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Abstract 

Background: Stereotactic body radiotherapy (SBRT) is an established local treatment method for patients with 
hepatic oligometastasis or oligoprogression. Liver metastases often occur in close proximity to radiosensitive organs 
at risk (OARs). This limits the possibility to apply sufficiently high doses needed for optimal local control. Online MR‑
guided radiotherapy (oMRgRT) is expected to hold potential to improve hepatic SBRT by offering superior soft‑tissue 
contrast for enhanced target identification as well as the benefit of gating and daily real‑time adaptive treatment. The 
MAESTRO trial therefore aims to assess the potential advantages of adaptive, gated MR‑guided SBRT compared to 
conventional SBRT at a standard linac using an ITV (internal target volume) approach.

Methods: This trial is conducted as a prospective, randomized, three‑armed phase II study in 82 patients with 
hepatic metastases (solid malignant tumor, 1–3 hepatic metastases confirmed by magnetic resonance imaging (MRI), 
maximum diameter of each metastasis ≤ 5 cm (in case of 3 metastases: sum of diameters ≤ 12 cm), age ≥ 18 years, 
Karnofsky Performance Score ≥ 60%). If a biologically effective dose (BED) ≥ 100 Gy (α/β = 10 Gy) is feasible based on 
ITV‑based planning, patients will be randomized to either MRgRT or ITV‑based SBRT. If a lesion cannot be treated with 
a BED ≥ 100 Gy, the patient will be treated with MRgRT at the highest possible dose. Primary endpoint is the non‑
inferiority of MRgRT at the MRIdian Linac® system compared to ITV‑based SBRT regarding hepatobiliary and gastroin‑
testinal toxicity CTCAE III or higher. Secondary outcomes investigated are local, locoregional (intrahepatic) and distant 
tumor control, progression‑free survival, overall survival, possible increase of BED using MRgRT if the BED is limited 
with ITV‑based SBRT, treatment‑related toxicity, quality of life, dosimetric parameters of radiotherapy plans as well as 
morphological and functional changes in MRI. Potential prognostic biomarkers will also be evaluated.

Discussion: MRgRT is known to be both highly cost‑ and labor‑intensive. The MAESTRO trial aims to provide ran‑
domized, higher‑level evidence for the dosimetric and possible consecutive clinical benefit of MR‑guided, on‑table 
adaptive and gated SBRT for dose escalation in critically located hepatic metastases adjacent to radiosensitive OARs.
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Background
Standard therapy for patients with hepatic oligometas-
tases is surgical resection. Hepatic metastasectomy has 
been performed for more than 3 decades with 5-year sur-
vival rates of 50–60% and up to 20% long-term survivors 
[1–4]. However, only 15–20% of patients with hepatic oli-
gometastases are initially eligible for such a radical sur-
gical approach due to an unresectable tumor location, 
inadequate hepatic reserve or other comorbidities [5, 6]. 
For the majority of patients who are not amenable for 
surgery, alternative liver-directed therapies are offered 
for providing local control and potentially superior over-
all survival, e.g. radiofrequency ablation, microwave 
ablation, transarterial chemoembolization, cryoablation, 
high-dose-rate brachytherapy or stereotactic body radio-
therapy (SBRT) [7, 8].

Following hepatic irradiation, radiation-induced liver 
disease (RILD) is a potential complication [9, 10]. Never-
theless, due to its parallel architecture model of radiobi-
ology, the liver can tolerate high doses to small volumes 
as long as the mean dose to the uninvolved hepatic tissue 
is kept below the threshold for severe RILD. For single 
doses of 1.5  Gy bidaily and α/β = 2  Gy, threshold mean 
liver doses of 30–32 Gy correspond to respective biologi-
cally effective doses (BEDs) of 52.5–55.1 Gy [11]. Further 
potential severe side-effects include gastric and bowel 
ulcers or perforations and chest wall fibrosis and necro-
sis. Overall, severe toxicities ≥ grade III can occur in up 
to 12 to 35% of patients undergoing liver SBRT [12, 13].

