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Abstract 

Background: Robotic linac is ideally suited to deliver hypo-fractionated radiotherapy due to its compact head and 
flexible positioning. The non-coplanar treatment space improves the delivery versatility but the complexity also leads 
to prolonged optimization and treatment time.

Methods: In this study, we attempted to use the deep learning (pytorch) framework for the plan optimization of 
circular cone based robotic radiotherapy. The optimization problem was topologized into a simple feedforward neural 
network, thus the treatment plan optimization was transformed into network training. With this transformation, the 
pytorch toolkit with high-efficiency automatic differentiation (AD) for gradient calculation was used as the optimiza-
tion solver. To improve the treatment efficiency, plans with fewer nodes and beams were sought. The least absolute 
shrinkage and selection operator (lasso) and the group lasso were employed to address the “sparsity” issue.

Results: The AD-S (AD sparse) approach was validated on 6 brain and 6 liver cancer cases and the results were 
compared with the commercial MultiPlan (MLP) system. It was found that the AD-S plans achieved rapid dose fall-off 
and satisfactory sparing of organs at risk (OARs). Treatment efficiency was improved by the reduction in the number 
of nodes (28%) and beams (18%), and monitor unit (MU, 24%), respectively. The computational time was shortened to 
47.3 s on average.

Conclusions: In summary, this first attempt of applying deep learning framework to the robotic radiotherapy plan 
optimization is promising and has the potential to be used clinically.
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Introduction
Robotic radiotherapy (CyberKnife, Accuray Inc., Sunny-
vale, CA) enlarges treatment space and improves delivery 
versatility upon the standard linear accelerator, making it 
ideal for the delivery of stereotactic radiosurgery (SRS) 
[1, 2] and stereotactic body radiotherapy (SBRT) [3, 4]. 
The compact linac head is mounted on a highly accurate 
and reliable robotic arm. The robotic arm travels along 
the path connecting a set of pre-programmed discrete 
points (referred as node) distributed non-coplanarly. 
By orientating the linac head at these nodes, any beam 
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pointing to the target could be delivered. The original 
collimator system included 12 diameter fixed circular 
cones, which was later upgraded to the variable aper-
ture IRIS collimator [5]. Recently the vendor introduced 
multi-leaf collimator (MLC) to the system. Although the 
MLC increased the flexibility for field size and improved 
the treatment efficiency for irregular shaped targets, the 
circular cones are still in use widely due to its highly 
conformal dose distribution [6]. Furthermore, the MLC 
system has not yet been widely adopted, with only about 
20% systems installed globally at the current time accord-
ing to the vendor. Therefore, any improvement in the cir-
cular cone based plan optimization will have a big impact 
in the clinical operation of these systems, which is the 
aim of this study.

The non-coplanar treatment space improves the deliv-
ery versatility but also leads to prolonged treatment time. 
A typical treatment plan may use up to 100 beams/nodes 
and 2–3 size cones to get a conformal dose distribution, 
and the treatment time may take 30 min to 1 h, depend-
ing on the tumor sites [7]. The most effective approach to 
shorten treatment time is to use fewer beams, nodes and 
cones in the plan. This is because the beam positioning 
(including the switch of cones, the reorientation within 
each node and the robotic movement between the nodes) 
time, rather than the beam-on time takes the major part 
of the treatment duration. The need to improve the treat-
ment efficiency means to reduce the number of beams 
and nodes without jeopardizing the quality of plan. Pre-
viously, we presented a singular value decomposition 
accelerated linear programming (SVDLP) optimization 
method [8]. This method used the least absolute shrink-
age and selection operator (lasso) [9] for beam reduc-
tion. The number of nodes may also be reduced with the 
decrease of beams, but the issue was not fully addressed, 
at least not directly. Naturally, the beams delivered at 
the same node belong to the same “group”. The aim is 
to search for a sparse solution, for both the individ-
ual (beam) and group (node) aspects. In this study, we 
adopted both the lasso and the group lasso [10] regulari-
zation terms to address the “sparsity” issue.

