of the model. Abbreviation: LOOCV, 
leave-one-out cross-validation; SVM, support vector machine
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To assess the importance of each selected feature to the 
accurate prediction of the clinical outcome, a one-by-one 
feature evaluation procedure was designed. This proce-
dure tested the importance of each feature by deleting 
each feature from the selected feature set and calculating 
the reduction of the AUC for the model trained with the 
original selected features except this specific feature. This 
reduction of model performance was used as the impor-
tance weight (IW) of this feature. All the selected features 
were then sorted according to their IWs. To further assess 
the importance organismal features, the AUC for the 
model trained with the original selected features exclud-
ing all the lung-related features were also calculated.

Statistical methods
OS was defined as the time from radiotherapy start to the 
last follow up, which ended at November 30th, 2021, or 
death. A t-test was used to determine if there was signifi-
cant difference between the means of continuous vari-
ables, while Fisher’s exact test was performed to reveal 
the difference in distribution between two groups of 
categories variables. The association between radiomic 
features and PFT/BGA indicators was examined using 
Pearson’s correlation coefficient. A p-value < 0.05 (two-
sided) were considered as statistically significant. Missing 
data were excluded from the statistical analysis. Statis-
tics were performed using SPSS 22.0 (IBM, Chicago, IL, 
USA).

To report the model fitting accuracy and the predic-
tion capability, the true positive rate (TPR), true negative 
rate (TNR), F1 score, overall prediction accuracy, average 
prediction accuracy for the training cohort and valida-
tion cohort were calculated based on the SVM model. 
Herein, death is marked as the positive. The overall pre-
diction accuracy was expressed as the number correctly 
predicted patients / the number of all patients; and the 
average prediction accuracy = (TPR + TNR)/2.

To assess the prognostic value of the survival status 
model, the predicted 3-year survival status was adopted 
respectively as the clinical risk estimator to stratify the 
patients into the high-risk and low-risk groups. Patients 
with negative predicted survival status were classified 
into the low-risk group and the others with positive pre-
dicted survival status into the high-risk group. Kaplan-
Meier curves for both groups were displayed to illustrate 
its effectiveness and log-rank test was performed.

Results
Patient characteristics
A total of 298 LANSCLC patients were included for 
analysis, with 200 in the training cohort and 98 in the val-
idation cohort. The baseline and treatment-related char-
acteristics were comparable between these two cohorts 
(Additional File 3). There were 57 females and 241 males 

in the whole cohort, with the median age of 59 years 
(range, 28–81 years). Squamous cell carcinoma was the 
predominant histologic type both in the training (46.5%) 
and validation (62.2%) cohorts.

OS modelling
With the median follow-up of 27.7 (range, 4.0 ~ 122.7) 
months for all and 67.0 months (range, 36.2 ~ 122.7 
months) for event-free patients, our cohort demonstrated 
the estimated median OS of 27.6 (95% confidence inter-
val (CI), 22.3 ~ 33.0) months, and the 3-year OS rate was 
43.0% (95%CI, 37.3%~48.7%).

As shown in Table  1, the overall prediction accuracy 
for 3-year survival status was 92.50% and 85.71%, and the 
AUC of the ROC was 0.965 and 0.869, respectively, in the 
training and validation cohort.

Stratification of patients in the validation cohort with 
machine learning model
In the validation cohort, 60 (61.2%) of 98 patients were 
stratified into the high-risk group and 38 (44.1%) into the 
low-risk group. CCRT was more successful in patients in 
the low-risk group than those in the high-risk group. The 
ORR was 84.2% (32/38) and 66.7% (40/60) in the low-risk 
and high-risk group, respectively (p = 0.003) (Additional 
File 4). And the low-risk group yielded better 3-year OS 
(68.4% versus 3.3%, p < 0.001, log-rank) than the high-
risk group (Fig.  3B). What’s more, the rate of Grade ≥ 2 
pneumonitis was 31.6% (12/38), versus 53.3% (32/60) 
(p = 0.040) in the low-risk and high-risk group. The typi-
cal presentation of two patients in the low-risk and high-
risk group was illustrated in Fig. 4.

