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Abstract 

Purpose: Fast and accurate outlining of the organs at risk (OARs) and high-risk clinical tumor volume (HRCTV) is 
especially important in high-dose-rate brachytherapy due to the highly time-intensive online treatment planning pro-
cess and the high dose gradient around the HRCTV. This study aims to apply a self-configured ensemble method for 
fast and reproducible auto-segmentation of OARs and HRCTVs in gynecological cancer.

Materials and methods: We applied nnU-Net (no new U-Net), an automatically adapted deep convolutional neural 
network based on U-Net, to segment the bladder, rectum and HRCTV on CT images in gynecological cancer. In nnU-
Net, three architectures, including 2D U-Net, 3D U-Net and 3D-Cascade U-Net, were trained and finally ensembled. 
207 cases were randomly chosen for training, and 30 for testing. Quantitative evaluation used well-established image 
segmentation metrics, including dice similarity coefficient (DSC), 95% Hausdorff distance (HD95%), and average sur-
face distance (ASD). Qualitative analysis of automated segmentation results was performed visually by two radiation 
oncologists. The dosimetric evaluation was performed by comparing the dose-volume parameters of both predicted 
segmentation and human contouring.

Results: nnU-Net obtained high qualitative and quantitative segmentation accuracy on the test dataset and 
performed better than previously reported methods in bladder and rectum segmentation. In quantitative evalu-
ation, 3D-Cascade achieved the best performance in the bladder (DSC: 0.936 ± 0.051, HD95%: 3.503 ± 1.956, ASD: 
0.944 ± 0.503), rectum (DSC: 0.831 ± 0.074, HD95%: 7.579 ± 5.857, ASD: 3.6 ± 3.485), and HRCTV (DSC: 0.836 ± 0.07, 
HD95%: 7.42 ± 5.023, ASD: 2.094 ± 1.311). According to the qualitative evaluation, over 76% of the test data set had no 
or minor visually detectable errors in segmentation.

Conclusion: This work showed nnU-Net’s superiority in segmenting OARs and HRCTV in gynecological brachy-
therapy cases in our center, among which 3D-Cascade shows the highest accuracy in segmentation across different 
applicators and patient anatomy.
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Introduction
The combination of external beam radiation therapy 
(EBRT) and HDR-BT is a standard care for treatment 
in gynecological cancers [1, 2], in which HDR-BT has 
proven to be indispensable and has a strong correlation 
with a higher survival rate [2–4].

In the HDR-BT treatment, contouring of OARs and 
HRCTV should be careful and accurate for better organ 

Open Access

*Correspondence:  zlb_2@163.com; fujie74@sjtu.edu.cn

Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Xuhui District, 
Shanghai, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-022-02121-3&domain=pdf


Page 2 of 10Li et al. Radiation Oncology          (2022) 17:152 

sparing and tumor control due to the high dose gradi-
ent in brachytherapy. However, unlike heaps of treat-
ment planning time in EBRT, there is limited time for 
the planning procedure during HDR-BT because the 
radiation oncologists and medical physicists should fin-
ish the contouring in the shortest possible time to reduce 
the patient’s uncomfortableness and the possibilities 
of patient movement [5, 6]. It is estimated that a radia-
tion oncologist needs 32 min on average to delineate the 
HRCTV and OARs for gynecologic malignancies [7]. The 
requirements of fast pace and accurate planning will put 
the entire workflow under high pressure, thus increas-
ing planning errors. Moreover, the planner’s experience 
level and preferences would result in significant inter-and 
intra-observer variations [8, 9], further introducing more 
uncertainties in treatment planning and dose delivery 
[10–12].

