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Abstract 

Background: We developed a novel concept, equivalent uniform length (EUL), to describe the relationship between 
the generalized equivalent uniform dose (EUD) and the geometric anatomy around a tumor target. By correlating EUL 
with EUD, we established two EUD–EUL knowledge-based (EEKB) prediction models for the bladder and rectum that 
predict initial EUD values for generating quality treatment plans.

Methods: EUL metrics for the rectum and bladder were extracted and collected from the intensity-modulated 
radiotherapy therapy (IMRT) plans of 60 patients with cervical cancer. The two EEKB prediction models were built 
using linear regression to establish the relationships between  EULr and  EUDr (EUL and EUD of rectum) and  EULb, and 
 EUDb (EUL and EUD of bladder), respectively. The EE plans were optimized by incorporating the predicted initial EUD 
parameters for the rectum and bladder with the conventional pinnacle auto-planning (PAP) initial dose parameters 
for other organs. The efficiency of the predicted initial EUD values were then evaluated by comparing the consistency 
and quality of the EE plans, PAP plans (based on default PAP initial parameters), and manual plans (designed manually 
by different dosimetrists) for a sample of 20 patients.

Results: Linear regression analyses showed a significant correlation between EUL and EUD  (R2 = 0.79 and 0.69 for 
 EUDb and  EUDr, respectively). In a sample of 20 patients, the average bladder V40 and V50 derived from the EE plans 
were significantly lower (V40: 30.00 ± 5.76, V50: 14.36 ± 4.00) than the V40 and V50 values derived from manual plans 
(V40: 36.03 ± 8.02, V50: 19.02 ± 5.42). Compared with the PAP plans, the EE plans produced significantly lower average 
V30 and Dmean values for the bladder (V30: 50.55 ± 6.33, Dmean: 31.48 ± 1.97 Gy).

Conclusions: Our EEKB prediction models predicted reasonable initial EUD values for the rectum and bladder based 
on patient-specific geometric EUL values, thereby improving optimization and planning efficiency.
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Auto planning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Cervical cancer is the fourth most common cancer in 
women and results in over 300,000 deaths worldwide [1, 
2]. Advances in radiotherapy technology, such as inten-
sity-modulated radiotherapy (IMRT), have reduced treat-
ment-related toxicity for women with locally advanced 
tumors. To take full advantage of IMRT, high-quality 
treatment plans are required. In conventional inverse 
treatment planning, optimization is achieved through a 
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manual trial and error process [3–5]. This conventional 
planning process is not only very time-consuming but 
also dependent on the dosimetrist’s skill and experience, 
thereby subjecting clinical goals to a substantial amount 
of variation and inconsistency between dosimetrists and 
institutions [4, 6–9].

To overcome these limitations and improve planning 
efficiency, several semi-auto- or auto-planning strategies 
have been proposed in recent years [10–13]. The knowl-
edge-based planning (KBP) approach is one such solu-
tion [14–17]. This approach uses previous patients’ plans 
to create organ-at-risk (OAR) prediction models that 
can be used to improve OAR sparing for new patients. 
It has been successfully implemented using commercial 
software programs such as RapidPlan (Varian Medi-
cal Systems, Palo Alto, CA). Tol et al. [14] evaluated the 
performance of RapidPlan in creating plans for head and 
neck cancer using volumetric modulated arc therapy 
(VMAT). They demonstrated that the RapidPlan KBP 
model generated clinically acceptable treatment plans for 
patients whose geometric anatomy was within the range 
of the patients in the model library [14]. Furthermore, 
Chang et  al. [15] demonstrated that the RapidPlan KBP 
models can improve planning efficiency and create qual-
ity IMRT plans for nasopharyngeal cancer patients. The 
reliable performance of KBP models for breast, rectal, 
cervical and esophageal cancer auto-planning has also 
been demonstrated [18–22].

Pinnacle auto-planning (PAP) is another common 
replacement for conventional manual optimization 
processes. This auto-planning approach is based on a 
template optimization tool that mimics the iterative 
optimization process of an experienced dosimetrist. The 
efficiency of this auto-planning approach has been dem-
onstrated [17, 23]. Studies have evaluated auto-VMAT 
treatment planning and IMRT plans for head and neck 
cancers [17, 23]. However, current PAP approaches have 
three limitations that need to be overcome. First, in the 
first step of PAP, dosimetrists must use their experiences 
and skills to set all of the initialization parameters for 
both planning target volume (PTV) and OAR. Second, to 
generate clinically acceptable plans, it is necessary to cre-
ate additional assistant structures (ASs) to guide the opti-
mization process [23]. Last, but not least, an optimized 
model generated by PAP cannot take advantage of any 
existing knowledge that could be used to set the initial 
optimized parameter values or to optimize them. There-
fore, the efficiency of the PAP process and the consist-
ently high-quality of auto-plans cannot be guaranteed.