More recently, technological advances in target defi-
nition, treatment planning and methods of image guid-
ance have enabled precise local ablative treatments of 
small hepatic lesions by applying SBRT. SBRT allows for 
safe delivery of large single doses of highly conformal 
radiation with steep dose gradients to the surrounding 
healthy tissue over a limited number of fractions. Due to 
its spatial precision, SBRT permits the administration of 
tumoricidal radiation doses to hepatic metastases, while 
sparing organs at risk (OARs) including the surrounding 
healthy hepatic tissue and hence lowering toxicity. Sev-
eral retrospective and prospective series reported 1- and 
3-year local control (LC) rates of 56–100% and 45–100% 
following SBRT for liver metastases, respectively [12, 14–
18]. Similar to pulmonary SBRT, a dose–response rela-
tionship is assumed for hepatic SBRT [14, 18]. A recent 

meta-analysis by Ohri et  al. reported significantly supe-
rior 3-year LC of 93% for hepatic metastases treated with 
biologically effective doses (BEDs) exceeding 100 Gy than 
for those irradiated with BEDs < 100  Gy with 3-year LC 
of only 65% [18]. However, metastases in close proximity 
to organs at risk (OARs) (stomach, duodenum, bowel) as 
well as large central metastases often cannot be treated 
with sufficiently high doses due to the increased risk of 
toxicity [19–21]. The applied maximum dose to the stom-
ach and the bowel is known to significantly correlate with 
the risk of severe gastrointestinal toxicity [22]. Hence, 
currently only lower total doses have been applied for 
such lesions reducing the possibility of long-term local 
control.

Abdominal organs such as the liver and respective 
tumors are subject to movement caused by breathing and 
positional drifts in the body of several centimeters dur-
ing treatment [23–26]. Motion management strategies 
are therefore crucial for a precise and safe application of 
high-dose liver SBRT. Clinically established strategies for 
motion compensation include breath hold techniques or 
continuous irradiation in free breathing with an internal 
target volume (ITV) [12, 27, 28]. The ITV concept, which 
is most widely used, accounts for tumor movement by 
incorporating tumor motion on several breathing phases 
assessed by a 4-dimensional (4D) CT [29]. As long as 
fraction times do not exceed a certain time and suffi-
cient margins are provided, the ITV can be regarded as 
a robust concept for the consideration of tumor motion 
[30].

In routine clinical practice, low dose computed 
tomography scans (“cone-beam CT” (CBCT)) are gen-
erally used for daily image guidance of patient position-
ing, tumor location and alterations in patient anatomy 
(image-guided radiotherapy, IGRT). However, image-
guidance for hepatic SBRT is challenged due to low 
tumor visibility in CBCT images and related soft tissue 
contrast. Consequently, for precisely targeting hepatic 
metastases, some centers invasively implant fiducial 
markers in the liver near the tumor for topographic 
orientation [31]. Furthermore, daily application of 
CBCTs is accompanied by the exposure of an additional 
amount of radiation dose, which in turn might theo-
retically even lead to an increased risk of secondary 
malignancies [32]. For treatment planning, magnetic 

Trial registration: The study has been prospectively registered on August 30th, 2021: Clinicaltrials.gov, “Magnetic 
Resonance‑guided Adaptive Stereotactic Body Radiotherapy for Hepatic Metastases (MAESTRO)”, NCT05027711.
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resonance imaging (MRI) has gained a fundamental 
role in daily clinical practice, especially with regard to 
detecting and characterizing abdominal malignancies, 
such as hepatobiliary cancer and liver metastasis [33]. 
MRI with its superior soft tissue contrast enhances 
tumor delineation by enabling superior distinction 
between cancerous and normal tissues [34]. Addition-
ally, functional MRI with modern, optimized sequences 
allows for non-invasive assessment of tissue perfusion, 
diffusion or cellular density, exceeding the morphologi-
cal characterization of conventional MRI [35, 36].

MR-guided radiotherapy (MRgRT) has recently 
become clinically available, providing an excellent soft 
tissue contrast for precise detection of the tumor posi-
tion and potential daily changes in patient anatomy 
without additional radiation dose [37, 38]. MR-guid-
ance further offers the possibility to visualize tumor 
volume and nearby OARs during the whole treatment 
session (cine MRI). Safety margins and hence the irra-
diated volume can be decreased for hepatic MR-guided 
SBRT, thereby reducing the risk of potential toxicity 
[39, 40]. Hepatic SBRT of smaller target volumes might 
offer the possibility of dose escalation for increasing 
local control.

