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Abstract 

Background:  Four-dimensional cone-beam computed tomography (4D-CBCT) can visualize moving tumors, thus 
adaptive radiation therapy (ART) could be improved if 4D-CBCT were used. However, 4D-CBCT images suffer from 
severe imaging artifacts. The aim of this study is to investigate the use of synthetic 4D-CBCT (sCT) images created by a 
cycle generative adversarial network (CycleGAN) for ART for lung cancer.

Methods:  Unpaired thoracic 4D-CBCT images and four-dimensional multislice computed tomography (4D-MSCT) 
images of 20 lung-cancer patients were used for training. High-quality sCT lung images generated by the CycleGAN 
model were tested on another 10 cases. The mean and mean absolute errors were calculated to assess changes in the 
computed tomography number. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) 
were used to compare the sCT and original 4D-CBCT images. Moreover, a volumetric modulation arc therapy plan 
with a dose of 48 Gy in four fractions was recalculated using the sCT images and compared with ideal dose distribu-
tions observed in 4D-MSCT images.

Results:  The generated sCT images had fewer artifacts, and lung tumor regions were clearly observed in the sCT 
images. The mean and mean absolute errors were near 0 Hounsfield units in all organ regions. The SSIM and PSNR 
results were significantly improved in the sCT images by approximately 51% and 18%, respectively. Moreover, the 
results of gamma analysis were significantly improved; the pass rate reached over 90% in the doses recalculated using 
the sCT images. Moreover, each organ dose index of the sCT images agreed well with those of the 4D-MSCT images 
and were within approximately 5%.

Conclusions:  The proposed CycleGAN enhances the quality of 4D-CBCT images, making them comparable to 
4D-MSCT images. Thus, clinical implementation of sCT-based ART for lung cancer is feasible.
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Background
Stereotactic body radiotherapy (SBRT) has been estab-
lished as a standard treatment for inoperable early-stage 
non-small lung cell cancer and oligometastases [1]. The 
irradiation position in SBRT must be accurate, and high 

precision image guidance can be accomplished using 
cone-beam computed tomography (CBCT) attached to 
a linear accelerator [2, 3]. Specifically, four-dimensional 
CBCT (4D-CBCT) can visualize tumor movement as a 
series of computed tomography (CT) images that can be 
used to locate lung tumors in SBRT [4]. Clinical studies 
of the use of CBCT in adaptive radiation therapy (ART) 
have begun, and improvements in the quality of radia-
tion therapy by modifying initial treatment plans with 
morphological changes during fractionated treatment 
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courses [5, 6] has shown clinical benefits [7, 8]. Con-
versely, conventional linear accelerator-based ART is 
a major challenge because of the poor quality of CBCT 
images, which are affected by X-ray scattering, image lag, 
beam hardening, and patient movements during scan-
ning [9]. Moreover, 4D-CBCT is reconstructed using 
cone-beam projection subgroups in different respira-
tory phases. Therefore, sparse projections in each phase 
bin cause severe artifacts, deteriorating the Hounsfield 
unit (HU) values and preventing the creation of accurate 
ART plans using 4D-CBCT images [10, 11]. An effec-
tive method for the reconstruction of sparse projec-
tions is the total variation (TV) regularization method, 
which has been used as a regularization term to smooth 
out noise and streak artifacts [12, 13]. However, because 
these approaches use a globally uniform TV penalization, 
small anatomical structures are inevitably over-smoothed 
and edge regions degrade. Chen et al. developed a prior 
contour-based TV method to derive an edge map from 
high-quality prior planning CT, which enhances edges 
using images registered to the CBCT [14]. However, this 
method depends on the accuracy of the image registra-
tion between the CT and CBCT images. Therefore, it is 
necessary for 4D-CBCT to restore the correct HU value.