On the other hand, the conventional iterative optimi-
zation process, sets physical dose-volume constraints 
for all organs. As a variation, Niemierko et  al. [24] pro-
posed using an equivalent uniform dose (EUD) as an 

optimization parameter; this requires the conversion of 
a nonuniform partial dose distribution to an EUD dis-
tribution that can achieve the same cancer-killing effect. 
An extension, gEUD, calculates doses for normal tissues 
[25]. Compared with approaches that use conventional 
dose-volume constraints to optimize plans, using EUD 
to optimize objects can balance conflict-optimized con-
straints and achieve an optimal solution based on the 
optimization system for prostate cancer [26]. In addition, 
research has demonstrated that a better dose distribution 
could be produced by combining physical dose-volume 
constraints with EUD in the IMRT optimization proce-
dure [25, 27]. However, the optimized constraints under 
EUD generally need to be set manually, although it is 
possible to use the RapidPlan system to predict EUD val-
ues from pre-dose-volume-histogram-knowledge (pre-
DVH-knowledge). The performance and efficiency of this 
method have not been evaluated.

In this study, to overcome the limitation of manually 
setting initial optimization parameters and to maximize 
the advantages of using EUD in the optimization process, 
we developed a novel concept, the equivalent uniform 
length (EUL), which describes the relationship between 
the EUD and the geometric anatomy around a tumor 
target. By correlating EUL and EUD, we established two 
EUD-EUL-knowledge-based (EEKB) prediction models 
for the bladder and rectum; one can predict initial opti-
mization parameters and the other can predict EUD val-
ues. Furthermore, we tested and evaluated the feasibility 
and efficiency of a proposed ideal semi-auto-planning 
workflow that uses these two EE-knowledge-based mod-
els to replace conventional initialized dose optimized 
parameters with predicted initial EUD parameters for the 
bladder and rectum in the treatment planning of cervical 
cancer.

Methods
Patient selection
Sixty patients with cervical cancer who were treated with 
IMRT at our institution in 2017 were enrolled in this 
study of EEKB prediction models. These enrolled patients 
with high-quality IMRT plans were selected by experi-
enced dosimetrists and physicists purposely for guaran-
teeing the predicted accurate EUD values of models.

Planning methods
Patient simulation, contouring techniques, and pre-
scription doses were consistent across all of the patients 
enrolled in this study. The patients were immobilized in 
the prone position using a belly board and underwent 
a simulation computer tomography (CT) scan (Philips 
Brilliance Big Bore CT, 3  mm slice thickness, 120 kVp, 
200 mA, 60 cm field of view). The clinical target volume 
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(CTV) of each patient was manually contoured by an 
experienced physician, including the primary tumor area, 
uterus, and the pelvic and para-aortic lymph nodes. The 
corresponding PTV was created by expanding 0.5  cm 
symmetrically around the CTV. The OARs, including the 
bladder, rectum, and femoral heads, were manually con-
toured (Pinnacle version 9.10, Philips Radiation Oncol-
ogy Systems, Milpitas, CA).

All of the patients received IMRT at a dose of 59.4 Gy 
in 33 fractions. All of the original clinically approved 
IMRT plans were created using seven evenly distrib-
uted coplanar fields (each one was 51 degrees) using the 
direct machine parameter optimization (DMPO) algo-
rithm in the Pinnacle planning system. In addition, all of 
the plans were normalized to the mean dose of the PTV 
(the 95% isodose line was set to 59.4 Gy). The highest pri-
orities were given to the protocol criteria for the bladder 
and rectum that could be achieved without compromis-
ing PTV coverage (at least 95% of the PTV must receive 
59.4 Gy). The IMRT protocol criteria for the OARs were 
as follows: bladder V40 Gy (receive 40 Gy or more) < 40% 
and mean dose Dmean < 35  Gy; rectum V40 Gy < 40% 
and mean dose Dmean < 35  Gy; and femoral-head V40 
Gy < 5% and mean dose Dmean < 25 Gy. All of the original 
clinically approved IMRT plans were modified manually 
by experienced dosimetrist after primary plan optimiza-
tion based on PAP module.

All of the dose calculations were performed with the 
adaptive convolve algorithm with a calculation grid of 
4 mm.

Developing EUL–EUD knowledge‑based prediction models
Niemierko et  al. [24] defined EUD using the following 
equation:

where N  is the total pixel number of specific organs;  Di 
is the dose received by the ith pixel of a specific organ; 
and a is a specific parameter for describing the dose-
volume effect of the tumor or normal tissue. In Eq.  (1), 
when a = 1 , EUD represents the mean dose value. A 
larger a value is associated with a greater proportion of 
high dose in the EUD. When a is close to positive infin-
ity or negative infinity, the EUD can be regarded as the 
approximate maximum dose value or minimum dose 
value, respectively.