Correlation of selected radiomic features to the model 
performance
A total of 9 features were selected in the proposed model, 
including 5 tumor-related features and 4 lung-related 
features. In Table 2, the IW of each selected feature for 
both training and validation cohorts were listed in the 

Table 1 OS Training and validation accuracy using all selected 
features or without pulmonary features
OS status accuracy Training cohort Validation cohort

All 
features

Without 
pulmo-
nary 
features

All 
features

With-
out pul-
monary 
features

AUC 0.965 0.786 0.869 0.646

TNR (%) 95.00 74.00 92.86 75.00

TPR (%) 90.00 68.00 82.86 50.00

F1 score 0.923 0.701 0.892 0.625

Average accuracy (%) 92.50 71.00 87.86 62.50

Overall accuracy (%) 92.50 71.00 85.71 57.14
Abbreviations: OS, overall survival; AUC, area under curve; TNR, true negative 
rate; TPR, true positive rate



Page 6 of 12Chen et al. Radiation Oncology          (2022) 17:184 

order from high to low. The imaging features from lungs 
ranked at 2nd, 4th, 5th and 8th in the all 9 features in the 
training cohort, and 1st, 3rd, 6th, and 8th in the valida-
tion cohort. When all pulmonary features were excluded 
from the selected feature set, the AUCs for the training 
and validation cohorts were reduced by 0.179 and 0.223, 
respectively (Fig. 5). Figure 4 showed two patients in the 
low-risk and high-risk groups.

Correlation of radiomic features to the PFT/BGA indicators
Pearson correlation analysis (Fig. 6A) demonstrated that 
FEV1/FVC% had modest correlation with three pulmo-
nary features (SHAPE_Volume_mL, GLRLM_LRE and 
GLRLM_RP) (all Pearson correlation >|0.45|), and mild 
correlation with CONV_SUVstd of lungs and GLZLM_
GLNUz of tumor (all Pearson correlation >|0.25|). Other 
PFT/BGA indicators and radiomic features were not well 
correlated.

Patients in the low-risk group had better baseline 
FEV1/FVC% (median, 96.3% vs. 85.9%, p = 0.046) com-
pared with those in the high-risk group (Fig. 6B). Kaplan-
Meier analysis indicated that better baseline FEV1/FVC% 
(p = 0.006) and SaO2 (p = 0.039) could exhibit superior 
OS, DLCO% (p = 0.063) had a tendency to be associated 
with OS, however, pO2 (p = 0.110) and AaDO2 (p = 0.299) 
failed to predict OS (Additional File 5).

Dynamic changes of lymphocyte counts before and after 
CCRT
Although there was no significant difference in lym-
phocyte counts before CCRT (median, 1650 vs. 1650 
cells/mm3, p > 0.99) between the low-risk and high-
risk group (Additional File 6), patients in the low-risk 
group had less Grade ≥ 3 lymphopenia (63.2% vs. 83.3%, 
p = 0.031) during CCRT, and more patients in the low-risk 
group could recover to normal level (≥ 1000 cells/mm3) 

Fig. 3 Kaplan-Meier curves for the training and validation cohort, with all selected features (a, b), and without pulmonary features (c, d), respectively

 



