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Abstract 

Objectives:  This study investigated whether radiomic features can improve the prediction accuracy for tumor 
recurrence over clinicopathological features and if these features can be used to identify high-risk patients requiring 
adjuvant radiotherapy (ART) in WHO grade 2 meningiomas.

Methods:  Preoperative magnetic resonance imaging (MRI) of 155 grade 2 meningioma patients with a median 
follow-up of 63.8 months were included and allocated to training (n = 92) and test sets (n = 63). After radiomic feature 
extraction (n = 200), least absolute shrinkage and selection operator feature selection with logistic regression classifier 
was performed to develop two models: (1) a clinicopathological model and (2) a combined clinicopathological and 
radiomic model. The probability of recurrence using the combined model was analyzed to identify candidates for ART.

Results:  The combined clinicopathological and radiomics model exhibited superior performance for the prediction 
of recurrence compared with the clinicopathological model in the training set (area under the curve [AUC] 0.78 vs. 
0.67, P = 0.042), which was also validated in the test set (AUC 0.77 vs. 0.61, P = 0.192). In patients with a high prob‑
ability of recurrence by the combined model, the 5-year progression-free survival was significantly improved with ART 
(92% vs. 57%, P = 0.024), and the median time to recurrence was longer (54 vs. 17 months after surgery).

Conclusions:  Radiomics significantly contributes added value in predicting recurrence when integrated with the 
clinicopathological features in patients with grade 2 meningiomas. Furthermore, the combined model can be applied 
to identify high-risk patients who require ART.
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Introduction
Meningiomas are the most common primary intracranial 
neoplasms in adults, comprising 36.7% of all intracranial 
tumors [1]. Since the serial updates of the World Health 
Organization (WHO) grading classification, the propor-
tion of grade 2 meningiomas has gradually increased up 
to 15–20% [2]. However, despite recent WHO grading 
scheme, there are limitations in predicting the prognosis 
of grade 2 meningiomas [3]. Grade 2 meningiomas are 
known to have an unpredictable heterogeneous disease 
course; even after gross total resection (GTR), recurrence 
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can occur in a substantial number of patients  [4, 5], 
whereas some patients experience a long indolent clinical 
course without adjuvant treatment [6].

Currently, adjuvant radiotherapy (ART) is recom-
mended as a standard therapy for patients who undergo 
subtotal resection (STR) in grade 2 meningiomas  [7] 
based on evidence indicating improvement in local con-
trol and survival rates with ART [8–10]. However, there 
is a lack of consensus on whether ART reduces the risk of 
tumor recurrence after GTR of grade 2 meningiomas [3]. 
Thus, it is crucial to establish a model for predicting a 
patient’s individual outcome and to identify high-risk 
patients who could benefit from ART even after GTR 
of grade 2 meningiomas. Patients who are at a low risk 
for recurrence can be spared from ART and its potential 
risks. Furthermore, in a set of patients who have under-
gone STR, patient subsets with a higher risk of recur-
rence may undergo more intensified radiotherapy to 
improve their respective outcomes.

Radiomics is an advanced technique that extracts 
high-dimensional quantitative imaging features, such 
as intensity distributions, spatial relationships, textural 
heterogeneity, and shape descriptors  [11, 12]. Radiom-
ics aims to discover meaningful “hidden” information 
within radiological images that is visually inaccessible. 
Previous studies have demonstrated the use of radiomics 
in differential diagnosis and grade prediction for men-
ingiomas  [13–15]. Some studies have also shown that 
radiomics can predict tumor recurrence in patients with 
meningiomas  [16, 17]. We hypothesized that radiomics 
can enable risk stratification for tumor recurrence after 
surgery in patients with grade 2 meningiomas, which 
may guide patients toward ART.

Therefore, this study aimed to investigate whether radi-
omics features can be used to improve the prediction of 
tumor recurrence over clinicopathological features, and 
if radiomics can be used to identify high-risk patients 
who require ART in WHO grade 2 meningiomas.