Recently, with the overwhelming attention to deep 
learning in the medical imaging field, many deep-learn-
ing approaches have been proposed for image related 
tasks ranging from segmentation and classification to 
super-resolution and image restoration [15–18]. Jiang 
et  al. [15] improved over-smoothed edge regions in 
under-sampled CBCT images with TV regularized by a 
convolutional neural network-based method. Addition-
ally, Landry et al. [18] compared U-Nets trained on three 
types of corrected CBCT image datasets to improve the 
image quality of original CBCT images. These studies 
established a deep-learning architecture that uses paired 
supervised data, and a small difference in the train-
ing images can cause error in the conversion process. A 
4D-CBCT image cannot be combined with supervised 
data matched at pixel level, because respiratory move-
ments mean that the conditions during the 4D-CBCT 
cannot be exactly reproduced for the four-dimensional 
multislice CT (4D-MSCT) images. Therefore, accurate 
image correction is quite difficult to obtain using super-
vised learning with 4D-CBCT images. Improvements in 
image quality are needed to perform 4D-CBCT image-
based ART, which will enable 4D dose distribution and 
lead to a more accurate evaluation of therapeutic doses in 
SBRT for lung cancer.

In this study, we create synthetic 4D-CBCT (sCT) 
images using a cycle generative adversarial network 
(CycleGAN) framework and aimed to their use for the 
possibility of using sCT images in ART planning in 

SBRT for lung cancer. The CycleGAN model enforces 
an inverse transformation and achieves highly accurate 
consistency when the underlying structures are similar, 
even for mappings in nonlinear domains [19–21]. The 
CycleGAN method is expected to optimize the qual-
ity of 4D-CBCT images, and no previous study has 
reported the possibility of using these images for ART 
planning by addressing the sparseness of projection 
data in 4D-CBCT images. We investigated two con-
trolled experiments: one was correction effect of image 
noise and projection sparseness, and second was effects 
of deformation in the 4D-CBCT image with the respir-
atory motion using the CycleGAN method. To secure 
a number of training data targeting 2D images, we 
created the sCT images using the 2D Cycle-GAN and 
investigated the quality of these images. Restoration of 
the CT number was investigated using the mean error 
(ME) and mean absolute error (MAE) in each organ 
region, and image quality and similarity were evaluated 
using the peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM). Moreover, the dosimetric 
accuracy of the sCT image-based dose distribution was 
investigated to determine if it was comparable in qual-
ity to that of the MSCT image-based dose distribution.

Methods
Image data acquisition
Thoracic 4D CT images acquired with a CBCT and 
MSCT were used for training the deep-learning model. 
These CT images were obtained from a publicly avail-
able dataset, the Cancer Imaging Archive, which is 
an open-access information source created by the 
US National Cancer Institute [22]. In this dataset, the 
4D-CBCT images were acquired using an onboard 
imager equipped with a kilovoltage X-ray source and 
flat panel detector (Varian Medical Systems, Palo 
Alto, CA, USA). In addition, the 4D-MSCT image 
were acquired using a multi-detector CT using heli-
cal scanning. The tube voltage was 120  kV, the thick-
ness of each CT image was 3 mm, the matrix size was 
512 × 512 pixels, and the field of view was 50 × 50 cm in 
the 4D-MSCT images and 45 × 45 cm in the 4D-CBCT 
images. Because these 4D images were composed of 
10 phases divided by one respiratory motion, only the 
first-phase image (0% phase) was used in each 4D image 
for training. The 4D-CBCT image was centered on the 
lung cancer region and included whole lung area; that 
is, the upper, middle, and lower lung areas. Moreover, 
the 4D-CBCT image was acquired during the course of 
radiation treatment, and the 4D-MSCT was acquired at 
the treatment planning before radiation therapy.
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Image synthesis based on the CycleGAN
The training dataset consisted of 50 slice images per 
patient for 20 patients, giving a total of 1000 4D-CBCT 
and 1000 4D-MSCT images. Using this dataset, the sCT 
images based on the 4D-CBCT images were generated 
using the 2D CycleGAN. Image pairs were adjusted to 
the same resolution, 45 × 45  cm in 512 × 512 pixels, 
using bilinear interpolation, and rigid registration was 
used on the MSCT image to pair it to the correspond-
ing CBCT image.