However, based on the characteristic and principle of 
the overlap volume histogram (OVH), we proposed a 
novel concept, EUL, as a type of pre-knowledge that can 
be used to establish an EE-knowledge-based prediction 
model:

(1)EUD = (
1

N

N

i=1

D
a

i )
1

a

where N  is the total pixel number of specific organs and 
Li is the shortest length from the PTV to the ith pixel 
of a specific organ. In other words, EUL could be seen 
as the shortest PTV expansion length that includes the 
ith  pixel. a is the same as in the normal tissue-specific 
parameter a in Eq. (1).

We established two EE knowledge-based predic-
tion models based on EULs (where a = 1 ) for the blad-
der ( EULa=1

b  ) and rectum ( EULa=1
r  ), which we used to 

predict EUD values (where a = 1 ) for these two organs 
( EUDa=1

b  , EUDa=1
r  ). The methodology for generating EE 

knowledge-based prediction models assumed a direct 
relationship between the EUL of a specific OAR and the 
corresponding EUD. The Pinnacle treatment planning 
system was used to calculate and extract the EULa=1

b  , 
EULa=1

r  , EUDa=1
b  , and EUDa=1

r  for 60 patients using 
a software program developed in-house with Pinna-
cle scripts. The EE knowledge-based prediction models 
for the bladder and rectum were generated using linear 
regression and Pearson correlation tests that examined 
the relationships between EULa=1

b  and EUDa=1
b  , and 

between EULa=1
r  and EUDa=1

r .

Evaluating the efficiency of the EE‑knowledge‑based 
prediction models and proposed workflow
Based on our two EEKB prediction models, we proposed 
an ideal auto-planning workflow that could efficiently 
generate clinically acceptable IMRT plans with high 
consistency (Fig.  1). This auto-planning workflow starts 
after CT acquisition and targets/OARs delineation. To 
evaluate the feasibility and efficiency of the two predic-
tion models and the proposed workflow, we used a sam-
ple of 20 randomly selected patients with cervical cancer 
undergoing IMRT at our institution as test patients to 
develop EEKB prediction models. These test patients 
were treated at our institution before 2017. Thus, their 
IMRT plans were designed manually based on Pinnacle 
Version 9.2 by experienced dosimetrists, no PAP primary 
optimization was included. The PTV and OARs of these 
test patients were contoured based on CT scans with 
criteria identical to those used in clinical practice and as 
described previous planning section.

We used the proposed workflow (Fig.  1) to gener-
ate EUL-EUD IMRT plans (EE plans) for all 20 test 
patients. As shown in Fig.  1, after the delineation of 
the targets and OARs, we created an in-house hybrid 
planning platform based on a Python software program 
with Pinnacle scripts. This hybrid planning platform 
was compatible with the PAP module and Pinnacle 
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treatment planning system. The first step was to auto-
matically generate six assistant structures (AS1–AS6). 
These ASs controlled the homogeneity of dose distribu-
tion around the PTV. Figure 2 shows the AS generation 
process. First, two beams, at 0◦ and 180◦ , were set to 
adapt the PTV shape to receive the prescription dose 
(Fig. 2A). Second, based on the distribution line of 40% 
of the prescription dose, one preliminary AS (pink line 
Fig.  2B) was created. Then, two ring organs were cre-
ated by expanding the PTV from 0.5 to 1.5 cm in steps 
of 0.5  cm. AS1 and AS2 were generated by extracting 
the overlap between the preliminary AS and the two 
ring organs. The third, fourth, and fifth ring organs 
were created by expanding the PTV from 1.5 to 4.5 cm 
in steps of 1  cm; AS3, AS4, and AS5 were defined as 
the overlap between the preliminary AS and the ring 
organs. In addition to the overlap region, AS4 included 
an additional part: the ring organ generated by expand-
ing the PTV from 3.5 to 4.5 cm, excluding the part that 
overlapped with the preliminary AS. Finally, AS6 was 
the preliminary AS after excluding AS1, AS2, AS3, AS4, 
AS5, and the PTV 0.5 cm expansion. Figure 2C, D illus-
trate the procedure and all of the ASs.

After the six ASs were generated, the machine selection 
and beam setting were modularized and added to the 
platform to simplify the planning procedure. This step 
provides the option of setting 7 or 9 evenly spaces beams. 
Together, they represent all of the available treatment 
machines in our institute.

The last step of this hybrid auto-planning platform was 
to optimize the plan using the PAP module and corre-
sponding default initial parameters. The initial param-
eters and planning objectives of the PAP module were 
as follows: direct machine parameter optimization, 
59.4 Gy in 33 fractions as the prescription dose, bladder 
mean dose 35 Gy (weight high), rectum mean dose 35 Gy 
(weight high), femoral heads mean dose 20  Gy (weight 
medium), AS1 max. dose 47  Gy (weight medium), AS2 
max. dose 45  Gy (weight medium), AS3 max. dose 
40  Gy (weight medium), AS4 max. dose 30  Gy (weight 
medium), AS4 max. dose 20  Gy (weight medium), and 
AS5 max. dose 10 Gy (weight high). The initial values of 
ASs optimized objects were proposed and set based on 
our clinical experience.