Methods
Patient population
This study was approved by the institutional review board 
of the Yonsei University Health System (9-2021-0047). 
The institutional review board waived the requirement 
to obtain informed patient consent for this retrospec-
tive study. We retrospectively reviewed 199 patients 
with surgically confirmed WHO grade 2 meningiomas 
who underwent preoperative conventional magnetic 
resonance imaging (MRI) between February 2005 and 
November 2018. The exclusion criteria were as follows: 
(1) incomplete MRI sequences (n = 30), (2) suboptimal 
image quality (n = 6), (3) patients who received stereo-
tactic radiotherapy (n = 5), and (4) lack of Ki-67 labeling 

index (n = 3). Finally, a total of 155 patients were enrolled 
(Additional file 1: Fig. S1). The study population was ran-
domly divided into training and test sets with a ratio of 
6:4 (n = 92 and n = 63, respectively).

Preoperative MRI was performed using a 3.0-T MRI 
scanner (Achieva, Philips Medical Systems, Amsterdam, 
Netherlands) with an eight-channel sensitivity-encoding 
head coil. Detailed parameters of the MRI sequences are 
provided in Additional file 1: Supplementary Material S1.

Treatments
All patients underwent either GTR (n = 132) or STR 
(n = 23) surgery. The extent of resection was defined by 
comparing preoperative and postoperative MRI scans; 
GTR was defined by a lack of residual enhancing tumor 
in the image, and STR was defined by the patient having 
more than 50% of the tumor removed [18]. After surgical 
resection, a multidisciplinary team, consisting of neuro-
surgeons, radiation oncologists, neuropathologists, and 
neuroradiologists, decided whether to perform ART, 
which consisted of three-dimensional conformal radio-
therapy and intensity-modulated radiotherapy. A total of 
97 patients underwent ART; 80 patients received it after 
GTR (80/132, 60.6%), whereas 17 received it after STR 
(17/23, 73.9%). Among the patients who underwent ART, 
intensity-modulated radiotherapy was performed on 86 
patients (88.7%, median 60.0 Gy), and three-dimensional 
conformal radiotherapy was performed on 11 patients 
(11.3%, median 59.4 Gy).

Response assessment by a neuro‑oncology meningioma 
working group
The evaluation of the tumor response and progression 
was determined according to the Response Assessment 
in Neuro-Oncology (RANO) criteria  [19] by compar-
ing serial MRIs of each patient. A radiation oncologist 
and neuroradiologist (with 9 and 8  years of experience, 
respectively) performed the evaluation and the results 
were achieved by consensus. A detailed description of 
the RANO criteria and the definitions of each assessment 
criteria are presented in the Additional file  1: Supple-
mentary material S2 and Additional file 1: Table S1. The 
patients assessed as having a progressive disease in the 
follow-up periods were considered to have tumor recur-
rence. Patients assessed as having complete response, 
partial response, minor response, and stable disease were 
considered to be patients without tumor recurrence. The 
primary endpoint was tumor recurrence assessed by the 
RANO criteria during the follow-up period.

Image preprocessing and radiomic feature extraction
Preprocessing of the T2 and T1C images was per-
formed to standardize the data analysis across patients. 
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Before analysis, the N4 bias correction algorithm was 
applied  [20], and images were z-score normalized. 
Images were processed using an open-source software 
package (3D Slicer, version 4.11.0; available at: http://​
slicer.​org/). T1C images were coregistered to T2 images 
via affine transformation with normalized mutual infor-
mation as a cost function [21, 22]. The regions of inter-
est were drawn on every tumor section on the T1C 
images using threshold-based and edge-based algo-
rithms. Gross cystic, hemorrhagic, or necrotic areas 
of the tumors were included in the regions of interest 
(ROIs). The segmentations were transferred to the T2 
images. A neuroradiologist (8 years of experience) per-
formed segmentation which was confirmed by a second 
neuroradiologist (11 years of experience). Both neuro-
radiologists were blind to the corresponding clinical 
information.