MRgRT further allows for online plan adaptation in 
response to specific changes in tumor and OAR anat-
omy that may occur during the course of treatment. In 
conventional radiotherapy, one treatment plan is gener-
ated based on the patient anatomy during simulation CT 
imaging. However, significant organ motion is known to 
occur between different treatment fractions, e.g. due to 
varying filling of hollow organs or tumor shrinkage in 
response to therapy (interfractional organ motion) [41, 
42]. MRgRT enables daily imaging of sufficient quality 
to permit immediate plan adjustments in response to 
the anatomy of the day, while the patient keeps lying on 
the treatment couch [37, 43–45]. Online plan adaptation 
allows for superior sparing of OARs and offers the pos-
sibility for dose escalation hereby potentially improving 
local control rates [40, 44]. Particularly for hepatic metas-
tases located near the liver margin, superior visualiza-
tion before and during irradiation allows a safe treatment 
with high doses near organs such as bowel or stomach, 
where positional uncertainties could result in a dose that 
exceeds OAR tolerance [46]. With real-time imaging, 
treatment plans for hepatic metastases can be adapted as 
needed and RT doses may be better personalized.

Consequently, oncologic treatments with hybrid MRI-
Linear accelerators might improve treatment outcome 
both with regard to tumor response and treatment 
related side effects, as for the possibility of monitoring 
treatment related changes by different morphologic and 
functional MRI sequences.

Up to now, studies for MRgRT of hepatic lesions are 
scarce with mainly retrospective analyses, observational 
studies and small case series, limited to a maximum of 21 
patients with liver metastases per study [39, 40, 46–52]. 
However, MRgRT is very staff-intense and time-con-
suming compared to standard CT-guided hepatic SBRT 
[53, 54]. Hence, prospective studies are needed to assess 
which patients profit most from this new technique. The 
aim of the present study is therefore to evaluate poten-
tial benefits of MRgRT compared to ITV-based SBRT as 
one of the current, and probably the most widely-used, 
state-of-the-art standard techniques. Non-inferiority 
of MRgRT compared to standard ITV-based SBRT for 
hepatic metastases will be evaluated in respect to gas-
trointestinal and hepatobiliary toxicity ≥ grade III. Spe-
cial attention will be paid to whether MRgRT offers a 
potential for dose escalation in case of critical proximity 
of hepatic metastases to gastrointestinal OARs, currently 
limiting application of a sufficient BED of ≥ 100  Gy in 
certain cases.

Methods/design
Trial aim
The MAESTRO trial compares online adaptive MR-
guided SBRT with state-of-the-art ITV-based SBRT of 
hepatic metastases to strive for prospective, randomized 
evidence regarding toxicity as well as potential dosimet-
ric and clinical advantages of oMRgRT for dose escala-
tion in critically located hepatic metastases adjacent to 
radiosensitive OARs.

Trial design
The MAESTRO trial is a multi-center, prospective three-
armed phase II study. It has been designed by the study 
initiators at the Department of Radiation Oncology of 
the University of Heidelberg. The trial is performed at 
the University of Heidelberg, Department of Radiation 
Oncology and at University Hospital, LMU Munich, 
Department of Radiation Oncology. Further study sites 
might be included. A list of study sites can be obtained 
from the corresponding author on request. The Univer-
sity of Heidelberg is responsible for the coordination and 
trial management, as well as quality assurance including 
reporting, monitoring and database management. The 
current version of the study protocol is version 1.4 from 
November, 19th 2021 (Additional file 1). The study work-
flow and treatment arms are depicted in Fig. 1. At least 82 
patients fulfilling the inclusion criteria will be enrolled.