Page 7 of 12Chen et al. Radiation Oncology          (2022) 17:184 

Fig. 4 Two patients from the high-risk (A) and low-risk group (B). From the series CT images, there were discernible distinction observed in tumor and 
pulmonary status between the two cases. High-risk patient had heterogeneous primary lung tumor and chronic obstructive pneumonia (A-1), while low-
risk patient had relatively homogeneous primary lung tumor and better pulmonary condition (B-1). Significant tumor remission was achieved in low-risk 
patient without obvious radiation pneumonitis after CCRT (B-2), while high-risk patient had stable disease and developed Grade 2 radiation pneumonitis 
in bilateral lungs (A-2). The GLZLM matrices for tumor, GLRLM matrices along + x axis for lungs, and histograms of HU values for tumor (A-3, B-3) were 
displayed. It was found that the short homogeneous runs and the non-uniformity of the grey-levels (CT value) were emphasized for high-risk patient 
compared to those of low-risk patient
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at 4 ~ 6 weeks post CCRT (71.4% vs. 27.8%, p < 0.001). 
Kaplan–Meier curves demonstrated that better recov-
ery to normal level (≥ 1000 cells/mm3) at 4 ~ 6 weeks post 
CCRT (3-year OS rate, 47.5% versus 14.3%, p = 0.001) was 
a prognostic factor of OS (Additional File 5).

Discussions
Application of radiomics to the long-term survival pre-
diction for LANSCLC after CCRT is a reasonable exten-
sion under the background of the field-wide adoption of 
machine learning methods. Other than previous works 
focused on the features from tumor and peritumoral tis-
sue, the relationship between tumor and TOE is increas-
ingly attached importance. Significant association was 

Table 2 Selected features and their importance rank for the training and validation cohort
Importance rank Training cohort Validation cohort

Selected features Category IW Selected features Category IW
1 GLRLM_SRE Tumor 0.0451 SHAPE_Volume_mL Lung 0.1439

2 SHAPE_Volume_mL Lung 0.0426 GLZLM_GLNUz Tumor 0.1122

3 CONV_SUVstd Tumor 0.0177 GLRLM_RP Lung 0.0776

4 CONV_SUVstd Lung 0.0169 GLRLM_SRE Tumor 0.0643

5 GLRLM_RP Lung 0.0143 HISTO_Entropy_log10 Tumor 0.0541

6 GLZLM_GLNUz Tumor 0.0126 CONV_SUVstd Lung 0.0372

7 HISTO_Entropy_log10 Tumor 0.0121 TLG_mL Tumor 0.0224

8 GLRLM_LRE Lung 0.0036 GLRLM_LRE Lung 0.0066

9 TLG_mL Tumor 0.0006 CONV_SUVstd Tumor ＜0.0001
Abbreviations: IW, importance weight; GLRLM, grey-level run length matrix; SRE, short-run emphasis; RP, run percentage; GLZLM, grey-level zone length matrix; 
GLNUz, gray-level non-uniformity for zone; LRE, long-run emphasis; TLG, total lesion glycolysis

Fig. 5 The receiver operating characteristics (ROC) curves for the training and validation cohort, with all selected features (a, b), and without pulmonary 
features (c, d), respectively
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found between pulmonary function and radiomic fea-
tures extracted from the lungs of CT images [21–23]. In 
current study, the long-term survival forecast accuracy of 
LANCLC patients after CCRT was demonstrated to be 
boosted by integrating primary tumor characteristics and 
pulmonary features from pretreatment CT images. Based 
on the CT-based predictive model, patients could be 
precisely stratified into the low-risk and high-risk group 
before treatment, which should be considered in individ-
ualized treatment decision-making process.

From the importance rank of the selected features, 
it could be confirmed that two features from tumor, 
GLRLM_SRE and GLZLM_GLNUz which represent the 
inhomogeneity of CT images [19], remained important 
factors determining OS, which were consistent with pub-
lished literatures [24, 25]. Meanwhile, the ranking of pul-
monary features underlined their indispensable role in 
the OS forecast. Our results of the significant difference 
between fitting and prediction accuracies with and with-
out pulmonary features in model performance further 

support this finding, implying that the TOE, herein the 
pulmonary environment, might have a significant impact 
in LANSCLC patients with large tumor burden and lim-
ited pulmonary function. Accordingly, the relatively lon-
ger OS for patients with healthier pulmonary status could 
possibly contribute to their more tolerance to radical 
CCRT and less incidence of severe lung toxicities.