Discretization using a fixed bin number of 32 was 
applied to extract the radiomic features  [23] from the 
ROIs using an open-source Python-based module (PyRa-
diomics, version 2.0)  [24], which adhered to the Image 
Biomarker Standardization Initiative [25]. Fourteen shape 
features, 18 first-order features, and 75  s-order features 
(24  Gy-level co-occurrence matrices, 16  Gy-level run 
length matrices, 16  Gy-level size zone matrices, 14  Gy-
level dependence matrices, and 5 neighborhood gray-
tone difference matrices) were extracted from the ROIs 
in the T1C and T2 images (Additional file  1: Table  S2), 

comprising a total of 200 radiomic features. A schematic 
of the data processing is shown in Fig. 1.

Model construction and comparison of diagnostic 
performance
The number of radiomic features was larger than the 
number of cases; therefore, the least absolute shrinkage 
and selection operator (LASSO) was applied to select the 
significant features, which optimized the feature space 
by removing both irrelevant and redundant features [18]. 
The base radiomics classifiers were constructed using 
logistic regression with tenfold cross validation. In 
addition, each model was trained using random over-
sampling examples (ROSE) to overcome any data imbal-
ance, and hyperparameters were Bayesian optimized. To 
evaluate whether radiomics improves the prediction of 
models, two models were trained as follows: (1) a clinico-
pathological model trained on clinical features, includ-
ing age, extent of resection, ART status, and Ki-67 index; 
and (2) a combined model trained on clinicopathological 
and radiomics features. For statistical analysis, the Ki-67 
index was dichotomized based on a cutoff value of 5% 
(≤ 5% vs. > 5%). Models were developed from the training 
set (n = 92) and validated on the test set (n = 63). The area 
under the receiver operating characteristic curve (AUC), 
accuracy, sensitivity, and specificity were obtained. The 
feature selection and machine learning process were per-
formed using Python 3 (Python Software Foundation, 

Fig. 1  Workflow of image preprocessing, radiomics feature extraction, and machine learning.

http://slicer.org/
http://slicer.org/


Page 4 of 12Park et al. Radiation Oncology          (2022) 17:147 

Wilmington, Delaware, USA) with the Scikit-Learn 
library module (version 0.21.2). The performances of 
the models were compared based on the AUC using 
DeLong’s method [26].

Model interpretability with SHapley Additive exPlanations
To interpret and analyze the radiomic features of the 
radiomics model, SHapley Additive exPlanations (SHAP), 
which is a game theoretic approach to explain the out-
put of a tree-based machine learning model (Additional 
file  1: Supplementary Material S3), was applied  [27]. 
SHAP measures the contribution of each feature of a 
model against the increase or decrease of the probability 
of a single output (i.e., the probability for tumor recur-
rence in our study) (Fig. 2).

Analysis of survival outcomes and stratification 
for candidates for ART​
After constructing the best combined model for pre-
dicting tumor recurrence, the probability value of each 
patient in the test set was analyzed to stratify candi-
dates for ART. Youden’s index was used for the optimal 
cut-off selection threshold, and a cut-off probability 

value of 0.3 was obtained in the training set. The iden-
tical threshold value was applied to the test set, and 
patients were divided into low- and high-risk groups. 
We retrospectively analyzed whether patients in low- 
and high-risk groups benefited from ART by comparing 
the progression-free survival (PFS). PFS was defined 
as the time from initial surgery to tumor recurrence, 
death, or the last follow-up. Kaplan–Meier curves were 
generated and a log-rank test was performed to test the 
difference of PFS between patients who did and did not 
receive ART for each risk subgroup.

Statistical analysis
The Student’s t-test, Mann–Whitney U-test, and Chi-
square test were performed to compare patient char-
acteristics between the responders and nonresponders 
from training and test sets. The Kaplan–Meier method 
was used to estimate survival rates, and the log-rank 
test was performed to compare survival between the 
two groups. A P-value < 0.05 was considered statisti-
cally significant. All statistical analyses were performed 
using statistical software R (version 4.0.1; R Foundation 
for Statistical Computing, Vienna, Austria) and SPSS 
(version 25.0; SPSS Inc., Chicago, IL).