Inclusion criteria
Patients with hepatic metastases of a solid malignant 
non-hepatic primary tumor (no hepatocellular or chol-
angiocellular carcinoma, no germ cell tumor, leukemia or 
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lymphoma) meeting all of the following criteria are con-
sidered for admission to the trial:

• 1–3 Active hepatic metastases confirmed by pre-
therapeutic MRI

• Indication for SBRT of 1–3 hepatic metastases
• Maximum diameter of each hepatic metasta-

sis ≤ 5  cm (in case of 3 metastases: sum of diame-
ters ≤ 12 cm)

• Age ≥ 18 years of age

Fig. 1 Trial flow‑chart
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• Karnofsky Performance Score ≥ 60% / ECOG grade 
0–2

• Ability to lie still on the radiotherapy treatment 
couch for at least one hour

• Ability to hold one’s breath for more than 25 s
• For women with childbearing potential, adequate 

contraception
• Ability of subject to understand character and indi-

vidual consequences of the clinical trial
• Written informed consent (must be available before 

enrolment in the trial).

Exclusion criteria
Patients presenting with any of the following criteria will 
not be included in the trial:

• Patients after liver transplantation
• Impairment of liver function to an extent contraindi-

cating radiotherapy (to the discretion of the treating 
radiation oncologist)

• Active acute hepatic/biliary infection (e.g. hepatitis, 
cholangitis, cholecystitis)

• Previous radiotherapy of the hepatobiliary system, if 
previous and current target volumes overlap

• Patients who have not yet recovered from acute tox-
icities of prior therapies

• Claustrophobia
• Pregnant or lactating women

Contraindications against performing contrast-
enhanced MRI scans (pacemakers or other implants 
making MRI impossible, allergy to gadolinium-based 
contrast agent)

Participation in another competing clinical study or 
observation period of competing trials

Concomitant systemic therapy or other anti-tumor 
medication are not part of the study treatment and are 
only allowed after consultation with the treating radia-
tion oncologist.

All patients receive a pre-treatment hepatic MRI for 
diagnostic and treatment planning purposes.

Randomization
Patients are randomized according to initial treatment 
planning. If a BED ≥ 100 Gy can be achieved with stand-
ard ITV-based planning, patients are randomized to 
MRgRT (arm A) or ITV-SBRT (arm B) in a 1:1 fashion. 
If a BED ≥ 100 Gy (α/β = 10 Gy) cannot be achieved with 
ITV-SBRT planning, the patient is treated with the high-
est possible dose using MRgRT (arm C). To achieve com-
parable intervention groups (arms A and B), patients are 
allocated in a concealed fashion in a 1:1 ratio by means of 

randomization using a centralized web-based tool (www. 
rando mizer. at). Randomization is stratified with respect 
to the factor center. Block randomization with varying 
block lengths will be performed to achieve in total equal 
group sizes for randomization.

Treatment planning and dose prescription
Patient eligibility for SBRT is tested before enrollment 
in the trial. Training aims to enhance the ability to fol-
low respiratory instructions including free breathing and 
deep inspiration breath-hold.

In a first step, treatment planning is performed with 
contrast-enhanced and non-enhanced CT scans in free 
breathing in a supine position. Furthermore, patients 
undergo a 4D-CT with typically 8 phases to assess tumor 
motion in free-breathing. Patients are immobilized 
according to standard practice in the specific center. 
Based on pre-therapeutic MRI and planning CT, SBRT is 
planned using an internal target volume (ITV) concept. 
Target volume delineation for ITV-based SBRT is per-
formed as follows:

• Gross tumor volume (GTV): macroscopic, contrast-
enhanced tumor in the planning MRI and, if defin-
able, in the planning CT

• Internal Target Volume (ITV): sum of all GTV 
contours derived from different breathing phases 
assessed via 4D-CT

• Clinical Target Volume (CTV): ITV + 5 mm
• Planning Target Volume (PTV): CTV + at least 

5  mm, depending on the applied image-guidance 
(e.g. CBCT)

Dose is prescribed to the surrounding 65–95% isodose 
(preferably: 65–80% isodose) in up to 10 fractions. For 
hepatic metastases, α/β = 10  Gy is assumed. Dose con-
straints for OARs are summarized in Table 1. These dose 
constraints resemble UK Consensus on Normal Tissue 
Dose Constraints for Stereotactic Radiotherapy [55]. 
Further dose constraints of normal tissue are respected 
according to German and international guidelines [12, 
55, 56]. If a BED of ≥ 100  Gy can be achieved with an 
ITV-concept, patients are randomized to arms A or 
B. If a BED of ≥ 100  Gy is not achievable using an ITV 
approach, patients are treated with MRgRT in arm C 
without randomization.