The CycleGAN model consists of four convolutional 
neural networks and relies on two subnetworks, one 
generator and one discriminator, which have opposing 
functions. To train the CycleGAN, all four networks 
were trained simultaneously to maximize the perfor-
mance. Because these networks are pitted against each 
other, each improves its ability, resulting in accurate 
4D-CBCT image generation [19, 23]. Figure 1 presents 
a flowchart of the CycleGAN model, and Table  1 lists 
the structural details of the generator, discriminator, 

and gradient optimization method. The total loss func-
tion in this CycleGAN training is as follows.

Parameter λ controls the relative importance of the two 
types of losses; in this study, we set this value to 10. The 
adversarial loss is the loss function of the discriminator 

(1)L = Ladv + �× Lcyc

Fig. 1  Cycle generative adversarial network (CycleGAN) framework (a), and network structure of the generator (b) and discriminator (c). The 
training model consists of two generators and two discriminators. To train the CycleGAN, the overall network’s performance is enhanced through 
networks acting bidirectionally with each other. The sCT image is generated by a network that maps images from a source domain (4D-CBCT) to 
the target domain (4D-MSCT)

Table 1  Structures of the generator and discriminator, and 
gradient optimization conditions

Optimizer Adam gradient descent method

Minibatch size 1

Initial learning rate 0.0002

Epochs 100

Encoder depth Generator: 3, discriminator: 4

Convolution filter Generator: 32, discriminator: 128

Residual block 6
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and generator that minimizes the difference between the 
expected and predicted output for the 4D-MSCT and 
4D-CBCT images [19]. It is expressed as follows:

where GY  attempts to generate volumes GY (x) with input 
x that are similar to the volumes in the target domain Y  , 
whereas DY  aims to distinguish between GY (x) and real 
samples y . The CycleGAN uses the cycle consistency 
loss to transform an image from domain X to domain Y  
using generator Y  , and then transforms the result back to 
domain X using generator X to provide a good approxi-
mation of the original image. The cycle consistency loss is 
defined as the difference between the original and gener-
ated images that have been reconstructed back into the 
original domain [19]. Therefore, the cycle consistency 
loss can be expressed as

Generators GX and GY  are trained to minimize the 
cycle consistency loss, whereas DX and DY  are adver-
sarially trained to maximize the adversarial loss. Here, 
X and Y  are images from the two domains (4D-CBCT 
and 4D-MSCT). As the training progresses, the recon-
structed images more closely match the original images.

We conducted experiments on a personal computer 
equipped with two GPUs (Quadro RTX 5000, NVIDIA 
Corporation) and a CPU (Intel Xeon Sliver 4210R) with 

(2)Ladv(GY ,DY ,X ,Y ) = Ey

[

logDY

(

y
)]

+ Ex[log(1− DY (GY (x)))]

(3)
Lcyc(GX ,GY ) = Ex[|| GX (GY (x))− x ||1]+ Ey

[

|| GY

(

GX

(

y
))

− y ||1
]

96  GB memory. We implemented our algorithm using 
MATLAB 2021b (MathWorks Inc., Natick, MA, USA).

Image quality evaluation
To evaluate the accuracy of image improvement by the 
CycleGAN model, we added image noise and reduced 
the number of projection data for image reconstruction 
in the first-phase images of 4D-MSCT. The noise artifact 
was applying the specific modulation transfer function of 
the 4D-CBCT to double the dispersion of pixel value from 
the original image. Moreover, projection data was acquired 
every 4° from the reconstructed image in 4D-MSCT; then, 
image reconstruction was performed again with a total 
number of 90 projection data from 360 directions. There-
fore, by creating the degraded 4D-MSCT image with the 
mathematical simulation, image quality improvement was 
verified compared with that of the original 4D-MSCT 
image. Figure 2a presents the overview of creating the vir-
tual image quality deterioration dataset. Moreover, to eval-
uate the effects of structural deformation in the 4D-CBCT 
image with respiratory motion by the CycleGAN model, 
we created an image in which the maximum exhalation 
image was transformed toward the maximum intake image 
using the pixel-value-based deformable image registration 
technique [24]. Furthermore, these deformation and origi-
nal maximum exhalation images were used for CycleGAN 
training. Figure  2b shows the overview of creating the 