Therefore, the contouring of OARs and HRCTV in 
HDR-BT is often considered the bottleneck in the clinical 
workflow [13, 14]. There is a strong need for a precise and 
fast automatic contouring tool in the clinic. For a long 
time, there have been attempts to automate the contour-
ing process. Most of the studies focus on segmentation 
tools, including atlas-based and deep learning methods 
[15, 16]. In the past ten years, atlas-based auto-segmen-
tation (ABAS) algorithms, which segment the contours 
based on a library of reference images, mapping elements 
to the target image using a deformable image registration 
algorithm, have been widely used for auto-segmentation. 
Kim et  al. [17] segmented CTV and OARs in endome-
trial gynecological cancer and achieved the best dice of 
0.75 as well as an average segmentation time of 45.1  s. 
Although ABAS increases the contouring efficiency, it 
still has some disadvantages. Kim stated organs isodense 
with their surroundings are not suitable subjects for 
ABAS. Teguh et  al. [18] found ABAS does not perform 
well for small and thin OARs. Moreover, it is reported 
that approximately 5000 atlases should be included to 
achieve a segmentation level corresponding to clinical 
quality [19]. However, even for those studies using large 
databases, the atlas selection may be unreliable, poten-
tially influencing the segmentation performance [20]. 
Finally, applicators and CT markers may bring metal 
artifacts to the CT images and degrade the image qual-
ity, which causes an undesirable effect on the segmenta-
tion [21]. Thus, the ABAS method does not have many 
clinical applications because this approach is limited in 
accuracy, thereby leading to slight improvement at best, 
in contouring efficiency.

With the increasing popularity of deep learning, mul-
tiple architectures have been developed and applied in 
medical image segmentation, such as Cascaded U-Net 
[22–24], VGGNet [25], AlexNet [26, 27], DenseNet 

[28, 29], ResNet [30, 31], some of these methods have 
achieved good results and outperformed the ABAS for 
the majority of clinical cases [32–35]. Despite the good 
performance achieved by these networks, their applica-
bility to specific image segmentation is often limited. 
The task-specific design and configuration of a network 
require careful fine-tuning. Slight variations in hyper-
parameters could lead to significant differences in per-
formance. A fine-tuned neural network model for one 
specific task is highly possible to fail in other application 
scenarios [36].

nnU-Net is the first fully automatic framework for bio-
medical segmentation [37]. It consists of 2D, 3D and 3D 
Cascade U-Net based on several convolution and decon-
volution layers, with skip connections [38]. The most 
attractive part of nn U-net is the automatic configuration 
of the pre-and post-processing, network architecture, 
and training for any new task. This robust strategy even 
outperforms highly specialized solutions on 23 public 
datasets used in international biomedical segmentation 
competitions [37]. Similar standardized schemes based 
on self-adapted architecture have not been applied in 
gynecological cancer and HDR brachytherapy treatment. 
In this work, nnU-Net is proposed for gynecological 
cancer patients in HDR-BT. It has proved to have better 
segmentation accuracy than existing methods and can be 
easily translated to clinical practice.

Methods and materials
Patient selection and contouring
62 Patients were included in the retrospective study 
approved by the institutional review board. Each patient 
contains 2–6 fractions; and each fraction has a unique 
CT structure set. A total of 237 cases were included in 
this study. 207 cases were used for training and 30 cases 
for testing. A “case” in this context indicates one single 
fraction in the treatment. These patients were randomly 
selected from the gynecological patients between Janu-
ary 2019 and September 2021. All the CT images were 
acquired using 120 kV and 60mAs at a GE 128 slice CT 
(Discovery, GE Healthcare, Inc.). The slice thickness and 
slice increment were 2.5*2.5  mm; and the image reso-
lution was 512*512. The average pixel spacing in axial 
image is 0.75  mm*0.75  mm. All the scans used same 
image acquisition and reconstruction protocol. Each 
patient was treated with an applicator set among Tandem 
and Ovoid applicator (T + O), Vaginal Multi-Channel 
applicator, Ovoid applicator, free needles, and a tandem 
applicator with up to 10 interstitial needles (T + N) (see 
Additional file  1: Table  S1). The HRCTV, rectum and 
bladder were manually delineated using the Oncentra 
System (Elekta, Stockholm, Sweden) by an experienced 
radiation oncologist. All the contours were reviewed and 
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edited by another more experienced radiation oncolo-
gist. The results confirmed by the second oncologist were 
considered the final delineations (i.e., the ground truth) 
for training and testing.