In a second step, patients to be treated with MRgRT 
receive a simulation at the MR-Linac for MRgRT 
planning. If necessary, they also undergo a specific 
planning CT in deep-inspiration breath-hold (non-
contrast-enhanced). In the MRgRT arms, patients are 
immobilized in supine position, and fitted with the MRI 
receiver coils.

http://www.randomizer.at
http://www.randomizer.at
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For MRgRT (arms A and C), target volume delineation 
is performed as follows:

• Gross tumor volume (GTV): macroscopic, contrast-
enhanced tumor in the planning MR and, if definable, 
in the planning CT

• Clinical Target Volume (CTV): GTV + 5 mm
• Planning Target Volume (PTV): CTV + 3 mm

Dose prescription and constraints for MRgRT are the 
same as for ITV-based SBRT as described above. In arm 
A, a BED of ≥ 100  Gy must be prescribed. In arm C, 
patients are treated via MRgRT with the highest achiev-
able dose as deemed by the treating radiation oncologist.

For MRgRT (arms A and C), daily OAR contour adap-
tion is performed within the region  PTVexpand slightly 
adapted from the recommendations by Bohoudi et  al. 
[44]. The  PTVexpand is the PTV enlarged by 3  cm in 
medio-lateral and anterior–posterior direction as well as 
1  cm in the cranio-caudal direction. The need to adapt 
the treatment plan is decided upon by the treating phy-
sician based on dose prediction. For MRgRT, real-time 
cine MR imaging is used for respiratory gating. Gating 
thresholds are defined by the treating physician.

Trial objectives
The primary endpoint is defined as the occurrence of 
treatment-related gastrointestinal or hepatobiliary tox-
icity of grade III or higher according to Common Ter-
minology Criteria for Adverse Events (CTCAE) V5.0 
assessed within the first year after SBRT. The primary 
aim of the study is the assessment of non-inferiority of 
MRgRT to ITV-SBRT regarding the primary endpoint, 
assuming a non-inferiority margin of δ = 10%. Toxicity 
of CTCAE III° or higher is generally low, between below 
1% [57] and 7.7% [46] according to published literature. 

Therefore, a non-inferiority-margin of δ=10% is deemed 
adequate.

Secondary objectives include further toxicity according 
to CTCAE V5.0, quality of life according to EORTC QLQ 
C-30 and EORTC QLQ LMC-21, local control (treated 
lesions), locoregional control (whole liver), distant tumor 
control, progression-free survival (PFS) and overall sur-
vival (OS).

QoL will be measured with the help of the validated 
30-item self-assessment questionnaire of the European 
Organization for Research and Treatment of Cancer 
(EORTC QLQ-C30, version 3.0). It is composed of five 
multi-item functional scales (physical, role, emotional, 
cognitive, and social function), three multi-item symp-
tom scales (fatigue, pain, nausea/vomiting) combined 
with a global health and quality-of life scale. The other six 
single items assess further symptoms (dyspnea, insomnia, 
appetite loss, constipation and diarrhea) that are often 
reported by cancer patients as well as financial difficulties 
[58]. The QLQ-C30 questionnaire will be complemented 
with the colorectal liver cancer module of the EORTC 
(QLQ-LMC-21), initially designed for patients with colo-
rectal liver metastases [59, 60]. QLQ-LMC-21 comprises 
another 21 items in five scales (nutritional, fatigue, pain, 
emotional) and six single items assessing further symp-
toms (weight, loss of taste, xerostomia, oral mucositis, 
paresthesia, jaundice).

For patients in the MRgRT arms, an in-house devel-
oped patient-reported questionnaire will be applied after 
the first fraction of radiotherapy and at the end of radio-
therapy to assess acceptance of MR-guided radiotherapy 
[53]. The questionnaire consists of questions regarding 
potential MR-related experiences and complaints (e.g. 
noise, bore size, fixation with coils). Furthermore, the 
perception of their active role during gated dose delivery 
SBRT is assessed. Items are scored using a 5-point scale.