Fig. 2  Comparison of median recurrence interval between patients with and without ART a in the entire cohort and b in high-risk patients of the 
test set (probability > 0.3, according to the combined clinicopathological and radiomics model). Kaplan–Meier curves of PFS c comparing patients 
with and without ART in the entire cohort and d comparing patient subgroups according to the utility of ART in high-risk patients. ART = adjuvant 
radiotherapy; PFS = progression-free survival. Data are presented as the median with a 95% confidence interval for each group
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Results
Patient characteristics
Among 155 patients (mean age 56.9 ± 14.3, 102 females 
and 53 males), 148 had atypical meningiomas, 6 had 
choroid meningioma, and 1 had clear cell meningi-
oma. In the training set, GTR was more frequently 
performed in patients without tumor recurrence com-
pared to those with tumor recurrence (87.5% vs. 58.3%, 
P = 0.011). No other clinicopathological features were 
different between patients with and without tumor 
recurrence. In the test set, GTR was more frequently 
performed in patients without tumor recurrence com-
pared to those with tumor recurrence (90.7% vs. 66.7%, 
P = 0.045). Patients with tumor recurrence were sig-
nificantly older (P = 0.020), showed a male predomi-
nance (P = 0.031), and had a higher Ki-67 labeling index 
(≥ 5%) (P = 0.018). ART was performed in 56 (60.9%) 
and 41 patients (65.1%) in the training and test sets, 
respectively. There were no significant differences 
between the training and test sets with respect to the 
clinical and pathologic variables. The clinicopathologi-
cal characteristics of the training and test sets are sum-
marized in Table 1.

Treatment outcomes and prognostic factors
With a median follow-up of 63.8  months (range, 6.6–
190.7 months), there were 21 patients with tumor recur-
rence (12 [13.0%] in the training set, and 9 [14.3%] in the 
test set). Fifteen events occurred within 24  months (7 
in the training set, and 8 in the test set, P = 0.292). The 
5-year PFS rate was 79.1% for the entire cohort, and 
79.9% and 78.9% for the training and test set, respectively 
(P = 0.529).

In the training set, tumor recurrences occurred more 
frequently in patients who underwent STR than in those 
who underwent GTR (33.3% vs. 9.1%, P = 0.011). The 
recurrence rate was higher in patients with a Ki-67 index 
value of 5% or more, although it was not statistically sig-
nificant (19.1% vs. 6.7%, P = 0.076). In the test set, the 
recurrence rate was higher in patients who underwent 
STR (37.5% vs. 10.9%, P = 0.045) and in patients with 
Ki-67 ≥ 5% (24.2% vs. 3.3%, P = 0.018).

Radiomics model construction of recurrences 
and comparison of diagnostic performance
In the clinicopathological model, the AUC, accuracy, sen-
sitivity, and specificity were 0.67 (95% confidence interval 
[CI] 0.60–0.74), 66.9%, 48.2%, and 85.3% in the training 

Table 1  Patient characteristics in the training and test sets

Data are expressed as the mean with standard deviation in parentheses, median with interquartile range in parentheses, or number with percentage in parentheses
a Calculated from Student’s-t test for continuous variables and Chi-square test for categorical variables to compare the patient characteristics between the responder 
and non-responders from each training and test set
b Calculated from Student’s-t test for continuous variables and Chi-square test for categorical variables for the comparison of training and test sets
c Data obtained from patients who underwent adjuvant radiotherapy following surgery

GTR: gross total resection; STR: subtotal resection; ART: adjuvant radiotherapy; RT: radiotherapy; 3D-CRT: three-dimensional conformal radiotherapy; IMRT: intensity 
modulated radiotherapy

Clinical variables Training set (n = 92) P-valuea Test set (n = 63) P-valuea P-valueb

Without tumor 
recurrence

With tumor 
recurrence

Without tumor 
recurrence

With tumor 
recurrence

(n = 80) (n = 12) (n = 54) (n = 9)

Age (years) 57.3 ± 14.6 54.4 ± 13.6 0.530 55.7 ± 14.1 67.7 ± 13.2 0.020 0.838

Female ratio 52 (65.0%) 9 (75.0%) 0.494 38 (70.4%) 3 (33.3%) 0.031 0.875

Extent of resection 0.011 0.045 0.535

 GTR​ 70 (87.5%) 7 (58.3%) 49 (90.7%) 6 (66.7%)