Fig. 2  Creation of the virtual image quality deterioration image and deformation image. a The sparse projection data were acquired every 4° in a 
360° direction. Image noise was added by applying convolution of 4D-CBCT-specific modulation transfer function. b The structural deformation was 
performed toward maximum exhalation to maximum intake images using the deformable image registration technique
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deformation image. Then, we evaluated the image quality 
of the generated image and the original 4D-CBCT image 
compared to the maximum intake image. These image 
quality test and image deformation test were investigated in 
ten patients.

The synthesized images of 10 patients not included in the 
training data were generated using the trained CycleGAN 
model. The quality of the sCT images were quantitatively 
evaluated by comparing them with the original 4D-CBCT 
images. To evaluate the differences in CT number with 
respect to the 4D-MSCT images, we set regions of interest 
(ROIs) in lung, soft tissue, and bone regions and measured 
the ME and MAE as follows:

where M and N  indicate the width and height in pixels 
within a ROI, X

(

i, j
)

 is the CT number of the ith and 
jth pixels in a sCT image or original 4D-CBCT image, 
and Y

(

i, j
)

 is the CT number of the ith and jth pixels in 
a 4D-MSCT image. The sizes of the ROIs were 35 × 35, 
25 × 25, and 15 × 15 pixels in the lungs, soft tissues, 
and bones, respectively. Moreover, the differences in 
CT number were evaluated for the whole image. The 
ME and MAE differences between the sCT image and 
the original 4D-CBCT image were evaluated as statisti-
cally significant using the two-tailed t test. Moreover, 
the overall image quality was evaluated quantitatively 
using the SSIM and PSNR values in the sCT and original 
4D-CBCT images based on the 4D-MSCT images [25, 
26]. The SSIM of images X and Y  was defined as follows:

where µX and µY  are the average pixel values of the 
image pair ( X ,Y  ), σX and σY  are the variances, and the 
C terms are regularization constants, where C1 equals 
(0.01× 2000)2 , C2 equals (0.03× 2000)2 , and 2000 is the 
dynamic range of the images. Furthermore, the PSNR 
was defined as follows:
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1
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The PSNR is defined by the maximum value in an input 
image X

(

i, j
)

 divided by the mean squared error between 
image X(the sCT or original 4D-CBCT image) and image 
Y  (the 4D-MSCT image). In addition, M and N  indi-
cate the width and height of the images, respectively. To 
reduce the geometric mismatch between the sCT image 
and 4D-MSCT image, the sCT images were linearly reg-
istered to approach the corresponding pixel values of 
the 4D-MSCT image. In this process, to minimize the 
root-mean-square error of the corresponding pixel val-
ues between the two images, the sCT image was linearly 
shifted to the position of the MSCT image without image 
deformation processes. The differences in SSIM and 
PSNR of the sCT and original 4D-CBCT images were 
evaluated as statistically significant using the two-tailed 
t test.

