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Delta radiomics analysis of Magnetic 
Resonance guided radiotherapy imaging data 
can enable treatment response prediction 
in pancreatic cancer
M. R. Tomaszewski1,5, K. Latifi2, E. Boyer3, R. F. Palm3, I. El Naqa4, E. G. Moros2, S. E. Hoffe3, S. A. Rosenberg3, 
J. M. Frakes3 and R. J. Gillies1*   

Abstract 

Background:  Magnetic Resonance Image guided Stereotactic body radiotherapy (MRgRT) is an emerging technol-
ogy that is increasingly used in treatment of visceral cancers, such as pancreatic adenocarcinoma (PDAC). Given the 
variable response rates and short progression times of PDAC, there is an unmet clinical need for a method to assess 
early RT response that may allow better prescription personalization. We hypothesize that quantitative image feature 
analysis (radiomics) of the longitudinal MR scans acquired before and during MRgRT may be used to extract informa-
tion related to early treatment response.

Methods:  Histogram and texture radiomic features (n = 73) were extracted from the Gross Tumor Volume (GTV) in 
0.35T MRgRT scans of 26 locally advanced and borderline resectable PDAC patients treated with 50 Gy RT in 5 frac-
tions. Feature ratios between first (F1) and last (F5) fraction scan were correlated with progression free survival (PFS). 
Feature stability was assessed through region of interest (ROI) perturbation.

Results:  Linear normalization of image intensity to median kidney value showed improved reproducibility of feature 
quantification. Histogram skewness change during treatment showed significant association with PFS (p = 0.005, 
HR = 2.75), offering a potential predictive biomarker of RT response. Stability analyses revealed a wide distribution of 
feature sensitivities to ROI delineation and was able to identify features that were robust to variability in contouring.

Conclusions:  This study presents a proof-of-concept for the use of quantitative image analysis in MRgRT for treat-
ment response prediction and providing an analysis pipeline that can be utilized in future MRgRT radiomic studies.
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Pancreatic cancer is a deadly disease with survival statis-
tics remaining poor despite intensive research. Locally 
advanced Pancreatic Ductal Adenocarcinoma (PDAC) 
has a dismal 5-year survival rate of around 9% [1], with 
approximately 1/3 of patients expected to die of local 

progression [2]. Evaluating therapeutic response of local 
disease as early as possible is therefore crucial, as maxi-
mization of the therapeutic impact to the primary site 
is critical. For locally advanced patients, evidence has 
been accumulating that hypofractionated radiotherapy, 
i.e. stereotactic body radiotherapy (SBRT), can improve 
both local control and overall survival for these patients 
[3]. However, it remains a significant challenge to deliver 
high dose SBRT to pancreatic tumors given their motion 
and their close proximity to normal structures, such as 
bowel, that are sources of dose-limiting toxicity [4]. MRI 
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guided radiotherapy (MRgRT) is a newer form of radio-
therapy that allows for real-time adaptive treatment, 
tracking of tumor/normal organs, and allows dose escala-
tion to improve the therapeutic window [5].

The excellent soft tissue contrast of MR methods com-
pared to CT provides an opportunity for a dramatic 
increase in the role of MR in radiotherapy response 
detection. Through real time imaging, MRgRT technol-
ogy supplies a dynamic imaging record of tumor changes 
with every radiation treatment. This information has 
been used purely for improved planning (better tissue 
segmentation) and patient setup for radiation delivery. 
We hypothesize that the wealth of image data provided 
by MRgRT could also be used to provide a quantitative 
assessment of intermediate responses and direct the sub-
sequent treatment fractions accordingly. Understanding 
the patterns of response through automated analysis of 
imaging data will enable closer monitoring of the tumor 
changes after irradiation, informing clinical decisions. 
This is particularly relevant in the setting of those tumors 
that significantly involve the adjacent vasculature such 
as those patients with locally advanced pancreatic can-
cer (LAPC); if enough regression occurs, these tumors 
may become resectable with negative margins (R0 resec-
tion). Decision making at the 4–6 week time point post 
treatment involves multidisciplinary review which is 
often complicated by the post MRgRT soft tissue edema. 
Although the decision to proceed with resection is highly 
subjective as no consensus guidelines exist [6], some 
institutions have developed tools to improve predic-
tion of resectablility, including data showing that 20% 
of LAPC patients ultimately could be resected with an 
improved median overall survival [7]. Automated analy-
sis of the imaging data during treatment could increase 
the reliability of predicting SBRT success and impact the 
decision to proceed with resection. PDAC patients may 
benefit particularly from the advances in MR-based ther-
apy response assessment given their high risk of failure, 
especially in the unresectable cases.