 STR 10 (12.5%) 5 (41.7%) 5 (9.3%) 3 (33.3%)

Ki-67 labeling index 6.03 ± 4.81 6.96 ± 2.73 0.515 5.9 ± 4.3 8.2 ± 3.1 0.131 0.874

  < 5% 32 (40.0%) 3 (25.0%) 0.076 29 (53.7%) 1 (11.1%) 0.018

  ≥ 5% 38 (47.5%) 9 (75.0%) 25 (46.3%) 8 (88.9%)

ART​ 0.659 0.517 0.595

 Performed 48 (60.0%) 8 (66.7%) 36 (66.7%) 5 (55.6%)

 Not performed 32 (40.0%) 4 (33.3%) 18 (33.3%) 4 (44.4%)

ART modalityc 0.851 0.061 0.813

 3D-CRT​ 5 (10.4%) 2 (25.0%) 2 (5.6%) 2 (40.0%)

 IMRT 43 (89.6%) 6 (75.0%) 34 (94.4%) 3 (60.0%)

ART dose (Gy)c 57.3 ± 4.0 57.2 ± 6.7 0.956 58.3 ± 3.9 58.7 ± 2.6 0.853 0.204
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set, respectively, and 0.61 (95% CI 0.44–0.78), 81.3%, 
33.3%, and 89.1%, respectively, in the test set.

In the combined clinicopathological and radiomics 
model, a total of seven features were selected: two clini-
cal features (extent of resection [GTR or STR] and Ki-67 
index [≥ 5% or < 5%]) and five radiomic features, which 
were all first-order features from T1C (10th percentile, 
90th percentile, entropy, mean absolute deviation, and 
minimum) (Additional file 1: Table S3). The AUC, accu-
racy, sensitivity, and specificity were 0.78 (95% CI 0.70–
0.85), 75.0%, 76.8%, and 73.1% in the training set, and 
0.77 (95% CI 0.60–0.94), 70.3%, 66.7%, and 70.9%, respec-
tively, in the test set.

In the training set, the combined model achieved supe-
rior performance compared with the clinicopathological 
model (AUC: 0.78 vs. 0.67, P = 0.042) (Fig. 3, Table 2). In 
the test set, the combined model trended toward better 
performance in the test set than in the clinicopathologi-
cal model (AUC: 0.77 vs. 0.61, P = 0.192) without sta-
tistical significance. The diagnostic performances of the 
two models in the training and test set are provided in 
Table 2.

Model interpretability with SHAP
The SHAP values for each selected feature in the com-
bined clinicopathological and radiomics model were 
calculated. The variance importance plot, summary 
plot, decision plot, and force plot of the test set are 
shown in Fig.  4. For each prediction, a positive SHAP 
value indicates an increase in the risk of tumor recur-
rence while a negative SHAP value indicates reduced 
risk. As observed in the plots, the extent of resection, 

90th percentile from T1C, and Ki-67 index are the 
three most important risk factors.

Selection of candidates for ART using the developed 
combined model
In the test set, there were 49 patients in the high-risk 
group and 14 patients in the low-risk group accord-
ing to the combined clinicopathological and radiomics 
model. The characteristics of patients in the high- and 
low-risk groups are summarized in Additional file  1: 
Table S4. Among all patients, those who received ART 
exhibited a significantly longer PFS (5-year PFS, 87.8% 
vs. 65.4%, P = 0.035) and delayed recurrence (median 
time to recurrence 45.3 vs. 18.4 months) (Fig. 2a, c). In 
the high-risk group, the PFS was significantly longer 
in patients who received ART (5-year PFS, 92.3% vs. 
56.8%, P = 0.024) (Fig.  2b), with significantly delayed 
recurrence (median 53.5 vs. 17.0  months). In the low-
risk group, there was no significant difference in the 
PFS (P = 0.264) or recurrence interval with respect to 
ART. Only one patient experienced tumor recurrence 
(39.9 months after surgery).