Table 1 Dose constraints for organs at risk depending on fractionation

CTV, clinical target volume;  Dxcm3, dose which is received by less than ×  cm3

Organ at risk Dose constraints (Gy)

Number of fractions 3 Fractions 5 Fractions 6 Fractions 8 Fractions 10 Fractions

Uninvolved liver (= liver‑
CTV) ≥ 700  cm3

 < 19.2  < 24  < 26  < 29  < 32

Stomach  D0.5cm3  < 22.2  < 35  < 37  < 40  < 43.5

Duodenum  D0.5cm3  < 22.2  < 35  < 37  < 40  < 43.5

Bowel  D0.5cm3  < 25.2  < 35  < 37  < 40  < 43.5

Sigma/Rectum  D0.5cm3  < 28.2  < 34  < 37  < 41  < 44.0

Esophagus  D0.5cm3  < 25.2  < 34  < 36  < 40  < 43.5

Heart  D0.5cm3  < 25.0  < 29.0  < 31.5  < 60.0  < 66.0

Kidneys Mean dose  < 8.5  < 10.0  < 10.8  < 11.5  < 12.0

Spinal cord  D0.1cm3  < 21.6  < 27.0  < 29.0  < 32.0  < 35.0
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MR-guided and ITV-based SBRT will be compared 
with respect to toxicity and local control, treatment 
plan and irradiation parameters including potential BED 
increase and OAR dose decrease using MRgRT as well 
as required adaption frequency and dosimetric benefit 
of adaption for MRgRT. Morphological and functional 
changes in MRI during and after radiotherapy will be 
evaluated, in particular with regard to dose distribution 
[61, 62]. Potential prognostic biomarkers such as plasma 
levels of hepatic growth factor (HGF) and interleukines 
(e.g. IL-6 and IL-8) will also be assessed [63].

Study visits and follow‑up
After screening of patients for inclusion and exclusion 
criteria, successful completion of breath hold assessment 
as well as having received informed consent, appropriate 
patients will be recruited to the trial.

Study relevant data will be collected and patient his-
tory will be assessed, including demographic data, medi-
cal history, physical examination, comorbidities and 
concomitant medication, laboratory evaluation includ-
ing blood count, liver function parameters and potential 
biomarkers.

The baseline visit (T0) will be scheduled after trial 
inclusion and prior to the first fraction of SBRT. During 
the baseline visit (T0) a clinical assessment, as well as 
analysis of quality of life (using EORTC QLQ C-30 and 
EORTC QLQ LMC-21) is planned. Baseline symptoms 
and toxicities will be assessed according to CTCAE V5.0.

Further evaluations will be scheduled during SBRT (mid 
of treatment, T1), at the last day of treatment (T2), 6 weeks 
after radiotherapy (T3), every 3 months after radiotherapy 
during the first year (T4-7) and then every 6 months up to 

completion of a follow-up of at least 2 years (T8, T9). Study 
visits are also depicted in the flowchart and in Table 2.

Statistical analysis
The sample size calculation is based on the primary com-
parison of the rates of gastrointestinal and hepatobiliary 
toxicity CTCAE of grade III or higher between the two 
treatment groups (arm A and B). A total of 62 patients are 
needed to assess non-inferiority by means of a Farrington-
Manning test of MRgRT to ITV-SBRT with a power of 80% 
at a one-sided significance level of 10%, with allowance for 
5% loss to follow-up and with the use of a clinically rel-
evant non-inferiority margin of δ =10%, when assuming 
toxicity rates of pMRgRT = 2% and pITV-SBRT = 5%. It is 
expected that using a shifted Mantel–Haenszel type test for 
non-inferiority adjusting for the factor centre will yield an 
increased power.

To achieve a comparable arm C (BED < 100 Gy with ITV-
SBRT) for the secondary objectives, the study will recruit 
patients until at least 20 analyzable patients are present 
in arm C. Due to the fact that patients in arm C are still 
treated with the best possible treatment, this approach is 
ethically justifiable.

Sample size calculation was performed using PASS 
16.0.3.