We used the extracted EULa=1
b  and EULa=1

r  of these 
test patients as inputs for the EEKB prediction models 
that were used to estimate the predicted EUDa=1

b  and 
EUDa=1

r  . Then, the conventional initial dose optimiza-
tion parameter of the bladder and rectum identified 
by the PAP module were replaced with EUDa=1

b  and 
EUDa=1

r  , respectively. Thus, the optimization procedure 
incorporated the predicted initial EUD parameters for 
the rectum and bladder and the conventional PAP ini-
tial dose parameters for the other organs. The optimi-
zation process stopped when it reached the maximum 
iterations within PAP. No extra manual modifications or 
improvements were made to the EE-plans after the PAP 
optimization.

Fig. 1 Workflow of EEKB semi-auto-planning
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We also generated PAP plans (with an optimization 
process based on the PAP default initial parameters) for 
all of the test patients. The optimization process was the 
same as for the EE plans but was based on PAP default 
initial parameters, which were the conventional dose 
parameters. In addition, all of the test patients’ clinically 
approved IMRT plans (manually designed by different 
dosimetrists) were included in our evaluation.

By comparing the consistency and quality of the man-
ual, PAP, and EE plans, we evaluated the efficiency and 
feasibility of the two proposed prediction models, the 
hybrid auto-planning platform, and the proposed work-
flow (Fig.  1). Plan consistency was calculated using a 
linear regression of all of the tested patients’ plans. Plan 
quality was evaluated using dose-volume criteria.

Statistical analysis
The relationships between EULa=1

r  and EUDa=1
r  , and 

between EULa=1
b  and EUDa=1

b  were measured using the 
Pearson correlation test and a linear regression, respec-
tively. A paired t-test was used to validate plan quality, 
and a p-value of p < 0.05 was considered statistically sig-
nificant. All of the statistical tests were two-tailed and 

performed using the Origin software (OriginLab Corpo-
ration, Northampton, US).

Results
Figure  3 shows the correlations between the EUL vari-
ables ( EUDa=1

b  , EUDa=1
r  ) and the corresponding EUL 

variables ( EULa=1
b  , EULa=1

r  ) determined by the linear 
regression. Each star represents the EUD and EUL vari-
ables of one patient. These correlations were determined 
as follows:

EUDa=1
b  and EUDa=1

r  were calculated by setting 
a = 1 in the models. These two functions, as defined in 
Eqs. (3) and (4), were the predicting lines for the EUDa=1

b

–EULa=1
b  and EUDa=1

r –EULa=1
r  knowledge based predic-

tion models, respectively.
Plan consistency was evaluated by comparing the 

EUDa=1
b –EULa=1

b  and EUDa=1
r  – EULa=1

r  values of the 

(3)EUDa=1
b = 45.37− 5.78 ∗ EULa=1

b

(
R2

= 0.79
)

(4)EUDa=1
r = 44.23− 5.38 ∗ EULa=1

r

(
R2

= 0.69
)
.

Fig. 2 Generating assistance structures. A Setup beams at 0◦ and 180◦ . B A preliminary AS was created at 40% of the prescription dose. C AS1 to 
AS6 were generated by expanding the PTV in incremental steps. D All of the ASs
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EE plans (based on the EEKB prediction model), manual 
plans, and PAP plans. Figure  4 shows the results of the 
comparison. The stars, rectangles, and circles in Fig.  4 
represent the EUD and EUL variables of the patients’ 
EE, manual, and PAP plans, respectively. EUDa=1

b  and 
EUDa=1

r  were calculated by setting a = 1 . The gray shad-
ing and dotted lines in Fig. 4A1 and A2 indicate the 95% 
prediction interval and the predicting line of the EUDa=1

b  
– EULa=1

b  and EUDa=1
r  – EULa=1

r  knowledge based pre-
diction models, respectively.

Figure 4A1, B1, and C1 compare the plan consistency of 
the EUDa=1

b  – EULa=1
b  in the EE, manual, and PAP plans, 

respectively. Linear regression was used to analyze the 
correlations and consistency between the variables with a 
95% prediction range (light shading) and 95% confidence 
interval (dark shading). The R2 of the EUDa=1

b  – EULa=1
b  

fitting lines of the EE, manual, and PAP plans were 0.96, 
-0.05, and 0.72, respectively. Similarly, Fig. 4A2, B2, and 
C2 compare the EUDa=1

r  – EULa=1
r  values of the EE, man-

ual, and PAP plans, respectively. The R2 of the EUDa=1
r  

– EULa=1
r  fitting lines of the EE, manual, and PAP plans 

were 0.86, −  0.02, and −  0.02, respectively. The plans 
based on the EEKB model had higher consistency than 
the manual or PAP plans, as shown by the high R2 and 
good fit of their EUDa=1