When the cohort of patients was divided into four 
groups according to ART status and recurrence prob-
ability, the PFS was observed to significantly improve 
after ART in patients with a high recurrence probability 
(median 8.7  year, 5-year 92.3%) (Fig.  2d). The signifi-
cant improvement in PFS was observed regardless of 
the extent of resection (GTR: 5-year 91.3% vs. 63.5%, 
P = 0.054; STR: 5-year 100.0% vs. 0.0%, P = 0.012).

Fig. 3  Receiver operating characteristic curves of the radiomics model in the a training and b test sets
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Discussion
In this study, radiomic features derived from preopera-
tive MRI were applied to predict tumor recurrence in 
grade 2 meningiomas. The model incorporating radi-
omic features with clinicopathologic features exhibited 
significantly a higher prediction accuracy for tumor 
recurrence. Several risk factors for tumor recurrence 
were identified using SHAP, and the contribution of 
each feature to the probability of tumor recurrence 
was determined. Further, radiomics enabled a subset 
of patients at a high risk for tumor recurrence to be 
identified, and we observed that the high-risk patients 
clearly benefitted from ART. Therefore, radiomics can 
serve as a potential imaging biomarker, as well as a use-
ful tool for selecting adequate candidates for ART in 
patients with meningiomas.

Although the majority of meningiomas are benign 
and slow growing, WHO grade 2 meningiomas are 
considered to have a high recurrence rate of 55% and 
low survival rates [28–30]. ART after the STR of grade 
2 meningiomas is widely practiced; however, the 
impact of ART on grade 2 meningiomas after a GTR 
remains contentious. Several researchers demonstrated 
improved local control and/or survival  [8–10, 30–33] 
with ART after GTR, but a subset exhibited contrary 
results after ART  [9, 34–36]. According to two multi-
institutional phase II studies (NRG Oncology RTOG 
0539  [32] and EORTC 22,042–26,042  [37]), which 
enrolled grade 2 meningioma patients who underwent 
GTR and ART, there is a potential survival benefit with 
a 3-year PFS of 89%–94%. However, those studies did 
not directly compare ART with upfront observation, 
and risk factors other than surgical resection were 
not addressed. Therefore, a uniform treatment para-
digm for resected grade 2 meningiomas has yet to be 
established.

Because there is a lack of standardized treatment 
for resected grade 2 meningiomas, performing nonin-
vasive risk stratification prior to adjuvant therapies is 
highly desirable. Even after surgical resection, patients 
at high-risk for tumor recurrence can be considered for 

intensified adjuvant therapies, and patients at low-risk 
for tumor recurrence can be spared from experienc-
ing the possible neurotoxicities of ART  [38]. Several 
previous studies investigated clinical prognostic fac-
tors for grade 2 meningiomas, which included age, sex, 
extent of resection, tumor invasiveness (i.e., brain or 
bone invasion), and higher MIB-1 labeling index  [39, 
40]. Similar to our study, the clinical significance of 
the Ki-67 labeling index on local control and survival 
in high-grade meningiomas has been widely reported. 
A higher Ki-67 labeling index seems to be related to 
invasiveness, which is closely correlated with an incom-
plete resection rate. Although there is some discrep-
ancy in the exact cutoff point, several studies have 
suggested the need for ART in patients with a higher 
Ki-67 [41, 42]. Pretreatment tumor size or volume was 
also reported as a significant predictor of prognosis [35, 
43–45]. However, in our study that analyzed various 
radiomic features including tumor size, it was not a sig-
nificant prognostic factor compared to other features.

Several studies attempted to identify the prognostic 
value of radiomics in patients with meningiomas [16, 17, 
46]. However, these previous studies combined grade 1–3 
meningiomas and do not provide specific information on 
the utility of the radiomics model for grade 2 meningi-
omas. Moreover, neither the combined clinicopathologi-
cal model nor radiomics model showed any improved 
performance in predicting prognosis compared with the 
clinicopathological model alone, limiting the real-world 
application of the radiomics model  [17, 46]. Decision-
making for the treatment of grade 2 meningioma patients 
depends on multilevel prognostic information and clin-
icopathological information, such as the extent of the 
tumor resection or Ki-67 index; therefore, we focused 
on the role of radiomics in predicting survival given the 
multilevel prognostic information. Our results show that 
radiomics significantly increases the model performance 
when added to a clinicopathological model, thus promot-
ing the integration of radiomics in clinical practice.