The emerging field of machine learning in image ana-
lytics, or “radiomics”, can provide powerful tools to ena-
ble such analysis of the dense MRgRT data. Employing 
automated high-throughput image feature extraction 
methods to quantify subtle patterns in the daily images, 
radiomic analyses [8] have shown great promise for dis-
ease prognosis or prediction of treatment response, 
including radiotherapy [9]. In early proof-of-concept 
MRgRT radiomic studies, Boldrini et al. [10] considered 
changes in extracted features using ratios pre- to post-
treatment in 16 rectal cancer patients treated on a 0.35T 
MRgRT system showing promise for response correla-
tion, later they followed up with another study in pan-
creatic cancer [11]. Simpson et  al. [12] looked at static, 

absolute values of radiomic features derived from 0.35T 
MRgRT scans for response prediction in 20 pancreatic 
cancer patients. With the increasing interest and prom-
ise in the field, there is an unmet need for establishing 
a robust MRgRT image quantification framework to 
extract the informational content of the imaging data 
and ensure reproducibility and reliability of extracted 
features.

Unlike Computed Tomography or Positron Emission 
Tomography, where pixel/voxel values are related to 
physical and/or functional properties of the object, abso-
lute MRI signal intensities have no inherent biophysical 
meaning thereby complicating their radiomic analysis. 
Image pre-processing and normalization are usually 
required for efficient quantification of MR signal inten-
sities [13]. Development of an appropriate normalization 
framework is therefore crucial also for quantitative anal-
ysis of MRgRT image data, yet has not been discussed 
before specifically in the context of this technology. 
Therefore, in this study an image processing and normali-
zation framework is developed, and feature robustness 
assessed, with the aim of simplifying and improving the 
robustness of future MRgRT radiomics analyses.

The short history of MRgRT in routine clinical use 
limits the availability of patient data, affecting the study 
design and statistical approaches used in this work. Mul-
tivariate, machine learning radiomic analyses cannot 
confidently be applied in such studies highlighting the 
importance of feature stability and validation to ensure 
reproducibility and minimize overfitting [14]. The work 
described herein is focused on quantification and uni-
variate analysis of changes in standardized [15] radiomic 
(histogram and texture) image features during treatment.

In this study, we present a robust radiomic framework 
for quantification of image changes during radiotherapy 
in pancreatic adenocarcinoma, demonstrating the feasi-
bility of the approach by successful prediction of disease 
progression in a cohort of 26 borderline/locally advanced 
PDAC patients who did not undergo surgery after SBRT.

Methods
Data collection
The Institutional Review Board at the University of South 
Florida approved (IRB #20383) and waived the informed 
consent requirement for retrospective analysis in this 
study.

Imaging and follow-up data were compiled from a 
total of n = 26 patients treated with 5 fractions of SBRT 
on the MRidian (ViewRay Inc., Cleveland, OH) magnetic 
resonance guided radiotherapy system (also known as a 
MRI-Linac system) at the Moffitt Cancer Center and that 
did not undergo resection. The patients were treated to 
a median dose of 50 Gy to Gross Tumor Volume (GTV). 
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Progression Free Survival (PFS) was quantified time 
from MRgRT to latest follow-up or a (local or distant) 
progression event. Local progression was assessed via 
RECIST 1.1 using largest tumor diameter in CT scans 
first obtained approximately 1 month after RT and then 
every 3 months for one year. An increase of 20% or more 
represented progressive disease, and a decrease of 30% 
or more represented partial response. Stable disease 
was defined as any change between a 20% increase and 
a 30% decrease. Distant progression was determined by 
US guided biopsy confirming metastatic disease (most 
often to the liver), pathology confirmed nodules discov-
ered during exploratory laparotomy (once in liver, once 
in peritoneum), or by enlarged nodules outside the pan-
creas on imaging (two instances). Patient demographics 
are detailed in Table 1.