Evaluation of dose calculation accuracy
To determine the dosimetric accuracy, dose distributions 
and dose indexes based on the sCT image were evaluated. 
Dose distributions on the 4D-MSCT of volumetric mod-
ulation arc therapy (VMAT) plan with a dose of 48 Gy in 
four fractions were recalculated on the 4D-CBCT and 
sCT using the calculation algorithm from Acuros XB ver-
sion 13.6 (Varian Medical Systems, Palo Alto, CA, USA). 
Additionally, the dose distributions were compared 
with the dose distribution calculated on the 4D-MSCT 
image using the 2D and 3D global gamma analysis with 
a 3% absolute dose and 2 mm dose to agreement criteria. 
Moreover, the dose-volume histogram parameters were 
evaluated in the clinical target volume (CTV), lungs, and 
spinal cord. For the CTV, D98%, D50%, and D2% were 
calculated; then, the lung volumes receiving a mean dose, 
20 Gy and 5 Gy (mean, V20Gy and V5Gy) and the spinal 
cord dose with a volume of 2% (D2%) were investigated. 
These dose indexes were compared with those of the dose 
distribution based on the 4D-CBCT image. The contours 
of the CTV, lungs, and spinal cord were referenced on 
the 4D-MSCT image and transferred to the 4D-CBCT 
and sCT images using rigid image registration. Moreo-
ver, for all relative quantities, the value of the metric in 
the 4D-MSCT was used as the reference. Differences 
between the sCT and original 4D-CBCT images were 
considered statistically significant when p < 0.01 using the 
Wilcoxon signed-rank test.

Results
Image correction performance
Figure  3 shows the patient results of image improve-
ment and effects of image deformation by the Cycle-
GAN training. Table  2 presents the results of SSIM 
and PSNR in these two experiments. In the result 
of image improvement test, SSIM and PSNR were 
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significantly improved in 0.37–0.86 and 9.7–15.2  dB, 
respectively. Moreover, no significant difference in 
the synthetic image was shown in the result of image 
deformation test. Figures 2c, 3 and 4a show one of the 
patient results in the axial, coronal, and sagittal direc-
tions for the corresponding 4D-MSCT image, original 
4D-CBCT image, and sCT image. In the 4D-CBCT 
images, there are significant artifacts, and overall 
image quality is poor. In contrast, we observed that the 
sCT image in each reformatted direction generated by 
our CycleGAN model effectively reduced the artifacts, 
especially in the lung region. Figure 4d shows the CT 
number distribution in two-dimensional histograms. 
The CT number distribution near the lung region 
(with under − 500 HU) in the sCT image was similar to 
that of the 4D-MSCT image. Table 3 lists the ME and 
MAE results in 10 patients as mean ± standard devia-
tions for each site. In the results of the sCT image, 
the ME and MAE are significantly close to 0 HU in all 
regions. Table 4 presents the results of the comprehen-
sive image evaluation using the SSIM and PSNR. These 
results are the mean value and standard deviations in 
10 patients with respect to the 4D-MSCT images. The 
SSIM and PSNR results were significantly improved in 
the sCT image, increasing by approximately 51% and 
18%, respectively.

Performance of dose calculation
Figure 5 shows the results of one patient for the calculated 
dose distribution in VMAT-SBRT for the corresponding 
4D-MSCT image, original 4D-CBCT image, and sCT 
image. Furthermore, the dose difference images from 
the dose distribution of 4D-MSCT image are shown. The 
monitor unit, movement of the multi-leaf collimator, and 
gantry rotation were set to the same conditions. The dose 

Fig. 3  Results of the image quality test (a) and image deformation test (b). All images are shown with the same window width and levels. a-1 
Degraded 4D-MSCT image, a-2 generated image, and a-3 original 4D-MSCT image. b-1 Original 4D-CBCT image in maximum exhalation, b-2 
generated image, and b-3 4D-CBCT image in maximum intake

Table 2  Results of the image quality test and image 
deformation test, by the quality index of structural similarity 
index (SSIM) and peak signal-to-noise ratio (PSNR)

These values are reported as the mean ± standard deviation in 10 patients. The 
p value was calculated using a two-tailed t test that compared the results of the 
original and sCT images

Data set SSIM PSNR (dB)