Radiomics models have limited explainability 
because they rely on complex machine learning algo-
rithms, resulting in low clinical utility [47]. SHAP can 

(See figure on next page.)
Fig. 4  Model interpretability of a combined clinicopathological and radiomics model for the prediction of tumor recurrence with SHAP in the 
training set. a Variance importance plot that lists the most significant variables in descending order. b Summary plot of feature impact on the 
decision of the model and interaction between the features in the model. A positive SHAP value indicates an increase in the probability of tumor 
recurrence. c Decision plot showing how the model predicts tumor recurrence. Starting at the bottom of the plot, the prediction line shows how 
the SHAP values accumulate from the base value to arrive at the model’s final score at the top of the plot and how each feature contributes to the 
overall prediction of tumor recurrence. d Force plot of a representative case of a patient with tumor recurrence. Red arrows represent feature effects 
that drive the prediction value higher, and blue arrows are those effects that drive the prediction value lower. Each arrow’s size represents the 
magnitude of the corresponding feature’s effect. Note that the extent of resection, 90th percentile from T1C, and Ki-67 labeling index largely push 
the model prediction score higher than the base value
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Fig. 4  (See legend on previous page.)
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uncover complex underlying patterns [27, 48] and has 
recently been utilized to interpret radiomics mod-
els  [49, 50]. This analysis identified two clinical fea-
tures—the extent of resection and the Ki-67 labeling 
index—and five radiomic first-order features from 
T1C that contributed the most towards the predic-
tion of tumor recurrence. The extent of resection and 
the Ki-67 index are well-known prognostic factors for 
tumor recurrence  [35, 51], which was also verified by 
our study. The 90th and 10th percentile values from 
T1C, which are the two most important radiomic fea-
tures, denote the intensity of contrast enhancement. 
Heterogeneous contrast enhancement or the presence 
of contrast enhancement of meningiomas  [17] has 
shown significant association with high-grade menin-
giomas or tumor invasiveness  [52, 53]; therefore, the 
meningioma grade may be indicated by the percentile-
related first-order features, which reflect the distribu-
tion of the contrast-enhancement degree.

Our study has several limitations. First, our study 
was based on a single-center, retrospectively col-
lected dataset. Further studies with a larger num-
ber of patients and external validations are required. 
Second, the histopathologic risk factors, such as the 
MIB-1 labeling index or mitoses index, were not evalu-
ated in our study because relevant information for the 
majority of patients were unavailable during the long 
study-inclusion period. To prove the predictive val-
ues of radiomics, it is highly desirable to incorporate 
detailed histopathologic features into the models in 
future studies. Third, the probability scores derived 
from the developed model for tumor recurrence were 
only calculated in the test set, not in the training set, 
because the training set was oversampled during the 
development of the model. Therefore, the benefit of 
ART was only evaluated in the test set, which inevita-
bly decreased the sample size. However, based on our 
study results, we at least found a benefit of ART in a 
subgroup of the test set, which was identified through 
the combined model. Future studies with larger sample 
sizes are required to identify the patients with grade 2 
meningiomas who might benefit from ART.

Our study is the first to show the possibility of radi-
omics playing an important role in selecting candidate 
patients with meningiomas for ART. Over a similar 
follow-up period (median 54 months in ART group vs. 
61 months in non-ART group, P = 0.584), we observed 
that ART prolongs PFS and significantly delays recur-
rence in high-risk patients. Our combined predictive 
model could be applied effectively and conveniently in 
both GTR and STR patients.

Conclusions
Multiparametric MRI radiomics has an added prognostic 
value for the prediction of tumor recurrence when inte-
grated with clinicopathologic profiles in patients with 
grade 2 meningiomas. With radiomics, we could identify 
a subset of patients at a high risk for tumor recurrence 
who might benefit from intensified treatment. Therefore, 
radiomics may be used as a potential imaging biomarker 
in patients with grade 2 meningiomas.
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