PFT have been reported to predict the risk of RILT 
after CCRT [26–29]. Our previous work showed that 
FEV1/FVC% and DLCO% were prognostic factors for 
long-term survival but not for PFS [17], implying that 
long-term survival outcomes might not be achievable 
due to detriment of pulmonary function even though 
patients had good early response to CCRT. To further 
interpret the underlying role of these selected radiomic 
lung features, the correlation between radiomic fea-
tures and PFT/BGA indicators were explored in depth 
and it was confirmed that FEV1/FVC% was well corre-
lated with radiomic pulmonary features. This correlation 
between the pulmonary ventilation function and selected 

Fig. 6 Pearson correlation coefficient heatmap for radiomic features and PFT/BGA indicators (A), and the distribution of PFT/BGA indicators between 
the low-risk and high-risk group (B-E). A. The FEV1/FVC% had modest correlation with three pulmonary features (SHAPE_Volume_mL, GLRLM_LRE 
and GLRLM_RP) (all Pearson correlation >|0.45|), and mild correlation with CONV_SUVstd of lungs and GLZLM_GLNUz of tumor (all Pearson correlation 
>|0.25|). Other PFT/BGA indicators and radiomic features were not well correlated. B-E. Patients in the low-risk group had better baseline FEV1/FVC% 
(median, 96.3% vs. 85.9%, p = 0.046) compared with those in the high-risk group. No significant difference of DLCO% (median, 84.3% vs. 77.5%, p = 0.136), 
pO2 (median, 86.0 vs. 86.0 mmHg, p > 0.999), AaDO2 (median, 18.0 vs. 18.0 mmHg, p > 0.999) and SaO2 (median, 96.8% vs. 96.5%, p = 0.634) was found. 
Abbreviation: PFT, pulmonary function test; BGA, blood gas analysis
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radiomic pulmonary features for OS prediction reaffirms 
the findings in Occhipinti et al.’s study that the changes 
in lung function, such as bronchial thickening and hon-
eycombing, can be mechanistically explained based on 
morphological CT features [23]. And it might addition-
ally imply that the tumor not only interacts with cells in 
its immediate vicinity, but also communicates with the 
entire host organ [30], just as suggested by a prior study 
[31] that the tumor and TOE could possibly interact in a 
bi-directional way.

In the aspect of methodology, the machine learning 
framework in this study used SVM combined with the 
proposed IFSMT approach to iteratively select features 
using GA and improve the accuracy of the prediction 
model. Our avoidance of topical deep-learning frame-
works, such as deep convolutional neural network, is due 
to the intrinsic weaknesses of overfitting and blackbox 
for these frameworks. To ease the problem of overfitting, 
the deep-learning frameworks are more suitable for the 
learning tasks armed with big data as learning samples. 
However, the number of patients in current study for 
model training was relatively small, which intensively 
restricts the application of deep-learning frameworks 
which may have millions of parameters and thousands 
of decision making variables. The SVM is equivalent to 
an optimized three-layer neural network with only one 
hidden layer. This simplified neural network architec-
ture substantially reduces the potential of overfitting. 
Additionally, in contrast with the problem of blackbox 
for deep learning framework, the features used in mod-
eling are explicitly created and selected with the IFSMT 
approach. Therefore, each feature had an explicit clinical 
or physical meaning relevant to image of a specific ROI, 
which made it easy to apprehend the behind-the-scene 
mechanism of the survival status prediction and directly 
related the comprehensible clinical and image oriented 
indices to the clinical outcome. The effectiveness of 
IFSMT approach had been demonstrated by high AUC 
values achieved for the survival status prediction.