Geometric evaluation
Quantitative evaluation
To evaluate the auto-segmentation performance, we 
compared the predicted segmentation generated by the 
models with the provided ground truth. We used the 
dice similarity coefficient (DSC) [39], average surface dis-
tance (ASD), and 95% Hausdorff distance (HD95%) [40] 
as three indicators to evaluate the accuracy of segmen-
tation. These indicators are the most widely used met-
rics for quantitatively assessing segmentation quality in 
auto-segmentation.

Qualitative evaluation
Two radiation oncologists (5-year and 20-year clinical 
experience) evaluated the auto-segmentation results in 
test set visually and graded the results using a 4-point 
Likert scale [41], in which Point 1 indicates no visible 
segmentation errors; Point 2 indicates minor segmenta-
tion errors; Point 3 indicates major segmentation errors; 
Point 4 indicates failed segmentation/no segmentation.

Dosimetric evaluation
The dosimetric evaluation was performed to illustrate 
the difference in OARs and HRCTV between predicted 
segmentation and human contouring. Standard devia-
tion over the residuals was considered as a measure 
of model error. The prescription dose was 5-6  Gy in 
each fraction and each patient contained 2–6 fractions. 
Plans were created considering the external beam and 
BT equivalent dose in 2 Gy fractions (EQD2). The OAR 
dose constraints and the prescription dose were based 
on American Brachytherapy Society HDR-BT guidelines 
for locally advanced gynecological cancer [42] and later 
updated EMBRACE-II trial [43]. For HRCTV, D90% (the 
minimum dose given to 90% of the target volume), and 
V100%, V150%, V200% (the target volume enveloped by 
100%, 150%, and 200% of the prescribed dose) were eval-
uated. For OARs, the minimum dose received by 2cm3, 
1cm3, 0.1cm3 (D2cc, D1cc, D0.1cc), and the maximum 
dose  (Dmax), were evaluated. Since the dose distribution, 
and by extension, dose-volume parameters, can vary 
largely between different plans, a customized python 
program was developed to calculate the dose-volume 
parameters based on predicted contours  (Ppredicted) using 
the dose map of original plan created based on man-
ual contours  (Porginal). Namely, the  Ppredicted and  Porginal 
shared the same dose map, simulating the same applica-
tor position, source dwell position and dwell time. Model 

performance was quantified by calculating the residual of 
dose-volume parameters between  Ppredicted and  Porginal.

Auto‑segmentation network
In this study, nnU-Net was selected to provide a stand-
ardized workflow to achieve accurate and reproduc-
ible segmentation. The program was implemented with 
Python 3.7, and performed on a workstation platform 
with an NVIDIA GeForce RTX 3060 GPU in an Ubuntu 
20.04.3 operating system.

Network architecture and training workflow
The architecture template of nnU-net is a ‘U-Net-like’ 
encoder-decoder with skip connections and instance 
normalization. It provides three architectures based on 
the U-Net backbone: a two-dimensional (2D) U-Net, a 
three-dimensional (3D) U-Net training all images at full 
image resolution (3D-Fullres), and a 3D U-Net cascade 
network (3D-Cascade). The 3D-Cascade network con-
tains two U-Nets, the first 3D U-Net creates coarse seg-
mentation maps on down-sampled images (3D-Lowres); 
and the second 3D U-Net operates on full resolution 
images to refine the segmentation map created by the 
first one. An overview of the training workflow is shown 
in Fig. 1. In data acquisition, all the data was converted 
to nii format. Then, the data was prepossessed using data 
augmentation, which includes scaling, rotation, adding 
Gaussian blur and Gaussian noise, simulating low-res-
olution gamma mirroring, and Gamma augmentation. 
In training phase, fivefold training was used for each 
architecture. In ensemble, nnU-Net empirically chooses 
the best model (or combination of two) from 2D U-Net, 
3D-Fullres or 3D-Cascade according to the five-fold 
cross-validation results. Ensemble is processed by aver-
aging softmax probabilities. After training, the post-pro-
cessing is triggered for individual classes by removing all 
small holes inside the OARs and HRCTV.