The primary analysis will be based on the full analysis 
set (FAS) including all enrolled patients according to the 
intention to treat principle. The hypotheses for the primary 
analysis are

H0 : pMRgRT − pITV−SBRT ≥ δvs.

H1 : pMRgRT − pIITV−SBRT < δ

Table 2 Screening, treatment and follow‑up visits

Screening Baseline 
(before 
SBRT)

Mid of SBRT End of SBRT Follow‑up

6 weeks 
after 
SBRT

1st year after 
SBRT: every 
3 months

2nd year after 
SBRT: every 
6 months

T0 T1 T2 T3 T4‑7 T8‑9

Medical history x x x x x

EORTC QLQ‑C30 and LMC21 x x x x x

MR‑Linac questionnaire (only treatment 
arm A)

x x

Documentation of medication x x x x x

Documentation of Adverse Events x x x x x

Case report form x x x x x

Blood test x x x x x

Breathhold assessment (> 25 s?) x

MRI (c = contrast enhanced, n = with‑
out)

x (c) x (n) x (n) x (c) x (c) x (c)
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(δ =10% non-inferiority margin), where pMRgRT and 
pITV−SBRT are the probabilities for an occurrence of 
a gastrointestinal and hepatobiliary toxicity CTCAE 
of grade III or higher for the MRgRT (arm A) and the 
ITV-SBRT (arm B) group, respectively. Non-inferiority 
of MRgRT as compared to ITV-SBRT will be tested at a 
one-sided significance level of α = 0.1 using a Mantel–
Haenszel type test for non-inferiority adjusting for the 
stratum “centre”. Missing values for the primary outcome 
will be imputed using multiple imputation. Sensitivity 
analyses will be performed by means of conducting an 
analysis for the per-protocol (PP) population (based on 
those patients without major protocol violation).

Analysis of the secondary endpoints will also be 
based on the FAS. In order to compare all three treat-
ment groups with regard to the primary endpoint, a 
(descriptive) Chi-squared test will be used. The second-
ary endpoints distant tumor control, overall survival and 
progression-free survival will be analyzed using Kaplan–
Meier-Curves. The 1-year and 2-year survival rates as 
well as the median survival rate will be provided along-
side two-sided 95%-confidence intervals. Descriptive 
pairwise log-rank tests stratified for “centre” will be con-
ducted to compare all three treatment groups. The sec-
ondary endpoints local and locoregional control will be 
analyzed via cumulative incidence functions, taking the 
competing event death into account.

The other secondary endpoints and the patients’ char-
acteristics will be displayed by descriptive measures. 
Descriptive pairwise comparisons between all three 
treatment groups will be performed. Continuous vari-
ables will be described using number of non-missing 
values, mean, standard deviation, median, Q1, Q3, mini-
mum and maximum. For binary or categorical variables 
absolute and relative frequencies will be provided. Fur-
thermore, two-sided 95%-confidence intervals will be 
calculated.

The safety analysis is based on the safety set including 
all patients who received one of the study treatments, and 
includes calculation of frequencies and rates of adverse 
and serious adverse events together with corresponding 
95%-confidence intervals.

Further details of the analysis will be specified in the 
statistical analysis plan (SAP) which will be finalized 
before database closure. All analyses will be done using 
SAS version 9.4 or higher.

Discussion
SBRT of hepatic metastases can achieve excellent long-
term local control rates if a sufficient BED is achieved 
[18, 57]. In general, a BED exceeding 100  Gy should 
be aspired. Following technological innovations, pre-
scribed BED to hepatic metastasis has increased over 

the last decades [57]. However, application of a suffi-
cient BED is still limited in metastases close to radio-
sensitive OAR as well as in large central metastases 
[19–21]. MRgRT with its technical innovations of real-
time imaging, gating and online on-table adaption is 
believed to improve hepatic SBRT. First publications 
on MR-guided SBRT of liver lesions show promising 
results [39, 40, 46–52]. With a maximum of 21 patients 
with liver metastases per study and no randomized 
controlled trials (RCT), high-level evidence is still 
missing.