Image quality test

 4D-MSCT 0.37 ± 0.04 9.7 ± 0.4

 sCT 0.86 ± 0.04 15.2 ± 1.9

 p value < 0.01 < 0.01

Image deformation test

 4D-CBCT 0.43 ± 0.08 19.7 ± 1.7

 sCT 0.42 ± 0.06 19.4 ± 1.5

 p value 0.05 0.03
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distribution of over 4000  cGy isodose curves obtained 
using the 4D-CBCT image differs from those obtained 
using the 4D-MSCT image. In contrast, the dose distri-
bution obtained using the sCT image agreed well with 
it. Table 4 presents the results of the gamma analysis in 
each CT based dose distribution, comparing them with 
those obtained using the 4D-MSCT image. The pass rates 
in the 2D and 3D analysis were significantly improved 
when the sCT image was used. The pass rate reached 
over 90% in the recalculation doses using the sCT image. 
Figure 6 shows the differences in each organ dose index 
for the dose distributions obtained using the 4D-MSCT, 
4D-CBCT, and sCT images in VMAT-SBRT. The dose 
differences obtained using 4D-CBCT were mostly over 
15% in all regions. Moreover, the deviations in V20Gy 
in the lung region were extremely large, that is, from 5% 
to over 40%. In contrast, dose indexes of the sCT image 
agreed with those of the 4D-MSCT image within 5% in 

all regions. Moreover, deviations in V20Gy in the lung 
region decreased and were within approximately 10%.

Discussion
To realize the ART based on the synthetic 4D-CBCT 
image generated by the CycleGAN model, quantita-
tive evaluation of image quality and deformation effect 
has to be clarified by controlled experiments. Therefore, 
quality degradation and structural deformation images 
were mathematically created and compared with original 
ground truth images. In the result of Table 2, sCT image 
was significantly improved, close to the image quality of 
the original image by the CycleGAN model. Conversely, 
since the similarity of the sCT was not significantly dif-
ferent from the result of the input initial phase image, 
the structure deformation under natural respiration was 
small using the CycleGAN model. We generated sCT 
images using a CycleGAN with unpaired 4D-CBCT and 

Fig. 4  a 4D-MSCT, b 4D-CBCT, and c synthetic 4D-CBCT (sCT) images of the same patients in the corresponding axial, coronal, and sagittal 
directions. All images are shown with the same window width and levels. d Two-dimensional histograms of the axial direction in each image. The 
height of each histogram represents the count for the CT number
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4D-MSCT images. To perform accurate image-guided 
radiotherapy and use 4D-CBCT-based ART, the HU 
values must be restored to achieve sufficient dose cal-
culation accuracy. The 4D-CBCT projection data were 
collected at 5.5 frames per second in approximately 
3–4  min, spanning a 360° gantry rotation, and divided 
into 10 phases. Therefore, in the results shown in Fig. 4, 
significant image degradation in the original 4D-CBCT 
was caused by the number of projection data, which was 
much lower than that of the 4D-MSCT. In contrast, the 
sCT image generated by the CycleGAN had substantially 
fewer streak artifacts and less image noise, bringing it 
closer to an ideal 4D-MSCT image in quality. In the two-
dimensional histogram (Fig.  4d), the CT number distri-
bution in the sCT image is close to that of the 4D-MSCT 
image. In particular, our results showed good composite 
images in the lung region. Moreover, as the results of CT 
number deviation in Table 3 reveal, the pixel values of the 
sCT images were close to those of the 4D-MSCT images, 
demonstrating a significant difference with respect to the 