Hyperparameter setting
In the training period, each architecture went through 
five-fold cross-validation and each fold ran for 1000 
epochs with an epoch size of 250. The optimizer used 
stochastic gradient descent with a high initial learn-
ing rate (0.01) and a large momentum (μ = 0.99). We 
adapted ‘poly’ learning rate decay strategy (1−epoch/
epochmax)0.9 to accelerate convergence. The acti-
vate function was leaky ReLU. To improve the train-
ing stability and segmentation accuracy, nnU-Net used 
a combination of dice and cross-entropy as loss func-
tion empirically. The batch and patch sizes are shown in 
Table 1. Each network’s batch size and patch size were 
adjusted according to the image size and GPU’s com-
puting power. To ensure robust optimization, the batch 
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size is set to a minimum of 2 and is increased until GPU 
memory is maxed out. A large patch size could provide 
additional background information to help the network 
make decisions. As a result, if GPU is allowed, we maxi-
mize the patch size under the condition of a batch size 
of 2.

Statistical analysis
We considered possible variables that could poten-
tially explain the variance of auto-segmentation qual-
ity through ANOVA (analysis of variance). p Values less 
than 0.05 were considered significant after Bonferroni 
correction. The independent variables are applicator 
type, organ type, and tumor location (vagina, uterus, or 
both). The dependent variables are DSC values in geo-
metric evaluation. Moreover, Cohen’s kappa (κ) evaluated 
the inter-observer agreement between the two radiation 
oncologists at qualitative evaluation. To test for signifi-
cant differences (p < 0.05) between the three architec-
tures’ performance, we used an independent two-sample 
t-test as calculated with SciPy for OARs and HRCTV.

Results
Geometric evaluation
Quantitative evaluation
All three architectures successfully segmented the blad-
der, rectum and HRCTV on the test dataset. The per-
formance for each metric is shown in Table 2. A general 
trend in the test dataset showed that the DSC in order 
from highest to lowest was the bladder, rectum and 
HRCTV, and DSC values in rectum and HRCTV were 
almost identical. A similar trend was observed in the 
ASD and HD95%, in which bladder achieved the highest 
performance and rectum had a comparable performance 
with HRCTV.

The highest DSC, of any network, in the evalua-
tion dataset as compared to manual segmentations 
(i.e., ground truth) for each contouring were 0.936 ± 
0.051 (bladder in 3D-Cascade), 0.831 ± 0.074 (rectum 
in 3D-Cascade), and 0.836 ± 0.07 (HRCTV in 3D-Cas-
cade). The lowest HD95%, of any network, were 3.495 ± 

Fig. 1 An overview of training workflow

Table 1 Detailed information of input images before training

2D 3D‑fullres 3D‑lowres

Median image 
size

512 × 512 63 × 512 × 512 63 × 354 × 354

Median target 
spacing

0.75 × 0.75 2.5 × 0.75 × 0.75 2.5 × 1.0838 × 1.0838

Patch size 512 × 512 28 × 256 × 256 40 × 224 × 224

Batch size 12 2 2

Table 2 Auto-segmentation network performance compared to 
manual segmentation (i.e., ground truth) on bladder, rectum, and 
HRCTV for each metric