b  – EULa=1
b  and EUDa=1

r  – EULa=1
r  

values.
As shown in Table 1, EE plans produced a lower average 

V50 and V40 for the bladder ( mean± standarddeviation : 
14.36± 4.00 and30.00± 5.76 , pvalueswere < 0.01 
and0.02 , respectively) than the manual plans 
( mean± standardeviation : 19.02± 5.42 and36.03± 8.02 , 

pvalueswere0.01 and0.02 , respectively). Compared to the 
PAP plans, the Dmean and V30 in the EE plans were signif-
icantly lower ( p < 0.01 for both parameters). Specifically, 
the Dmeanmean± standarddeviation for the EE and PAP 
plans were 31.48± 1.97Gy and33.65± 2.27Gy , respec-
tively. The V 30mean± standarddeviation for the EE and 
PAP plans were 50.55± 6.33 and57.87± 6.43 , respec-
tively. For the rectum, the EE plans produced lower val-
ues for V30, V40, and Dmean ( mean± standarddeviation 
of V30, V40, and Dmean were 50.43± 9.44, 28.31± 6.91, 
and32.11± 2.21 , respectively) than the PAP plans 
( mean± standarddeviation of V30, V40, and Dmean were 
58.70± 7.62, 33.85± 6.06, and34.46± 1.68 , respectively; 
p values were< 0.01 , 0.03, and< 0.01 , respectively). 
The mean V40 and V50 produced by the EE plans were 
also significantly lower ( mean± standarddeviation 
of V40 and V50 were 28.31± 6.91 and10.94 ± 4.69 , 
respectively) than those produced by the manual plans 
( mean± standarddeviation of V40 and V50 were 
34.15± 7.02 and15.75± 5.79 , respectively; p values were 
0.02 and0.01 , respectively). In addition, although the 
prediction models only aimed to pre-set the EUD con-
straints of the bladder and rectum, the Dmean of the left 
femoral head was also significantly lower in the EE plans 
than in the manual plans.

Figure  5 compares the results of patients’ No.1 and 
No. 17. The dose distributions of the EE, PAP and man-
ual plans of patient No. 1 are shown in Fig. 5A1–A3 and 
B1–B3, and those of patient No. 17 are shown in 5D1–D3 
and E1–E3. The orange, green, and blue areas represent 
the rectum, PTV, and bladder, respectively. The yellow, 

Fig. 3 EUL–EUD knowledge-based prediction models for rectum and bladder. The EUL variables ( EUDa=1

b
 and EUDa=1

r  ) and the EUD variables 
( EULa=1

b
 and EULa=1

r  ) of 60 patients were extracted. Linear regression was used to analyze the correlation between the variables with a 95% 
prediction range (light red shading) and 95% confidence interval (dark red shading). A Showed the EEKB of bladder with a = 1 . B Showed the EEKB 
of rectum with a = 1
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green, blue, pink, cyan, and grey isodose lines repre-
sent prescription doses of 59.4  Gy, 50.00  Gy, 40.00  Gy, 
30.00  Gy, 20.00  Gy, and 15.00  Gy, respectively. For test 
patient No.1, as shown by the orange arrows in Fig. 5A1–
A3, there were higher received doses in the rectum in 
the low dose region (20.76 Gy) in the PAP plan and the 
manual plan than in the EE plan. However, as shown by 
the purple arrows in Fig. 5A1–A3 and B1–B3, there was 
a lower received dose in the normal tissue in the low dose 
region (15.00 Gy) under the PAP and manual plans than 
under the EE plan. In Fig. 5C1–C3, the solid, dashed, and 
doted lines represent the PTV (C1), bladder (C2) or rec-
tum (C3) DVH of the EE, PAP, and manual plans, respec-
tively. As Fig. 5C2 and C3 show, the bladder and rectum 
received the lowest dose in the EE plan while maintaining 
a similar PTV coverage.

Similarly, for test patient No. 17, as shown by the 
orange arrows in Fig. 5D1–D3, the PAP and manual plans 
had higher received doses in the rectum in the low dose 
region (20.00 Gy) than the EE plan. In contrast, the blue 
arrows in Fig.  5D1–D3 and E1–E3 represent the differ-
ent dose distribution for the bladder in the EE, PAP, and 
manual plan. The bladder received the lowest dose in the 
manual plan and the highest dose in the PAP plan. Fur-
thermore, the purple arrows in Fig. 5D1–D3 and E1–E3 
show that the 10.00 Gy isodose line covered less normal 
tissue in the manual plan than in the PAP and EE plans. 
The DVH of the PTV, bladder, and rectum are shown in 
Fig.  5F2 and F3. In Fig.  5F1–F3, the solid, dashed, and 
dotted lines represent the PTV (5F1), bladder (5F2), or 
rectum (5f3) DVH of the EE, PAP, and manual plans, 
respectively. In the manual plan, the bladder and rectum 
received lower doses in the lower dose region than in the 
EE plan. The rectum received a higher dose in the manual 
plan than in the EE plan.