4D-CBCT images in all regions. The ME and MAE values 
of the lung regions were 55.9 and 64.3 HU, respectively, 
i.e., the MAE was large because of the biased deviation 
in pixel values due to the influence of respiratory motion 
in the 4D-CBCT images, as these images were acquired 
in different periods of the scanning process. However, 
the ME and MAE results in the lung, soft tissue and bone 
regions were similar to those of previous studies [20, 21, 
23]. In the results of Table 4, the SSIM and PSNR values 
of the sCT images were significantly higher than those 
of the original 4D-CBCT images. In our study, because 
restoration in all regions was remarkably good, the evalu-
ation of the whole image was greatly improved, demon-
strating that the entire sCT image could resemble the 
4D-MSCT image. This image quality improvement was 
achieved in the upper, middle, and lower parts of the tho-
racic region because the training data included all lung 
areas. Moreover, the artifacts of the 4D-CBCT images 
occurred under approximately the same conditions for 
all respiratory phase images. Hence, the image quality 
in single-phase data could be connected with the accu-
rate restoration of other phase images in the same man-
ner. However, the addition of different respiratory phase 
images in model training may provide further robust-
ness in the image quality conversion of the 4D images. 
Improving the visibility of 4D-CBCT images enhances 
the tumor and surrounding organ visibility in radiother-
apy, increasing the accuracy of target localization. In pre-
vious studies, a CycleGAN improved the quality of CBCT 
images, and our results are in agreement with these 
results [23, 27]. Furthermore, HU value restoration may 
enable accurate contouring warping in daily 4D-CBCT 
images. Because warping is essential for realizing online 
ART, the generation of synthetic CT images using Cycle-
GAN enhances the feasibility of ART using 4D-CBCT.

In the results of dose distribution using sCT image 
shown in Fig.  5, each isodose curve was close to those 
of the 4D-MSCT image, and the dose difference image 
indicated that the dose error was decreased, revealing 
that the dose distribution obtained using sCT agrees 
with that obtained using 4D-MSCT. Moreover, the aver-
age pass rates of gamma analysis exceeded 90% in the 
sCT images, and significant improvements were found in 
the results of Table  5. The 2D-Cycle GAN model could 
cause dosimetric errors in the direction of the body axis. 
However, the pass rate of 2D gamma in sagittal and coro-
nal directions did not decrease, and dose distribution in 
the sCT image was quite close to that of the 4D-MSCT 
image. Accurate dose calculation relies on accurate 
HU values and conversion to electron density. The CT 
number restoration of the 4D-CBCT to 4D-MSCT 
transformation improved dose calculation accuracy in 
radiotherapy planning. In the result of dose-volume 

Table 3  Mean error (ME) and mean absolute error (MAE) in the 
CT numbers of each site: lung, soft tissue, bone regions, and 
whole image

These values were calculated with respect to the CT numbers in the 4D-MSCT 
images and are shown in terms of mean ± standard deviation for 10 patients 
in each site. The p value was obtained by a comparison of the results of the 
4D-CBCT and sCT images using a two-tailed t test

Site Image ME (HU) MAE (HU)

Lung 4D-CBCT 595.3 ± 122.5 595.3 ± 122.5

sCT 55.9 ± 46.7 64.3 ± 32.5

p value < 0.01 < 0.01

Soft tissue 4D-CBCT 378.1 ± 111.5 378.1 ± 111.5

sCT 38.3 ± 92.8 72.9 ± 65.9

p value < 0.01 < 0.01

Bone 4D-CBCT 390.1 ± 93.0 390.1 ± 93.0

sCT − 7.5 ± 96.5 78.9 ± 49.5

p value < 0.01 < 0.01

Whole image 4D-CBCT 424.3 ± 88.4 424.3 ± 88.4

sCT 111.1 ± 17.4 111.1 ± 17.4

p value < 0.01 < 0.01

Table 4  Results of the structural similarity index (SSIM) and peak 
signal-to-noise ratio (PSNR)

These values are reported as the mean ± standard deviation for 10 patients. 
The p value was calculated using a two-tailed t test comparing the results of the 
4D-CBCT and sCT images

SSIM PSNR (dB)

4D-CBCT 0.49 ± 0.07 42.3 ± 1.4

sCT 0.73 ± 0.04 50.5 ± 1.4

p value < 0.01 < 0.01
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histogram analysis, the differences in each organ dose 
index were close to 0% in the sCT image-based results. 
The V20Gy of the lung region had a large deviation in the 
4D-CBCT image because, in the VMAT plan with a rota-
tion of 360°, changes in the CT number in the lung region 
increased the dosimetric error. In contrast, the restora-
tion of the CT number in the sCT image reduced the 

dosimetry indexes in all organ regions. Therefore, sCT 
images should have sufficient image quality for accurate 
dose calculation in a lung SBRT plan. In a previous study, 
Gao et al. proposed a synthetic CBCT using a CycleGAN, 
and revealed that dose distribution could be close to the 
original MSCT-based plan with a gamma pass rate of 
over 90% [28]. In our results, the difference in dose index 