Model DSC HD95% ASD

Bladder 2D 0.917 ± 0.054 4.381 ± 2.5 1.372 ± 1.073

3D-fullres 0.935 ± 0.05 3.495 ± 2.291 0.95 ± 0.56

3D-cascade 0.936 ± 0.051 3.503 ± 1.956 0.944 ± 0.503

Ensemble 0.935 ± 0.05 3.495 ± 2.291 0.95 ± 0.56

Rectum 2D 0.808 ± 0.106 9.97 ± 8.267 3.949 ± 4.178

3D-fullres 0.816 ± 0.098 8.137 ± 7.581 3.719 ± 3.084

3D-CASCADE 0.831 ± 0.074 7.579 ± 5.857 3.6 ± 3.485

Ensemble 0.831 ± 0.074 7.579 ± 5.857 3.6 ± 3.485

HRCTV 2D 0.763 ± 0.136 9.186 ± 5.347 2.718 ± 1.631

3D-fullres 0.806 ± 0.108 8.815 ± 6.485 2.46 ± 1.756

3D-cascade 0.836 ± 0.07 7.42 ± 5.023 2.094 ± 1.311

Ensemble 0.806 ± 0.108 8.815 ± 6.485 2.46 ± 1.756
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2.291 (bladder in 3D-Fullres), 7.579 ± 5.857 (rectum in 
3D-Cascade), and 7.42 ± 5.023 (HRCTV in 3D-Cascade). 
The lowest ASD, of any network, were 0.944 ± 0.503 
(bladder in 3D-Cascade), 3.6 ± 3.485 (rectum in 3D-Cas-
cade), and 2.094 ± 1.311 (HRCTV in 3D-Cascade). 
Ensemble has the same geometric results with 3D-Full-
res for bladder and HRCTV, as well as 3D-Cascade for 
rectum.

Network architecture comparison
Figure  2 shows a comparison of auto-segmentation 
performance for the 2D, 3D-Fullres, and 3D-Cascade. 
In general, 3D networks perform better than 2D for all 
evaluation metrics. The addition of low-resolution net-
work in 3D-Cascade has relatively improved perfor-
mance compared with 3D-Fullres, with slightly higher 
DSC, lower ASD, and HD 95%. The auto-segmentation 
results of each network architecture are shown in Fig. 3. 
All three networks have a good segmentation for OARs 
and HRCTV.

Qualitative evaluation
In general, qualitative evaluation of the segmentation 
performance revealed high accuracy for all the OARs and 
HRCTV in 2D, 3D-Fullres, and 3D-Cascade networks. 
Most of the data has achieved point 1, indicating that 
the predicted segmentation is visually flawless and clini-
cally acceptable. At least an average of 65% (HRCTV in 
2D network) of the evaluation data had no obvious seg-
mentation errors, achieving point 1 in this study. Errors 
of the second level (point 2), indicating minor segmen-
tation errors observed in several slices, were observed at 
the top slice in rectum (see Additional file 1: Fig. S1a, b). 
Compared with bladder and rectum, HRCTV segmen-
tations showed a marginally higher rate of minor errors 
(point 2). The third level (point 3, major segmentation 
errors observed in most slices) were noticed only in a few 
single cases in which abnormal anatomy (e.g., large air 
bubbles in the bladder) exists (see Additional file 1: Fig. 

S1c). Failed segmentation (point 4, the object was not 
segmented) only occurred in one case because the con-
trast-enhanced agent resided in the bladder (see Addi-
tional file 1: Fig. S1d). Overall, the bladder segmentation 
showed the best qualitative results compared with the 
rectum and HRCTV. Figure 4 demonstrates the qualita-
tive segmentation results. Good interobserver agreement 
was achieved on 2D (κ = 0.67), 3D-Fullres (κ = 0.69), and 
3D-Cascade (κ = 0.78).

Dosimetric evaluation
To evaluate the dosimetric accuracy, we compared the 
dose-volume parameters obtained from predicted con-
tours with manually delineated contours (Table  3). The 
prescription dose given to the patients were 6  Gy (15 
cases), 5.5 Gy (6 cases) and 5 Gy (9 cases). The average 
difference for △D90% in HRCTV is 0.46±1.2, 0.43±0.34, 
and 0.21±0.53 for the prescription dose of 6 Gy, 5.5 Gy, 
5  Gy, respectively. For OARs, the average difference in 
D2cc is smaller than 15%.

Statistical analysis results
Comparison of three network architectures’ auto-
contouring performance as evaluated by a DSC, HD, 
and ASD. In general, 3D networks showed significant 
improvements over the 2D network. Statistical differ-
ences were found in the bladder (2D and 3D-Fullres in 
DSC, 2D and 3D-Cascade in ASD) and HRCTV (2D and 
3D-Cascade in DSC). The detailed p-values are shown in 
Additional file 1: Table S2.