The most recent work on prognostic model for the sur-
vival outcome for NSCLC patients treated with CCRT 
demonstrated that pretreatment CT texture features 
provided prognostic information beyond CPFs [12]. 
However, it didn’t provide the result in terms of AUC 
or employ the validation cohort. In another predictive 
model conducted by Dehing-Oberije C et al. [32], which 
used CPF indices only, the AUC was 0.74 for the train-
ing cohort, 0.75 and 0.76 for the two separate valida-
tion cohorts. The improvement of model performance 
by imaging features in current study is discernible with 
the AUCs of 0.965 and 0.869 for the training and valida-
tion cohort, which could be attributed to inclusion of the 
image-based pulmonary features.

What’s more, the predictive OS results using imag-
ing features in our study with machine learning could 
be utilized as an effective indicator for the survival risk 
stratification of these patients, which could potentially 
individualize CCRT regimen and adjuvant treatment 
from the perspective of personalized medicine. For 
example, immunotherapy has evolved into a standard 
adjuvant treatment option for LANSCLC patients treated 
with definitive CCRT. Based on the promising results of 
the phase III PACIFIC study [33, 34], adjuvant immu-
notherapy resulted in a significant prolonged PFS and 
OS for those patients. To be noticed, the most common 
grade 3 or 4 adverse event in the durvalumab arm was 
pneumonia (4.4%), followed by pneumonitis or radiation 
pneumonitis (3.4%), and Asian patients seemed to have a 
higher rate of any grade pneumonitis (73.6%) and severe 
pneumonitis (5.6%) [35]. Thus, based on the survival risk 
stratification of LANSCLC patients in this study, low-risk 
patients might have several potential advantages for adju-
vant immunotherapy: (1) supporting role of better pul-
monary function and quality of life; (2) superior tumor 
remission with less pulmonary toxicities; (3) less severe 
lymphopenia during CCRT and better recovery of lym-
phopenia from CCRT. However, for high-risk LANSCLC 
patients who had worse baseline FEV1/FVC%, higher rate 
of Grade ≥ 3 lymphopenia during CCRT, worse recov-
ery of lymphopenia from CCRT, and higher incidence of 
radiation-induced pneumonitis, radical CCRT or further 
adjuvant immunotherapy might not be feasible because 
of poor organ functions and high probability of severe 
complications. Therefore, pretreatment radiomics-based 
risk stratification of LANSCLC patients using features 
from tumor and TOE could provide direct evidences to 
effectively support the treatment decision making.

It should also be noted that there were a few limita-
tions in this study. First, the absence of external valida-
tion was the major disadvantage. Nevertheless, multiple 
CT simulation machines were available in our institution 
(Additional File 1). The high AUC values were generated 
from these different scanners with varied parameter set-
tings, demonstrating the great robustness of our model. 
Besides, Zhao et al. considered that radiomic features 
in lung cancer were reproducible over a wide range of 
imaging settings [36]. Multicenter validations with larger 
samples are warranted for the ultimate application of this 
model clinically. Second, there might be some variabil-
ity in multiple observer delineations in our study. E et al. 
reported that although the ROIs delineation tended to be 
different between individual experts, an overall high AUC 
value could still be achieved [37]. Third, we focused only 
on the radiomic analysis of pretreatment planning CT in 
this study, and other imaging modalities, such as PET-CT 
[38] and MRI, still need to be investigated as to whether 
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they could also yield complementary information which 
would facilitate more accurate predictive models.

Conclusion
Pretreatment CT-based radiomics features from tumor 
and TOE could improve the long-term survival fore-
cast accuracy in LANSCLC patients treated with CCRT 
using machine learning. The predictive results could be 
utilized as an effective indicator for the stratification of 
these patients into the low-risk and high-risk groups. It 
was further confirmed that patients in the low-risk group 
had better baseline FEV1/FVC%, less severe lymphope-
nia during CCRT, better recovery of lymphopenia from 
CCRT, lower incidence of radiation-induced pneumo-
nitis, superior tumor remission and long-term survival, 
which might suggest more benefit for these patients from 
radical CCRT or further adjuvant immunotherapy.
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