Discussion
We developed a novel concept, EUL, which could link 
patient-specific geometric anatomy with EUD values. 
Furthermore, we built EEKB prediction models for the 
bladder and the rectum by correlating EUDa=1

b  – EULa=1
b  

and EUDa=1
r  – EULa=1

r  . Instead of adopting traditional 
dose-volume optimized parameters as initial optimized 
objects, we developed and evaluated an ideal workflow 
that used these two prediction models to estimate the 

initial optimization parameters for the two organs and 
to efficiently generate clinically acceptable treatment 
plans for patients with cervical cancer. This study pro-
vides valuable insights into the feasibility and dosimetric 
advantages of this semi-auto-planning workflow for iden-
tifying clinical dose constraints, and thereby improving 
the design efficiency and consistency of treatment plans.

Our EUL concept is based on the same principle as 
the OVH, which quantifies the geometric relationship 
between the PTV and surrounding OARs. Previous 
research has shown that using OVH data from a treated-
patient library can predict the possible DVH constraints 
for a new patient [28]. This is the fundamental principle 
used in constructing OVH prediction models by correlat-
ing OVH and DVH; those models can be used for auto-
mated treatment planning procedures [29–32]. However, 
these automated treatment planning procedures are 
based on dose-volume optimized objects. We expanded 
the application of these principles by building a predic-
tion model for setting the initial optimized objects, which 
we call EUD. Our results show that EUL is a more effi-
cient metric than OVH for building the link between 
EUD values and complicated geometric anatomy around 
the PTV target. By correlating the EUL and EUD of the 
bladder and rectum, our results suggest that EUL has 
promise for predicting relevant, patient-specific initial 
EUD values for these two organs, which could be used 
as optimized objects in plan optimization. Compared 
with manually setting the initial EUD value according 
to dosimetrists’ experience, the predicted EUD values 
output by our EE prediction models are personally cus-
tomized and optimized based on pre-knowledge of each 
patient’s tumor and surrounding normal tissue anatomy. 
The results also imply that setting EUD values as opti-
mized objects for some OARs and setting dose-volume 
constraints for the rest of the organs could be another 
planning strategy that generates competitive treatment 
plans. In general, our EE plans are better in sparing the 
radiation dose of the rectum (V40, V50) and bladder 
(V40, V50) than typical manual plans. However, in spe-
cific patient cases, such as patient No. 17, the rectum and 
bladder received higher doses in the low region in the 
EE plans than in the manual plan, because the two EEKB 
prediction models assume the EUD represents the mean 
dose of the OARs. During the optimization process, 

Fig. 4 The blue lines, light blue shading, and dark blue shading in A1, A2, B1, B2, C1, and C2 indicate the linear fitting lines, 95% prediction range, 
and 95% confidence intervals of the EUDa=1

b
− EUL

a=1

b
 and EUDa=1

r − EUL
a=1
r  of EE plans, respectively. The green lines, light green shading, and 

dark green shading in B1 and B2 indicate the linear fitting lines, 95% prediction range, and 95% confidence intervals of the EUDa=1

b
− EUL

a=1

b
 and 

EUD
a=1
r − EUL

a=1
r  of manual plans, respectively. The pink lines, light pink shading, and dark pink shading in C1 and C2 indicate the linear fitting lines, 

95% prediction range, and 95% confidence intervals of the EUDa=1

b
− EUL

a=1

b
 and EUDa=1

r − EUL
a=1
r  of PAP plans, respectively

(See figure on next page.)
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the predicted EUD values as optimized objects were 
designed to lower the whole DVH curve, not to optimize 
or control a local section of the dose region.

After developing and testing these two EEKB predic-
tion models, we built a hybrid platform and proposed a 
workflow to predict patient-specific initial EUDa=1

b  and 
EUDa=1

r  values based on corresponding EULs. This is 
one more tool that can be applied in radiation oncology 

to improve precision and further customize the setting of 
the initial optimized objects value. Our proposed work-
flow also addresses the urgent need for auto-planning in 
clinical practice that draws on accumulated clinical plan 
data, as the initial set of optimized objects depends on 
dosimetrists’ experience. In addition, our hybrid planning 
platform is based on Pinnacle scripts and Python codes 
that are compatible and available in the Solaris operating 

Table 1 Comparison of EE, PAP, and manual plans

Mean ( ±standarddeviation ) planning target volume (PTV) coverage in %; conformity index (CI) and homogeneity index (HI), organs at risk (OARs) in % and Gy with 
p-values for the sample test patients. Statistically significant differences are in red with an asterisk