Analysis of variance after Bonferroni correction dem-
onstrated that the applicator type and the organ type 
were statistically significant factors affecting segmen-
tation results. DSC was statistically significantly bet-
ter in HRCTV segmentation for Vaginal Multi-Channel 
applicator and Ovoids applicator compared with T + N, 
T + O, and free needles (p < 0.05), and for the bladder 
compared with rectum and HRCTV (p < 0.05). Tumor 

Fig. 2 Comparison of the auto-contouring performance of three network architectures, as assessed with DSC, ASD, and HD95%. Significant 
differences between 2D, 3D-Fullres, and 3D-Cascade are marked with an asterisk *p < 0.05
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Fig. 3 Visualization of segmentation in axial, sagittal, and coronal views with manual contouring (solid line) and auto-segmentation (dashed line): 
rectum (purple), bladder (green), and HRCTV (orange). All three architectures have a god segmentation in cervical cases inserted with different 
applicators (a Needles+Tandem Applicator, b Ovoid Applicator, c Vaginal Multi-channel Applicator)

Fig. 4 Two radiation oncologists evaluated qualitative segmentation results. A stacked bar chart demonstrates the distribution of qualitative 
evaluation scores (Point 1–Point 4) of three network results. The qualitative results of first and second radiation oncologists are shown in dark and 
light, respectively. Most segmentations showed no error (Point 1). Single cases showed only minor (Point 2) errors. Only one case showed failed 
segmentation due to contrast enhanced agent in the bladder (Point 4)
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location had no statistically significant effect on the seg-
mentation results.

Discussion
Auto-segmentation is highly desired in brachytherapy 
treatment planning since patients can hardly hold on to 
one position for a long time. Moreover, minimizing the 
HRCTV and OARs contouring variability can improve 
plan quality consistency, thus allowing dose-escalation 
strategy in HRCTV. Currently, some commercial systems 
have been applied and evaluated in clinic to test their 
accuracy, which would greatly benefit the clinical work-
flow. Chen et al. reported a whole-body net (Deep Voxel. 
Inc.). They tested its accuracy and efficiency in delineat-
ing all major OARs in the entire body and achieved aver-
age DSCs of 0.84 and 0.81 [44]. Guo et al. conducted the 
dosimetric of OARs between their in-house and a learn-
ing-based commercial auto-segmentation system (United 
Imaging Healthcare) with manual contouring. They 
found no significant difference for most cases in PTV and 
OAR doses [45]. In this study, we employed nn U-net, a 
self-adapting ensemble method comparable to a com-
mercial system, for simultaneous multi-organ contouring 
in gynecological brachytherapy. Another key benefit of 
nnUnet is that it provides a standardized workflow with-
out laborious fine-tuning, making it simple to deploy and 
potentially widespread in the clinic.

The nnU-net method has three architectures followed 
by an ensemble method to select the best architecture 
for each task. The ensemble would automatically pick 
the best performing method (or ensemble of meth-
ods) as the final model for the test. In our study, the test 
results showed that nnUnet picked the best architec-
ture instead of the ensemble results after comparing the 
results between single architecture and ensemble results. 
In general, 3D architecture outperformed 2D slightly 
and reached competitive quantitative performance with 
DSC values well above 0.8. The performances of deep 
learning-based auto-contouring in gynecological cancer 
from other published papers are shown in Table 4. Two 

brachytherapy studies and two external-beam radiation 
therapy studies were included for reference. Compared 
with previous studies, our method has the highest per-
formance in bladder and rectum segmentation, concern-
ing a DSC of 0.936 ± 0.051 for bladder and 0.831 ± 0.074 
for the rectum. The DSC of automated HRCTV seg-
mentation (0.836 ± 0.07) was slightly inferior compared 
with the EBRT study [46] (0.86 ± 0.02) and Rhee’s BT 
study (0.86 ± 0.08) [47]. The complex shape can explain 
this and different applicators used in BT compared with 
EBRT cases and the large data set used in Rhee’s BT 
study. Overall, as far as directly comparable, the observed 
DSC value of automated segmentation in our study was 
competitive compared with similar previous research. 
The possible reason may be the larger training data set 
in this study (more than 200 training cases), which has 
more anatomical variability and applicator types than 
similar studies using a small dataset.