Each patient received 6 MRI scans with the same pro-
tocol, first at simulation (SIM), approximately 14–21 days 
before the treatment start, and then immediately prior 
to delivery of each of the 5 radiation fractions (F1-F5). 
Images were acquired on the MRIdian 0.35T MRI-Linac 
system using a balanced steady state free precession 
pulse sequence [16] using the following parameters: TR/
TE = 3.33/1.43 ms, flip angle = 60 deg, 310 × 360 points, 
144 slices, voxel size 1.5 × 1.5 × 3 mm. Gross Tumor Vol-
ume (GTV) was segmented by the radiation oncologist 
in the SIM scan, and the scans F1–F5 were subsequently 

overlaid and co-registered online to the SIM scan. Local 
manual rigid registration in 3 dimensions was performed 
in MRIdian treatment console software, directly prior to 
delivery of each radiation fraction to ensure the GTV is 
aligned to its position in the SIM scan. This rigid regis-
tration was applied to the GTV contour to propagate it 
from SIM to F1-F5 scans. Processing was performed in 
the Mirada software (Mirada RTx 1.8, Oxford, UK) by a 
qualified medical physicist.

Image analysis and feature extraction
All images and Gross Tumor Volume (GTV) regions of 
interest (ROI) as segmented by the radiation oncologist 
(JF and SH) were saved in DICOM format and analyzed 
in MATLAB 2018b (MathWorks Inc., city, state) using 
custom written code. No spatial interpolation of the 
images was performed as uniform voxel sizes were used 
for all scans and patients, and number of intensity bins 
for texture and histogram feature quantification was fixed 
at 64.

Prior to image feature quantification, normalization 
was performed by dividing each image by the corre-
sponding median signal value in the kidney, as practiced 
in MR radiomics [17] to account for technical intensity 
variation between imaging sessions. A Kidney ROI was 
drawn manually for each patient and in each scan in 3 
equally spaced slices through the right kidney, as shown 
in Additional file 1: Fig. S1. Right kidney was chosen as 
an organ that can be reproducibly delineated in all the 
scans with no observed image artefacts sometimes seen 
in superficial areas or towards the peripheral slices. The 
analysis and rationale behind choosing this normaliza-
tion approach is described in detail in the Results sec-
tion. ROIs of the patients’ whole abdomen cross-section 
were automatically generated through image thresh-
olding in 10 slices around the middle of GTV ROI but 
excluding the GTV. The change in median signal in the 
abdomen between the simulation and first fraction scans 
were compared to corresponding changes in the GTV, to 
quantify the contribution of systemic, technical changes 
in image intensity to GTV signal.

To avoid overfitting, given the small number of 
patients, feature extraction was initially confined to histo-
gram features [18] (see Table 2 for feature list) extracted 
from the GTV to describe the tumor image character-
istics. The ratio of each feature between last and first 
fraction (F5/F1) was quantified as a measure of imaging 
change after radiation (delta radiomics), and this metric 
was then analyzed.

In the second part of analysis, N = 62 texture radiomic 
features were also extracted in 3D from the GTV, and 
delta radiomics ratios F5/F1 calculated. These features 
included: Grey Level Co-occurrence Matrix, Grey Level 

Table 1  Patient information

Number quoted is the number of patients in each category for categorical 
variables, and median value for numerical variables, while the number in 
brackets signifies percentage of all patients in the category and 25th to 75th 
percentile range respectively. Follow-up time is quoted for patients who did not 
progress as time to censoring

Age (years) 66 (60–72)

Sex

 Female 12 (46%)

 Male 14 (54%)

Histology

 Adenocarcinoma 26 (100%)

Tumor location

 Head 21 (81%)

 Body 4 (15%)

 Tail 1 (4%)

Resectability status (at diagnosis)