Gradient based optimization approaches methods 
were commonly used for planning optimization [11, 12]. 
The computation of derivatives is often the most time-
consuming step. Based on the chain rule of differential 
calculus, automatic differentiation (AD) replaces the 
domain of variables with the computation graph, and 
had been used for intensity-modulated radiation therapy 
(IMRT) planning optimization [13] as early as 2006. But 
back then, the limited packages and supported program-
ming language hindered the application [14]. Recently 
AD received increasing attention with the emergence of 
deep learning (DL), as it had been used for the training of 

large-scale network. The recent development of DL also 
provided several well-established framework such as ten-
sorflow [15], caffe [16] and pytorch [17], which saved the 
trouble of “reinventing the wheel” for regular investiga-
tors. In this study, we adopted pytorch framework for the 
circular cone based planning optimization, and explained 
how to use the well-validated DL framework for inverse 
planning.

The presented optimization approach used AD to com-
pute derivatives, and the lasso and the group lasso to 
address the “sparsity” issue. Therefore it is later referred 
as AD-S approach for simplicity. Twelve (12) clinical 
cases of different complexities (brain and liver) were used 
to validate the AD-S approach. Currently, the commercial 
treatment planning system (TPS, MultiPlan) implements 
a sequential optimizer (SO) [18, 19]. In November 2018, 
the vendor released a new TPS (Precision v2.0), and 
upgraded the optimizer to VOLO. VOLO implemented 
graphical processing unit (GPU)-based dose calcula-
tion, replaced the sequential optimization with a single 
cost function integrating all clinical goals (widely used in 
the field of IMRT/VMAT optimization), and pruned the 
beams with lower monitor unit (MU) during optimiza-
tion. As far as the authors know no centers or institutions 
in China has the Precision 2.0 installed currently. There-
fore a direct comparison with Precision is not possible, 
and indirect comparison based on published data were 
performed and discussed.

Methods and materials
In this section, the AD-S approach and optimization 
experiments were presented. First the procedure of beam 
initialization was introduced briefly. Then the optimi-
zation model and the lasso and group lasso regulation 
terms were described in details. The topology and trans-
formation of the optimization model was presented in 
the following sub-section. Finally the patient data imple-
mentation details were described.

Beam initialization
Generally, two methods are used for beam initializa-
tion. The first one is to start with a sub-set of randomly 
initialized candidate beams, then eliminate the beams 
with lower weights and add new candidate beams after 
each iteration of the optimization. The SO of Multiplan 
system used this “drop-and-pick” mechanism. Due to 
the intrinsic heuristic nature, it is inefficient to cover 
the complete treatment space. The other method is 
to initialize candidate beams to cover the entire beam 
space, and use all initialized beams for optimization 
simultaneously. This method takes full advantage of the 
treatment space but also means greater computational 
cost. The second scenario was adopted in our previous 
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work [8] with a novel technique for beam initialization. 
The mechanism simulates the process of moving the 
equivalent dose taper to cover the entire target volume. 
The candidate beams were initialized with the center 
at the edge of adjacent beams. Both dosimetric analy-
sis and patient data-based experiments proved that the 
mechanism could thoroughly cover the beam space 
without introducing redundancy. The same mechanism 
was adopted in this study.

Optimization model
With the initialized candidate beams, the dose of each 
voxel (Di) is expressed as:

m and n is the number of voxels and candidate beams, 
respectively. dij is the dose delivered to ith voxel by the 
jth beam, wj is the weight of the jth beam. W is the weight 
vector. For each optimization objective, the cost function 
is of the general format:

N is the number of voxels of certain region of inter-
est (ROI), g is the condition function varying with the 
objectives. D0

i  is the prescription dose for planning 
target volume (PTV) or the tolerance dose for organs 
at risk (OARs). Table 1 lists the condition functions of 
some typical objectives.