Generally, bladder has the best performance with an 
average DSC of 0.936 ± 0.051. The reason could be the 
significantly different CT values in the bladder compared 
with other organs in the pelvis. The architecture did not 
significantly differ between 2 and 3D in the bladder and 
rectum; the main reason for this could be the non-pro-
gressive change between different slices, especially in the 
upper part of the rectum and the lower part of the blad-
der. According to our ANOVA test, the factors affecting 
the segmentation accuracy include the applicator and 
organ types. HRCTV contouring has higher performance 
in the vaginal applicator and ovoid applicator. The pos-
sible reason could be fewer metal artifact in the vaginal 
and ovoid applicator. In addition, the segmentation accu-
racy did not significantly differ among different tumor 
locations.

Based on these results, we feel it possible to integrate 
these trained models in clinical workflow under staff 
supervision to solve the tricky problems in gynecologi-
cal brachytherapy. However, there are still some limita-
tions before implementation. Firstly, nnUnet is set to be 
trained and tested on an Ubuntu system, which may limit 

Table 3 Results of dosimetric parameters for bladder, rectum and HRCTV

All values are described in the form of mean ± standard deviation

*Rx is the prescription dose. The unit is Gy for  D90%,  D2cc,  D1cc,  D0.1cc, and  Dmax, and cc for  V100%,  V150%, and  V200%

HRCTV Bladder Rectum

Rx = 6 Rx = 5.5 Rx = 5 Rx = 6 Rx = 5.5 Rx = 5 Rx = 6 Rx = 5.5 Rx = 5

D90% 0.46 ± 1.2 0.43 ± 0.34 0.21 ± 0.53 D2cc 0.88 ± 0.67 0.82 ± 0.06 0.23 ± 0.13 D2cc 0.66 ± 0.64 0.59 ± 0.38 0.32 ± 0.25

V100% 3.28 ± 4.22 3.22 ± 2.37 9.37 ± 13.12 D1cc 0.97 ± 0.72 0.93 ± 0.08 0.21 ± 0.02 D1cc 0.72 ± 0.69 0.66 ± 0.48 0.37 ± 0.26

V150% 1.76 ± 2.42 1.81 ± 1.67 5.96 ± 10.25 D0.1cc 1.22 ± 0.98 1.06 ± 0.08 0.18 ± 0.19 D0.1cc 0.86 ± 0.96 0.52 ± 0.8 0.41 ± 0.23

V200% 0.99 ± 1.47 1.14 ± 0.98 3.85 ± 8.03 Dmax 1.31 ± 1.29 1.2 ± 0.3 0.1 ± 0.23 Dmax 0.95 ± 1.5 0.42 ± 1.06 0.29 ± 0.24
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the application, especially for those users unfamiliar with 
Linux. We are now writing some patches to make it also 
compatible with Windows operating system. Secondly, 
the training process is quite time-consuming and requires 
a large amount of GPU resources. Thirdly, no cross-vali-
dation strategy was used to test performance on the test-
ing data set  (the  aforementioned 5-fold validation was 
only used in training). This reduces the trustability of the 
performance measures, the robustness of the model and 
the reproducibility of the result. More clinical validation 
tests are appreciated to evaluate the model’s robustness 
in the future. In our study, we trained these models at an 
NVIDIA GeForce RTX 3060 GPU setting and we spent 
around 20 h for each fold in 2D and 65 h in 3D (see Addi-
tional file 1: Table S3). We plan to improve and simplify 
the training process in the future by reducing the num-
ber of training epochs or optimizing the network design 
to save time and improve training efficiency. Thirdly, 
the total time required for prediction for all OARs and 

HRCTV is relatively long, taking on an average of 2.7 min 
(2D), 14  min (3D-Fullres network), 17.5  min (3D-Cas-
cade network), and 14.8  min (Ensemble) at an NVIDIA 
GeForce RTX 3060 GPU setting (Table  5). 3D-Cascade 
has the longest prediction time because it contains two 
U-Nets, and the prediction time increases rapidly with 
network architecture complexity. Moreover, the ensem-
ble prediction time for bladder and HRCTV is similar 
with 3D-Fullres, and for rectum is similar to 3D-Cascade; 
the reason could be the ensemble empirically selected 
3D-Fullres/3D-Cascade as the training model for testing. 
Since the prediction time for 5 folds is relatively long, we 
also calculate the prediction time in a single fold (fold 0) 
and compare it with the prediction time of all five folds. 
Ensemble has no fold0 prediction time because the con-
tours in ensemble should be generated using all the five-
fold images aggregated by softmax. The prediction time 
for one single fold vastly decreased to one-fifth of the 
five folds. Using the well-trained one-fold model in the 