 Borderline resectable 11 (42%)

 Locally advanced 15 (58%)

Induction chemotherapy

 FOLFRINOX 16 (62%)

 Gem/Abraxane 6 (23%)

  FOLFRINOX and Gem/Abraxane 4 (15%)

Time to progression (days) 120 (60–180)

Follow-up (days) 200 (111–289)
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Table 2  Feature quantification
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Run-Length Matrix, Grey Level Size Zone Matrix and 
Neighboring Gray Tone Difference Matrix features. The 
extraction protocol was consistent with the Image Bio-
marker Standardization Initiative [15] to ensure repro-
ducibility of quantification.

Spatial stability of the features was tested by compar-
ing the feature values in the SIM scan in ROIs created 
by radial erosion or expansion of the GTV by 1.5  mm 
in each slice, to simulate possible slight differences in 
GTV segmentation, and identify the least stable features 
to be avoided in further MRgRT radiomic analysis. Lin’s 
Concordance Correlation Coefficient (CCC) [19], com-
monly used for agreement quantification was then used 
to describe the robustness of the features to these small 
ROI changes.

Statistical analysis
Comparison between imaging changes and progression 
free survival was performed in the n = 26 unresected 
patients. Sixteen progression events were observed, 
with median time to progression after radiotherapy of 
4 months. Locally, a great majority of patients exhibited 
stable disease by RECIST, with 3 showing progressive 
disease, and 1 showing a partial response at latest follow-
up CT scan.

The statistical analysis was performed using RStudio 
1.2.5033 (RStudio Inc, MA, USA) interpreter. Univariate 
Cox proportional hazard regression model (coxph func-
tion, survival package in R) was used to assess the asso-
ciation between PFS and each feature ratio, separately in 
histogram and texture features, with Bonferroni-Holm 
correction applied for multiple comparisons. For features 
showing significant (p < 0.05) association, a conditional 
inference tree (ctree function, partykit package) was used 
to identify the high and low progression risk groups and 
quantify the optimal feature ratio threshold. The same 
approach was repeated for texture features.

Results
Associations between the patient characteristics and 
progression-free surival were explored. Patients treated 
with Gem/Abraxane induction therapy showed signifi-
cantly worse outcome (p = 0.005, HR = 9.45 (2.37–37.8) 
and HR = 4.63 (1.13–18.9) for Gem/Abraxane only and 
Gem/Abraxane after FOLFIRINOX, vs. FOLFIRINOX 
only). This is expected, as Gem/Abraxane tends to be 
prescribed at our institution to patients in worse overall 
condition who are less likely to tolerate FOLFIRINOX 

treatment. Resectability status at diagnosis showed no 
association with survival (p = 0.99).

Streamlined MATLAB code was written to enable inte-
grated readout of the image and segmentation data and 
metadata, co-registration of the ROIs, normalization 
and quantification of image features in one pipeline for 
multiple patients at a time. This code, available at https://​
github.​com/​mrtom​asz91/​MRgRT_​PDAC can be easily 
adapted and reused for further MRgRT image quantifica-
tion studies.

Image pre-processing is often required for quantitative 
analysis of MRI data to account for the lack of internal 
normalization. The signal intensities in the SIM and F1 
scans, when no treatment had yet been administered 
and therefore no biological trends were expected, were 
compared to identify technical signal changes unre-
lated to radiation response. As shown in a representative 
patient (Fig.  1A, top row), a clear overall change in the 
image scaling without normalization was apparent. Fol-
lowing this observation, the median signal intensity ratio 
changes between F1 and SIM scans were compared in the 
GTV vs. the rest of the abdomen, to quantify the extent 
to which the intensity changes represented global, tech-
nical scaling drifts, as opposed to tumor-specific changes. 
A significant positive correlation (Pearson r = 0.50, 
p = 0.009, Fig. 1C) was observed across the patient cohort 
between the signal ratios in the two regions, strongly 
suggesting that non-normalized GTV signal intensity is 
overwhelmingly affected by the technical image scaling 
unrelated to biological treatment response, highlighting 
the importance of pre-processing. Following normaliza-
tion to median kidney signal, the image intensity change 
in a representative patient was reduced (Fig. 1A, bottom 
row), and the global correlation to overall image scaling 
was no longer present (Fig.  1D). Normalization by divi-
sion was chosen based on the linear shape of the relation-
ship in Fig. 1C.