The total objective function is the summation of all 
objectives and the lasso and group lasso regularization 
terms:

(1)Di =

n
∑

j=1

dijwj , i ∈ {1, 2, . . . ,m}, wj ≥ 0

(2)W = (w1,w2, . . . ,wn)
T

(3)f =
1

N

∑

i

(Di − D0
i )

2 × g(Di,D
0
i )

where α and λ are the weight of objective function and 
regularization terms, respectively. |  | and ‖ ‖2 represents 
the operation of L1 and L2 norm, respectively. Wl is the 
weight vector composed by the weights of beams belong-
ing to the lth node.

Topologizing optimization model and training practice
The total dose (Di, i ∈ (1,2,…, m)) of each ROI voxel is 
contributed by all beams (dij, j ∈ (1,2,…,n)), which is cal-
culated as the weighted (wj) linear combination of dij 
(Eq. 1). This operation can be topologized into a simple 
feed-forward neural network, as shown in Fig.  1. This 
network is of the simplest architecture: it contains no 
hidden layers, and only the basic input and output layers. 
The neuron weight represents the beam weight. In this 
way, the optimization of beam weight is transformed into 
the tuning of neuron weight, i.e. the treatment planning 
optimization is converted into “network training”.

As listed in Table  2, the “training” is different from 
typical DL network: (1) For typical DL, the network 
was trained and tested on training and testing datasets, 
respectively. For treatment planning, the network was 
trained for each single patient. Once the training was 
completed, the optimization was also finished. No test-
ing process was required. (2) For DL network training, 
only a small subset of training dataset was used (mini-
batch strategy) for each iteration. But for treatment 
planning network, the dose delivered to all voxels by all 
beamlets (dij, i ∈ {1, 2, …, m}, j ∈ {1, 2, …, n}) were feed 

(4)F = αk

∑

k

fk + �1|W | + �2

∑

l

�Wl�2

(5)|W | =
∑

j

∣

∣wj

∣

∣, �Wl�2 =

√

∑

j∈l

w2
j

Table 1 Condition functions of typical objectives

H is the Heaviside function. For dose volume (DV) objectives, head and tail refer 
to the voxels at the top and end position sorted by dose in descending order

Objectives g

Max dose H(Di − D
0
i
)

Min dose H(D0 − D
0
i
)

Uniform dose 1

Max DV
{

H(Di − D
0
i
) head

0 others

Min DV
{

H(D0
i
− Di) tail

0 others

w1

w2

wn-1

wn

⁞

di1

di2

din-1

dij

Di

Fig. 1 Network of dose calculation (Eq. 1)
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into the network to calculate the loss function for each 
iteration. (3) For DL, the desired results were the whole 
network. In other words, the goal was to obtain correct 
results via the network; the exact weight of each neu-
ron was not the concern. But for this work, the weight 
of each neuron was the weight of corresponding beam, 
which were the desired results.

With this transformation, the well-established 
framework for DL could be tapped to solve the treat-
ment plan optimization problem. The regularization 
terms are designed to filter out the beams of very lim-
ited contribution to the plan. In practice, it was found 
that the weights of these beams were reduced to a very 
small value but not exactly zero. In order to reduce the 
computational cost, these beams are removed during 
optimization, i.e. the network is dynamically adjusted 
by trimming the neurons with marginal weights. The 
threshold of trimming beam weight was set to 0.01 MU. 
In addition, an early stopping criterion was adopted: 
the iteration is terminated when the number of beams 
does not decrease within certain consecutive iterations. 
The number of consecutive iterations is set to 10.