Structures Parameters EE plans PAP plans Manual plans p
(EE vs. PAP)

p
(EE vs. M)

PTV V95 (%) 95.38 ± 0.92 96.04 ± 0.73 95.57 ± 1.41 0.13 0.83

HI 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 0.10 0.82

CI 0.74 ± 0.04 0.74 ± 0.04 0.73 ± 0.04 1.00 0.45

Bladder V20 (%) 72.55 ± 6.58 77.94 ± 8.14 71.55 ± 7.87 0.07 0.91

V30 (%) 50.55 ± 6.33 57.87 ± 6.43 53.04 ± 8.06  < 0.01* 0.50

V40 (%) 30.00 ± 5.76 35.10 ± 6.55 36.03 ± 8.02 0.06 0.02*

V50 (%) 14.36 ± 4.00 16.69 ± 4.51 19.02 ± 5.42 0.27  < 0.01*

V60 (%) 3.45 ± 1.90 3.96 ± 2.02 4.29 ± 1.92 0.69 0.36

Dmean (Gy) 31.48 ± 1.97 33.65 ± 2.27 32.84 ± 2.81  < 0.01*  < 0.18

Rectum V20 (%) 81.77 ± 9.24 88.40 ± 8.68 79.65 ± 9.75 0.07 0.75

V30 (%) 50.43 ± 9.44 58.70 ± 7.62 54.37 ± 7.78  < 0.01* 0.30

V40 (%) 28.31 ± 6.91 33.85 ± 6.06 34.15 ± 7.02 0.03* 0.02*

V50 (%) 10.94 ± 4.69 13.77 ± 5.01 15.75 ± 5.79 0.20 0.01*

V60 (%) 1.08 ± 0.98 1.54 ± 1.46 1.55 ± 1.27 0.49 0.47

Dmean (Gy) 32.11 ± 2.21 34.46 ± 1.68 33.34 ± 2.31  < 0.01* 0.16

Femoral head-L V20 (%) 43.49 ± 4.52 43.92 ± 4.42 47.38 ± 4.52 0.97 0.08

V30 (%) 15.23 ± 4.25 14.37 ± 3.86 15.51 ± 5.70 0.83 0.98

V40 (%) 2.28 ± 1.40 2.19 ± 1.71 2.97 ± 2.67 0.99 0.53

V50 (%) 0.10 ± 0.15 0.11 ± 0.21 0.20 ± 0.43 0.99 0.52

V60 (%) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 – –

Dmean (Gy) 20.12 ± 0.64 20.16 ± 0.69 21.08 ± 1.41 0.99  < 0.01*

Femoral head-R V20 (%) 41.49 ± 9.81 41.75 ± 9.79 45.31 ± 11.97 1.00 0.49

V30 (%) 14.00 ± 6.12 14.01 ± 6.38 14.12 ± 6.74 1.00 1.00

V40 (%) 2.42 ± 2.11 2.61 ± 2.41 3.01 ± 3.01 0.97 0.75

V50 (%) 0.16 ± 0.37 0.14 ± 0.35 0.14 ± 0.28 1.00 0.99

V60 (%) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 – –

Dmean (Gy) 19.81 ± 1.84 19.96 ± 1.58 20.72 ± 2.31 0.96 0.30

(See figure on next page.)
Fig. 5 Dose distribution and DVH comparison of patients No.1 and No.17. The orange, green, and blue areas are the rectum, PTV, and bladder, 
respectively. From A1 to B3, the yellow, green, blue, pink, cyan, and grey isodose lines represent prescription doses of 59.4 Gy, 50.00 Gy, 40.00 Gy, 
30.00 Gy, 20.00 Gy, and 15.00 Gy, respectively. The orange arrows in A1 to A3 and D1 to D3 represent increased doses to the rectum in the low dose 
region (20.00 Gy). The purple arrows in A1 to A3, B1 to B3, D1 to D3, and E1 to E3 indicate decreased doses to the normal tissue in the low dose 
region (15.00 Gy). In C1 to C3, the solid, dashed, and dotted lines represent the organ’s DVH of the EE, PAP, and manual plans, respectively. In D1 
to E3, the yellow, green, blue, pink, cyan, and grey isodose lines represent prescription doses of 59.4 Gy, 50.00 Gy, 40.00 Gy, 30.00 Gy, 20.00 Gy, and 
10.00 Gy, respectively. The blue arrows in D1 to D3 and E1 to E3 represent the different dose distributions in the bladder in the EE, PAP and manual 
plans. The purple arrows in D1 to D3 and E1 to E3 indicate the decreased dose to normal tissue in the low dose region (10.00 Gy). In F1 to F3, the 
solid, dashed, and dotted lines represent the organ’s DVH in the EE, PAP, and manual plans, respectively
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system. It would be possible to expand the application 
of this workflow to any institutions that have Pinnacle3 
workstations. Similarly, this flexible hybrid platform 
could be easily extended and modified for application in 
different cases such as the treatment of head-and-neck 
cancers or other planning techniques such as VMAT.