Table 4 Summary of deep learning-based auto-segmentation results in gynecological cancer from other groups

If multiple network architectures are reported in the literature, the best-performing result was selected. The highest performance results (3D-Cascade) in our study 
were used for comparison. DSD-UNET: 3D-UNET incorporating residual connection, dilated convolution, and deep supervision

Publication Data type Training cases Testing cases Method Organ DSC

Zhang et al. [48] BT 73 18 DSD-UNET Bladder 0.869 ± 0.032

Rectum 0.821 ± 0.05

HRCTV 0.829 ± 0.041

3D-UNET Bladder 0.802 ± 0.041

Rectum 0.771 ± 0.062

HRCTV 0.742 ± 0.062

Wang et al. [46] EBRT 100 25 3D-CNN Bladder 0.91 ± 0.06

Rectum 0.81 ± 0.04

HRCTV 0.86 ± 0.02

Liu et al. [49] EBRT 77 14 Improved UNET Bladder 0.924 ± 0.046

Rectum 0.791 ± 0.032

Rhee et al. [47] BT 2254 140 CNN Bladder 0.89 ± 0.09

Rectum 0.81 ± 0.09

HRCTV 0.86 ± 0.08

Our method BT 205 30 nnU-NET Bladder 0.936 ± 0.051

Rectum 0.831 ± 0.074

HRCTV 0.836 ± 0.07

Table 5 Time efficiency of different networks

Fold 0 is the first fold in each network

Time (s) 2D 2D/fold0 3D‑fullres 3D‑fullres/fold0 3D‑cascade 3D‑cascade/fold0 Ensemble

Bladder 53.5 13.4 130.2 30.9 149.5 40.2 130.6

Rectum 54.8 13.7 256.4 55.5 278.9 65.8 278.9

HRCTV 57.4 14.3 476.7 97.1 623.2 131.9 479.1

Total 165.7 41.4 863.3 183.5 1051.6 237.9 888.6
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clinic can improve the prediction efficiency. As shown in 
Table  6, the corresponding prediction accuracy of one-
fold is slightly worse than five folds. This requires clini-
cal users to make trade-offs between predicting accuracy 
and efficiency. Another possible solution could be using 
a more powerful graphic unit to increase the calculation 
speed. Further work related to architecture improvement 
or compression to accelerate the prediction speed is also 
a good research orientation.

In deep learning-based image segmentation area, lots 
of novel architectures are proposed in organ segmenta-
tion. However, fine-tuning of the hyper-parameters is 
tedious and time-consuming. Moreover, the generaliz-
ability and feasibility of clinical application needs further 
validation. In this study, we use nn U-net, a self-configur-
ing and fully automated framework with a robust training 
strategy for segmentation. It systematizes the complex 
process of manual configuration instead of propos-
ing a new network architecture, loss function or train-
ing scheme and achieved fairly good results [37]. In the 
future, we are going to extend the application of nn U-net 
to other medical image segmentation areas.

Conclusion
In this work, we have shown that it is feasible to use a 
standardized nnU-net method for OARs and HRCTV 
segmentation in gynecological cancer. In our cases, the 
results show that combining a low-resolution and high-
resolution U-net (3D-Cascade) has the highest accu-
racy in segmentation. With this 3D-Cascade network, 
high segmentation accuracy was obtained across differ-
ent applicators and patient anatomy. Such performance 
would be beneficial to the clinical workflow by reducing 
the interobserver variations, releasing radiation oncolo-
gists’ and physicists’ burden, reducing patients’ pain, and 

increasing the planning efficiency in gynecological cancer 
treatment to a large extent.
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