Materials: patient data and machine parameters
The Cyberknife system provides two sets of pre-defined 
nodes for head and body treatment. The treatment posi-
tion determined which set of nodes to use. The AD-S 
approach was validated on two types of cases: 6 brain 
and 6 liver cancer cases. For the brain cases: patient 1 was 
lymphoma case, patient 3 and 5 were glioma cases with 
large PTV, and the rest were metastases. For each case, 
the AD-S plan used the same set of nodes as MLP plan. 
Table 3 listed the patient data, including the prescription 
dose (DP), fraction dose, number of fractions, volume of 
PTV  (VPTV), number of voxels of all ROIs, the sizes of 
used cones, the number of available nodes and initial-
ized beams. Because the computational time of AD-S 
approach is directly related to the planning parameters, 
it was also listed. The spacing of optimization dose grid 
was 2 mm × 2 mm × 2 mm, and the ROI was sampled to 
2  mm, correspondingly. The MLP plans were designed 
and approved by experienced physicists and physicians. 
The AD-S plans were optimized using MLP plans as ref-
erence. The optimization terminated if the obtained plans 
were no inferior to MLP plans. The size of cones were 
selected by experienced planner according to the size and 

Table 2 Comparison of the training of treatment planning and typical DL networks

Typical DL Treatment planning

Train and test process Train and test on different datasets, separately Train (optimize) for each 
patient without testing 
process

Input data of training iteration Mini-batch of training dataset All data of one patient

Desired results Network Neuron weight

Table 3 Summary of patient data

The time column lists the time of candidate beam initialization (Ini.), dose calculation (Cal.), optimization (Opt.) and the total time

Dp (cGy) Fraction 
dose (cGy)

Fraction VPTV (cc) No. of voxels Cone (mm) No. of nodes No. of beams Time (S)

Ini Cal Opt Total

Brain 2000 500 4 6.9 21,901 7.5/10 121 7091 2.3 10.6 57.4 70.3

2000 500 4 17.6 17,418 12.5/25 71 2417 2.5 3.7 17.7 23.9

2000 400 5 47.3 28,104 12.5/20 121 7907 2.7 12.5 69.6 84.8

2000 500 4 25.9 18,923 12.5/35 79 3676 1.9 4.4 36.9 43.3

3000 500 6 53.6 27,699 25/35 87 1281 0.3 2.0 18.8 21.1

3000 600 5 14.8 19,109 12.5/25 122 3173 2.9 4.7 36.9 44.5

Liver 5000 500 10 50.3 40,332 20/30 80 1807 6.9 3.5 28.4 38.8

5000 500 10 15.9 38,992 15/25 78 1408 2.0 2.5 24.7 29.1

5500 550 10 38.6 32,250 20/25 80 1893 5.4 3.2 23.5 32.1

5000 500 10 18.7 43,506 15/25 79 1591 2.5 2.8 29.0 34.3

5000 500 10 125.6 52,144 20/30 94 4093 3.3 7.5 81.5 92.4

5000 500 10 168.4 56,215 30/40 80 1764 3.4 3.8 45.4 52.5
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shape of PTV. The AD-S approach used the same set of 
cones with the MLP plans.

The beam initialization was implemented in C++, and 
dose was calculated using ray-tracing method on GPU. 
Plans evaluation was performed on an in-house plat-
form, which was developed and validated in our previ-
ous study [8, 20]. The MLP plans were also imported 
to the platform, and all the following mentioned plan 
evaluation indices were calculated under the same reso-
lution (2  mm × 2  mm × 2  mm) with AD-S plans. Please 
note: since the resolution was different, it may result in 
slightly changes in these indices. The optimization was 
implemented with pytorch (v0.4.0, Paszke et al. [17]). The 
critical codes could be found in the suppelmental mate-
rial. The example of using pytorch for treatment planning 
optimization was illustrated with a simple case in Addi-
tional file 1. Among the available optimizers in pytorch, 
it was found that the L-BFGS is the fastest algorithm with 
satisfactory robustness. Therefore the L-BFGS optimizer 
was selected in this study. Note that: because the L-BFGS 
includes certain logical operations and the network is 
simple and shallow, it executes faster on CPU than on 
GPU. So the optimization was performed on CPU in 
this study. All computations were performed on a desk-
top computer with Intel Xeon E5-2620 processor and 
NVIDA GeForce GTX 1080ti GPU.