Fig. 5  Dose distributions in a volumetric modulation arc therapy (VMAT) plan based on a 4D-MSCT, b 4D-CBCT and c sCT images. Moreover, the 
dose difference image from the dose distribution of 4D-MSCT image, d 4D-MSCT minus 4D-CBCT, e 4D-MSCT minus sCT

Fig. 6  Relative differences in each organ dose index obtained using the 4D-MSCT, 4D-CBCT, and sCT images in VMAT-SBRT planning. All doses 
correspond to the reference dose on the 4D-MSCT image. * indicates significance at p < 0.01
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was within approximately 5%, which is in agreement with 
the results of previous studies [21, 29].

The 4D-CBCT image cannot be used to train a model 
using paired supervised data because that approach 
depends on the reproducibility of respiratory move-
ments. A CycleGAN can be used with non-paired train-
ing data and is very suitable for this synthetic image 
generation task.

Therefore, the sCT images generated by our Cycle-
GAN could be used to improve the accuracy of image-
guided radiotherapy and achieve sufficient dose 
calculation accuracy for ART. However, the limitation 
of our evaluation of the sCT image is that the accuracy 
was based on the MSCT image in which the anatomical 
structure was slightly displaced due to the respiratory 
movement. Moreover, complete synthesis of the bone 
region could not be realized because the small amount 
of bone area in the whole image may be the cause of 
deterioration of learning accuracy. However, dose cal-
culation accuracy affected by this bone defect region 
was not critical degradation. In previous studies, 3D 
data have been used for training the CycleGAN, e.g., by 
dividing it into voxel units, showing that CycleGAN can 
enhance the accuracy of the 3D structural information 
[29–31]. However, training a model with image feature 
details using a limited number of data is considered dif-
ficult [30]. Moreover, the input of 3D volume data con-
sumes a considerable amount of GPU video memory 
when running the network. Therefore, we employed a 
2D CycleGAN, which limits the amount of training data 
by targeting 2D images. To realize 4D-CBCT-based 
ART, streaking and motion artifacts must be reduced 
to reveal material boundaries and create accurate treat-
ment plans based on 4D-CBCT images. Moreover, an 
adaptive treatment process within clinical tolerances is 
a necessary step toward the clinical implementation of 
ART in conventional practice. Therefore, the effects of 

warping accuracy with organ contouring and dose dis-
tribution must be further improved in the sCT images. 
Thus, verification of the contour propagation accuracy 
associated with image quality improvement and predic-
tion of dose distribution using new deep-learning tech-
niques remain as future tasks.

Conclusions
Image artifacts were corrected and image quality was 
improved in 4D-CBCT images using a CycleGAN, and 
bringing them closer to the image quality of 4D-MSCT 
images. Thereby, dose calculation accuracy using sCT 
images was significantly improved, indicating that 
4D-CBCT-based ART in lung cancer is feasible.
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Table 5  Mean pass rates of the 2D and 3D gamma in 10 
patients with respect to the dose distribution obtained using the 
4D-MSCT images

The 2D gamma was evaluated in three dose distribution directions. The p value 
was calculated using a two-tailed t test comparing the results of the 4D-CBCT 
and sCT images

Pass rate (%)

2D gamma (3%/2 mm) 3D gamma 
(3%/2 mm)

AX SAG COR

4D-CBCT 74.7 ± 10.7 75.2 ± 14.1 83.6 ± 6.1 76.5 ± 10.8

sCT 95.7 ± 4.7 94.8 ± 5.3 92.5 ± 5.5 96.2 ± 4.2

p value < 0.01 < 0.01 < 0.01 < 0.01
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