There are two considerable factors contribute to the 
major difference between EE plans and manual plans. 
First, the manual plans of tested patients were generated 
manually without any PAP optimization. However, the 
patients’ plans enrolled for building EEKB models were 
designed by incorporating PAP module. Therefore, the 
manual plans of tested patients totally depended on dosi-
metrist experiments, whereas the EE plans accounts for 
EEKB models. Secondly, in our proposed workflow, the 
application of ASs and setting corresponding optimized 
parameters aimed to control the dose fall-off pattern out 
of PTV and limit the dose received by bladder and rec-
tum in anterior and posterior direction. For these two 
purposes, we defined the ASs and initialized the opti-
mized parameters according to our clinical experiments. 
Therefore, compared with manual plans, the application 
of these ASs in optimized process contributed to sparing 
dose, thereby generating a better plan, such as EE plans.

Furthermore, even though the same ASs definition and 
corresponding optimized parameters setting were used 
in the optimization procedure of PAP plans, EE plans still 
keep better plans quality and consistency compared with 
PAP plans. Thus, the better plans quality and consistency 
of EE plans are not only because of the application of ASs 
in optimization but also comes of the accurate prediction 
of EEKB models.

This study has several limitations. First of all, as all 60 
patients involved in the model database were treated at 
our institution using the same criteria for PTV deline-
ation, plan evaluation, etc. There may be bias in the 
radiation treatment methods. Therefore, the two EEKB 
prediction models derived from these training data 
should be considered conservative. In addition, in the 
optimization process, only the rectum and bladder were 
optimized using the predicted initial EUD value, as we 
only built the EEKB prediction models for these two 
organs with a = 1 . Literally, this precited EUD value is 
equal to the mean dose value. Followed the same con-
cepts, we build another EEKB models of rectum and 
bladder with a = 0.5 and a = 2 , respectively (shown in 
supplementary files). It turned out that EUD and EUL 
kept a well linear relationship with different a values. 
In other words, it is feasible to use linear regression 
for correlating EUD and EUL with different a values, 

thereby predicting EUD values based on correspond-
ing EUL as we proposed. But there are two reasons for 
why we did not test and show the accuracy and perfor-
mance of these EEKB models ( a = 0.5 and a = 2 ). First 
one is the packaged software, Pinnacle, prohibited the 
users added customized optimized objects, such as 
gEUD, to PAP module. Thus, the feasibility of our pro-
posed workflow and strategy is tested and evaluated 
with EUD only when a = 1 . This is the main limitation 
of the present study. Plus, the EEKB prediction mod-
els were established with different a values ( a = 0.5 and 
a = 2 ) by using same 60 patients whose treatment plans 
were optimized by using mean dose ( EUDa=1 ) as opti-
mized objects in PAP modules. Thus, the R2 of these 
EEKB predicted modules ( a = 0.5 and a = 2 ) were 
reduced compared with the R2 of the EEKB predicted 
modules with a = 1 . It is proved that, for maintaining 
high predicted accuracy and well linear correlation, the 
establishment of EEKB predicted modules with differ-
ent a values are required IMRT plans optimized with 
objects in same a value as well. At last, the rest of the 
OARs were set and optimized using conventional dose-
volume optimized objects. Therefore, further improve-
ment and modification of this semi-auto-planning 
workflow are necessary to build more prediction mod-
els for all OARs with different values. This would make 
it possible to describe different biological dose-volume 
characteristics. This will ultimately result in more effi-
cient estimations of initial EUD values and better-qual-
ity plans.

Conclusions
In this study, we proposed a novel concept, EUL, for 
describing geometric anatomy. We built two EEKB pre-
diction models that predict the initial EUD values of the 
rectum and bladder as optimized objects for design-
ing clinically acceptable treatment plans for patients 
with cervical cancer. Our results provide valuable 
insights into the dosimetric advantages of our proposed 
semi-auto-planning workflow, which may improve the 
plans’ consistency and planning efficiency.
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Additional file 1: Fig. 6. EUL–EUD knowledge-based prediction 
models with different “a” values for rectum and bladder. The EUL vari-
ables ( EULa=0.5

b
,EUL

a=2

b
,EUL

a=0.5
r ,EUL

a=2
r  ) and the EUD variables 

( EUDa=0.5

b
,EUD

a=2

b
,EUD

a=0.5
r ,EUD

a=2
r  ) of 60 patients were extracted. 

Linear regression was used to analyze the correlation between the vari-
ables with a 95% prediction range (light red shading) and 95% confidence 
interval (dark red shading). A Showed the EEKB of bladder with a=0.5. B 
Showed the EEKB of rectum with a=0.5. C Showed the EEKB of bladder 
with a=2. D Showed the EEKB of rectum with a=2.
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