Results
In this section, the detailed result of one sample liver 
case, including the objective value and the numbers of 
nodes and beams during optimization, was first pre-
sented. And then the evaluation and comparison of the 
treatment plans generated by the AD-S approach (later 
referred as AD-S plans) and MLP system (later referred 
as MLP plans) on the cohort of patients were presented.

Liver case
Figure 2 showed the objective value (F in Eq. 4) and the 
numbers of nodes and beams as functions of iterations 
of the first liver case. The objective dropped dramati-
cally at the first iteration, but much slower for the subse-
quent iterations. The number of beams decreased rapidly 
at the first several iterations, and continued to decrease, 
and remained the same for the last 10 iterations due to 
the early stop strategy. The number of nodes decreased 
gradually through the whole optimization. The beam and 
node reduction does not increase the objective value, 
indicating the number of beams and nodes was reduced 
without jeopardizing the plan quality.

Evaluation and comparison
Table  4 compares the evaluation indices between AD-S 
and MLP plans. For the brain cases, the AD-S plans 

reduced the number of nodes, beams and MU by 26%, 
17.5% and 26% on average. For liver cases, these indices 
were reduced by 29%, 18% and 22.2%. And for all cases, 
the reduce ratio was 27%, 18% and 24%. The conformity 
index (CI) is defined as the ratio of the volume covered 
by Dp over the volume of PTV  (VPTV). For the brain, liver 
and all cases, CI was improved by 18%, 19% and 19%. 
The homogeneity index (HI) is defined as the ratio of the 
maximum dose (Dmax) within PTV over Dp. On average, 
the HI of AD-S plans for brain cases was slightly lower 
than MLP plans but slightly higher for liver cases. Paired 
t-test was performed on the indices of all AD-S plans 
against MLP plans. The results indicated that the reduc-
tion on the number of nodes and beams, MU and CI was 
significant. The change of HI was not significant. We 
would like to point out that: only a soft constraint was 
imposed on Dmax, and no certain height (like 150% of Dp) 
was compulsory for either MLP or AD-S plans. We only 
limited the maximum dose of PTV at 110% of prescrip-
tion dose with a relative low weight. The average compu-
tational time of AD-S approach was 39.6 s (23.0–56.1 s) 
for brain cases, 38.8  s (20.8–56.7  s) for liver cases and 
39.2 s (27.5–56.7 s) for all cases.

Figure  3 showed dose gradient comparison of AD-S 
and MLP plans. For each case, the volume covered by 
50–100% of DP  (V50–V100) was normalized to corre-
sponding  VPTV. As shown in Fig. 3, the AD-S curve was 
under the MLP curve for each type of case, indicating 
that the AD-S plans achieved higher/better dose gradient 
around PTV, i.e., more rapid dose fall-off.

Tables  5 and 6 listed the maximum and average dose 
of the OARs of the brain and liver cases, respectively. 
Table 5 also listed the  V5,  V10 and  V20 of the liver organ. 
The dose of AD-S plan greater (worse) than the MLP 
plan was denoted in bold. For the brain cases, the dose of 

Fig. 2 Optimization results of the first liver case. The vertical axis 
shows the loss value and the number of nodes in black on the left 
side, and the number of beams in blue on the right side. The lines 
were plotted in corresponding color. The final loss value, number of 
nodes and beams were also annotated in the legends
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AD-S plans was greater for 8 out of 60 items. Out of the 
8 items, 5 had deviations less than 30 cGy, and the maxi-
mum deviation was 166 cGy. For the liver cases, the dose 
of AD-S plans was greater for 14 out of 96 items. Out of 
the 14 items, 11 had deviations less than 70 cGy, and the 
maximum deviation was 191.9 cGy. These demonstrated 
that the AD-S plans had better overall OAR sparing.