However, high-level evidence is needed to justify the 
prolonged treatment duration and extensive expenses 
related to MRgRT [64, 65]. As long-term clinical evi-
dence is lacking, such is data on the economic impact of 
MRgRT on health systems. For MRgRT of prostate can-
cer, a modelled analysis predicted cost-effectiveness com-
pared to normofractionated radiotherapy. But compared 
to other hypofractionated irradiation techniques, MRgRT 
could only be cost-effective in the case of significant 
reduction of adverse events [66]. This might also apply to 
liver SBRT. In a time-driven activity-based costing com-
parison of 5-fraction SBRT of hepatocellular carcinoma 
using either a CBCT-equipped linac and implanted fidu-
cial markers or a MR-Linac, MRgRT costs were estimated 
to be 18% higher compared to CBCT-based SBRT ($8622 
vs. $7306). Notably, the addition of adaptive treatments 
(which is one of the main drivers of increased efforts and 
costs in MRgRT) further increased the costs by $529 per 
adapted fraction [67]. With all of this considered, MRgRT 
can be estimated to be more expensive than ITV-based 
SBRT. Therefore, it is important to identify patients who 
benefit most from MRgRT.

A search of the ClinicalTrials.gov database revealed five 
other recruiting studies on adaptive MRgRT of hepatic 
metastases:

• NCT04115254, an umbrella protocol for a phase I-II 
study on adaptive MRgRT of various disease sites, 
including the liver. The trial will assess feasibility, 
safety and efficacy of MRgRT without an intrinsic 
control group [68].

• NCT04682847: In this single-arm prospective obser-
vation study, 25 patients with primary and meta-
static hepatic malignancies and hepatic cirrhosis will 
receive Iron Oxide Nanoparticles (SPION) Cellular 
Magnetic Resonance Imaging in combination with 
MRgRT [69].

• NCT04242342: In this single group assignment 
study, 46 patients with primary and secondary liver 
tumors will undergo MRgRT. Depending on dis-
tance to OAR, prescribed dose will be 5 × 10 Gy or 
6 × 10 Gy [70].
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• NCT03582189: This is a single arm, prospec-
tive feasibility study in 30 patients (10 of which 
with liver metastases), evaluating an off-line MR 
approach with diagnostic MR imaging before every 
fraction and potential adaption [71].

• NCT04020276: In this single-group assignment 
study, 48 patients with liver metastasis of any pri-
mary will be treated in 5 fractions to a safe maxi-
mum tolerated dose (maximum dose 80 Gy in five 
fractions respecting predefined dose constraints), 
with dose limiting toxicity defined as grade 3 or 
higher. An additional confirmatory expansion 
cohort of patients with liver metastases from colo-
rectal cancer only will be recruited afterwards [72].

Based on the present clinical evidence for liver SBRT, 
the main factor for compromised local control seems 
to be an impaired BED. Given that local control is 
favorable in most cases for a BED > 100 Gy, we believe 
that in metastases far from radiosensitive OAR, the 
clinically more relevant benefit of MRgRT might be a 
reduction of side effects instead of a further dose esca-
lation wherever possible. In fact, radiomic approaches 
during SBRT might even allow for identification of 
well-responding metastases and consecutive dose de-
escalation in the future [64].

For critically localized metastases close to sensitive 
OAR, dose escalation while simultaneously keeping 
OAR dose and thus toxicity low is of course the main 
potential benefit of MRgRT.

In a first step, the present study aims at demonstrat-
ing safety of MRgRT by proving non-inferiority to 
standard ITV-based SBRT with regard to gastrointes-
tinal and hepatobiliary toxicity ≥ grade III. In a second 
step, we plan to demonstrate the possibility of isotoxic 
dose escalation in critically located hepatic metastases 
(study arm C), where a sufficient BED would not be 
achievable with state-of-the-art standard ITV-based 
SBRT.

None of the previously published work or currently 
recruiting trials on oMRgRT is a randomized con-
trolled trial. As a comparison of randomized controlled 
trials in oncology with observational paired analyses 
showed, the latter failed to reproduce or predict RCT 
results better than by mere chance [73]. Therefore, we 
opted for a randomized controlled study design.

The MAESTRO trial aims to provide higher-level evi-
dence for the potential clinical benefit of MR-guided, 
online adaptive SBRT for dose escalation in critically 
located hepatic metastases adjacent to radiosensitive 
OARs.
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