Figures  4 and 5 showed the dose volume histograms 
(DVHs) and the dose distribution of the first brain and 

liver cases, respectively. For the brain case, the minimum 
dose with PTV of MLP plan was significantly lower, cor-
responding with the “round-ended” the DVH curve. This 
may be caused by the node or beam reduction proce-
dure of MLP, which was to remove the nodes or beams 
with lower weight after weight optimization. For the 
ADS approach, the beam and node reduction was imple-
mented during optimization, which would not jeopardize 
the plan quality. As shown in Fig. 4, the dose of the rings 

Fig. 3 Dose gradient comparison. The horizontal axis is the relative dose normalized to Dp, and the vertical axis is the volume covered by 
corresponding dose normalized to  VPTV.

Table 5 OAR protection of the brain cases

The unit of dose is cGy

Patient 1 2 3 4 5 6

Brain-PTV Dmax AD-S 1091.9 2086.7 960.6 1550.6 3384.7 3095.0

MLP 1157.6 2242.8 855.0 1698.2 3356.7 3086.5

Dmean AD-S 132.6 180.9 162.2 180.9 621.2 327.9

MLP 150.3 204.0 189.6 255.2 664.4 404.7

Brain stem Dmax AD-S 487.0 1603.9 636.1 1613.2 892.6 1167.2

MLP 573.4 1698.7 705.2 1623.8 914.4 1272.3

Dmean AD-S 107.1 424.9 235.7 416.5 325.8 348.6

MLP 149.3 675.2 331.1 674.3 486.2 635.4

Left optic nerve Dmax AD-S 469.5 72.9 772.6 1046.4 67.6 42.4

MLP 844.8 581.8 871.8 1590.7 469.0 76.7

Dmean AD-S 149.7 155.0 383.0 273.4 31.3 38.3
MLP 297.6 135.0 610.5 407.4 144.4 22.2

Right optic nerve Dmax AD-S 2170.6 1789.9 920.2 320.8 71.1 42.4

MLP 2173.4 1671.8 1046.4 1092.6 139.4 76.7

Dmean AD-S 1505.2 598.0 439.1 71.2 35.6 38.3
MLP 1542.5 432.0 565.5 239.6 50.7 22.2

Optic chiasm Dmax AD-S 2089.9 1312.1 860.6 2014.6 85.3 42.4

MLP 2136.5 1310.8 1006.7 2114.2 471.6 216.7

Dmean AD-S 1277.4 851.7 389.5 1637.0 85.3 40.3

MLP 1391.0 889.5 573.5 1889.1 471.6 67.0
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outside PTV of the ADS plans was lower than the MLP 
plans, indicating more rapid dose fall-off, which could 
also be observed on the dose distribution comparison of 
Fig. 5.

Discussion
In this study, we topologized the optimization problem 
into a simple feed-forward neural network, thus con-
verted the treatment plan optimization into network 
training, and furthermore utilized the automatic differ-
entiation approach for network training. In this way, the 
well-established pytorch DL framework was used. Our 
results demonstrated that the framework could handle 
both the brain and liver cases with different complexities. 

In addition, the optimization speed was also satisfactory. 
As far as we know, this was the first attempt to success-
fully adapt machine learning toolkit to the cone-based 
treatment plan optimization.

Using pytorch for inverse planning is naturally differ-
ent from the typical application of DL. In standard DL, 
the weight of single neuron has no clear meaning, and 
the whole network acts like a “black box”. For this appli-
cation, the weight of each neuron represents the weight 
of each candidate beam. The other difference is the prac-
tice of “network training”. For DL, over-fitting may be the 
most challenging issue, meaning that the network may 
have excellent performance on the training dataset, but 
poor performance on testing dataset. The mini-batch 

Table 6 OAR protection of the liver cases

The unit of dose is cGy, and the unit of  Vx is %

Patient 1 2 3 4 5 6

Liver-PTV V5 AD-S 53.6 45.5 39.2 31.0 58.7 74.5

MLP 63.1 58.9 44.2 39.8 69.2 91.7

V10 AD-S 35.7 23.2 18.3 12.2 33.3 57.9

MLP 39.1 25.5 19.7 13.8 45.5 65.6

V20 AD-S 16.8 8.0 7.1 3.7 6.9 29.1

MLP 18.1 8.5 7.2 4.0 16.7 30.8

Dmean AD-S 1150.9 740.4 662.8 523.8 891.1 1539.5

MLP 1210.6 845.4 724.7 557.6 1206.5 1768.4

Cord Dmax AD-S 45.8 155.2 410.2 896.1 1054.1 512.6

MLP 57.5 240.4 500.5 1150.2 1168.1 836.7

Dmean AD-S 208.3 71.9 155.2 170.6 432.1 273.2

MLP 148.6 71.9 201.0 220.6 657.2 387.9

Stomach Dmax AD-S 272.2 739.1 671.1 242.4 2747.3 1133.4

MLP 669.0 1045.5 989.5 387.8 2586.9 1309.8

Dmean AD-S 157.7 164.8 207.4 314.5 1155.2 316.4

MLP 200.8 246.4 281.9 406.0 1229.1 387.9

Bowel Dmax ADS 785.6 671.6 262.0 196.2 1530.3 461.8

MLP 831.5 773.8 558.9 940.5 1671.8 925.2

Dmean ADS 58.5 81.1 92.5 96.0 366.8 233.6

MLP 63.5 47.7 122.9 60.9 450.9 236.8

Duodenum Dmax ADS 208.4 874.7 1133.8 98.0 2739.7 1335.0

MLP 198.9 1165.8 1237.2 57.5 2547.8 1438.6

Dmean ADS 65.4 155.9 462.2 168.4 1059.2 425.7

MLP 68.6 210.0 586.0 219.5 1057.1 523.6

Esophagus Dmax ADS 742.3 301.9 214.1 849.3 1551.5 640.4
MLP 858.7 294.9 329.3 1089.8 2176.8 619.2

Dmean ADS 280.1 105.4 124.4 232.2 534.0 405.2

MLP 343.1 131.1 163.6 395.8 722.2 420.7

Right kidney Dmax ADS 278.9 301.8 592.0 634.2 1263.4 1312.8

MLP 549.5 321.4 616.8 471.7 1737.2 1480.6

Dmean ADS 161.2 125.0 285.8 121.2 395.6 387.5

MLP 114.9 59.6 317.9 83.1 524.8 771.7
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training strategy is used to avoid over-fitting, which is 
to randomly select very few samples for training at each 
iteration. In this study, the beam weights were optimized 
separately for each plan. This means the network was 
trained from scratch, and all voxels were training dataset, 
thereby avoiding the issue of over-fitting. Therefore the 
full-batch training strategy was used in our strategy.

For results comparison, since the authors do not have 
access to the latest VOLO, we compared AD-S with the 
MLP system. The reduction rate of the AD-S approach 
over MLP was 27.5% (MU), 17.6% (node) and 24% 
(beam), which was comparable with VOLO according to 
published studies. Zeverino et al. reported the reduction 
rate of VOLO over MLP was 36% (MU), 14% (node) and 
31% (beam) [21]. Schüler et  al. found that the MU and 
beam reduction rate was 21.8% and 22.0% for 6D skull 
tracking plans, and 28.1% and 28.4% for Xsight spine 
tracking plans [22]. Giżyńska et  al. reported that the 
reduction rate was 48.7%/32.8% (MU), 13.4%/7.9% (node) 
and 26.5%/7.9% (beam) for prostate/lung plans [23]. It is 
worth to point out that different approaches in optimiza-
tion algorithms were used in VOLO and our approach. 
We also admitted that the AD-S system was compared 
with MLP using clinical MLP plans. More comprehen-
sive comparison like re-optimize the MLP plans to obtain 
better plans, and meanwhile re-optimize the AD-S plans 
using these improved plans as reference could make the 
study more solid.

To our knowledge, it will take about rather long time 
for MLP system to obtain a clinical practical plan. The 
optimization time may be several hours for large irregu-
lar target. We want to point out that the circular cone and 
MLP system are not well-suited for large irregular target. 
The recently introduced MLC together with the VOLO 
optimizer would surely shorten the optimization time 

and improved the quality of treatment plan. Applying the 
framework of this work for more widely used MLC treat-
ment planning, either CyberKnife system or linac system, 
will be our next work in the future.

Recently the vendor introduced multi-leaf collimator 
(MLC) to the system. Although the MLC increased the 
flexibility for field size and improved the treatment effi-
ciency for irregular shaped targets, the circular cones 
are still in use widely due to its highly conformal dose 
distribution [6]. Furthermore, the MLC system has not 
yet been widely adopted, with only about 20% systems 
installed globally at the current time according to the 
vendor. Therefore, any improvement in the circular cone 
based plan optimization will have a big impact in the 
clinical operation of these systems, which is the aim of 
this study.

In our previous SVDLP algorithm we developed a lin-
ear model and solved the model with Gurobi (Gurobi 
Optimization, Inc., Houston, TX, USA). The improve-
ments of AD-S over SVDLP include: (1) Both beam and 
node reduction was integrated into the model; (2) The 
optimization model was free from the limitation of lin-
earity, and the dose-volume constraints could be directly 
added; 3. Open-source toolkit replaced the commercial 
solver. For the same brain (patient 3) and liver (patient 
3) cases of our previous study, the AD-S plans achieved 
comparable dose distribution but used fewer nodes and 
beams than SVDLP plans. In addition, the computational 
time was 627 s and 285 s for the SVDLP approach, and 
84.8 s and 32. 1 s for AD-S approach, almost an order of 
magnitude improvement.

Our results demonstrated that the AD-S approach 
used fewer nodes and beams and lower MU to achieve 
same or better dose distribution than MLP. In other 
words, the treatment time was shortened without 

Fig. 4 DVHs of the first liver and brain cases. The AD-S plans were plotted in solid lines and MLP plans in dash lines
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jeopardizing the treatment quality. This was because 
the penalty on the numbers of beams and nodes was 
modeled with the lasso and group lasso terms and took 
effect during optimization. The MLP system used an 
alternative method, which is to directly eliminate the 
beams and nodes with marginal weights after optimi-
zation, i.e., the optimization and reduction procedures 
were performed separately. It was plausible that the 
reduction procedure would deteriorate the optimiza-
tion results significantly. So was the case of the round-
ended PTV DVH curve (lower minimum dose) of the 
brain case, which was not clinically desirable, espe-
cially for SRS treatment. The VOLO optimizer has also 

overcome this limitation by integrating beam reduction 
with optimization.

The AD-S approach used the same sets of cones with 
MLP system, which was selected empirically by expe-
rienced physicist. How to choose the optimal cones 
were not covered in this study. Intuitionally, the optimal 
cone size is directly related with the size and geometric 
irregularity of the PTV. Considerable researches have 
been published [24–26], which showed that the quality 
of treatment plan would be improved even with simple 
empirical formula or mechanism. However, this issue has 
not been fully addressed, which could be explored poten-
tially with the DL technique. The fast AD-S approach 
proposed makes it possible to test more cases with 

Fig. 5 Dose distribution of the first brain and liver cases. PTV was depicted in purple solid thick line, and the isodose line in thin lines with different 
colors.
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varying complexities and fulfill the task of big-dataset 
construction for further DL research.

Conclusion
We have developed an AD-S approach for circular col-
limator based robotic radiotherapy treatment plan opti-
mization. The optimization model was topologized into 
a simple neural network, and the automatic differen-
tiation approach was adopted to solve the model. The 
lasso and group lasso regularization terms were uti-
lized for beam and node reduction. Our investigation 
in brain and liver cases demonstrated that the AD-S 
approach could quickly achieve at least comparable 
treatment plans using fewer beams, nodes and lower 
MU.
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