Notably, no significant association was observed 
between pre-treatment (simulation scan) MRgRT 
image features and the PFS (p > 0.11). The prognostic 
power of the image histogram changes for PFS was then 
investigated. A significant association between PFS and 
the F5/F1 ratio for histogram skewness was observed 
based on Cox proportional hazard model (Hazard Ratio 
2.75 (1.36–5.56), p = 0.038 post multiplicity correc-
tion). Other histogram features showed no association 
with disease progression (Table  1). The ROI volume, 
often strongly affecting feature quantification, showed 

Divided by histogram (green) and texture (blue), names of all quantified features (second column), corresponding p value of their association with Progression Free 
survival (column 3) pre and post (in brackets) multiplicity correction, and the Concordance Correlation Coefficient (CCC) values describing the spatial stability of each 
feature. P values pre-multiplicity correction are quoted to show the heterogeneity and dynamic range of associations

Table 2  (continued)

https://github.com/mrtomasz91/MRgRT_PDAC
https://github.com/mrtomasz91/MRgRT_PDAC
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no correlation with histogram skewness (p = 0.43), and 
no association with PFS (p = 0.40). Importantly the 
treatment variables -dose delivered and the number of 
days between the first and last radiation fraction were 
also not associated with PFS (p = 0.15 and p = 0.50 
respectively).

A conditional inference tree [20], a type of decision tree 
algorithm, was used to identify patient risk groups based 
on the Skewness change (Fig. 2), showing that the skew-
ness of the F5/F1 ratio threshold can be used to differ-
entiate patients with high risk of progression (Skewness 
Ratio > 0.95) from these with lower risk of progression 

Fig. 1  Linear image normalization removes global intensity variation. Images before (top row) and after (bottom row) normalization by division 
by median kidney signal are displayed. Strong global raw signal intensity changes between simulation (A) and first fraction (B) scan (when no 
treatment was administered) were observed, indicative of technical drift (no normalization, top row). This effect can be reduced by normalization 
(bottom row). The systematic correlation in image intensity changes observed between the tumor and rest of the abdomen (C), dominating the 
tumor intensity changes, is removed following image normalization (D)

Fig. 2  Histogram skewness change during treatment predicts progression free survival. Division of patients based on Skewness value ratio 
between 5th (F5) and first (F1) fraction image enables identification of high- and low progression risk groups (A). Kaplan–Maier analysis of 
progression free survival (PFS) within each group confirms a significant difference (B)
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(Skewness Ratio ≤ 0.95, Fig. 2A), with significantly differ-
ent PFS between the groups (p = 0.041, see Fig. 2B for the 
Kaplan-Maier curves).

Association with PFS was also assessed for texture 
radiomic features. Contrary to the promising value of 
histogram quantification, despite over 60 features con-
sidered, borderline significant association (p = 0.049) was 
observed for one texture feature only (Cluster Shade), 
and only prior to multiplicity correction. The results are 
shown in Table 2. None of the histogram or texture fea-
tures showed association with type of induction chemo-
therapy or resectability status.

Analysis of spatial robustness of MRgRT radiomics 
was performed for both histogram and texture features 
through quantification of feature changes following 
small changes in GTV boundary position. The Concord-
ance Correlation Coefficient (CCC) of the feature values 
after ± 1.5  mm GTV erosion and dilation, simulating 
minor differences in ROI drawing, was calculated for 
each feature as a measure of stability and the results are 
shown in Fig. 3. High heterogeneity and clear patterns by 
feature type are observed in spatial robustness (Fig. 3A). 

Good performance (CCC > 0.935) overall was measured 
for histogram features, a subset of co-occurrence matrix 
features related to inverse difference and a subset of Grey 
Level Size Zone Matrix (GLSZM) features related to 
non-uniformity. Importantly, skewness showed a good 
robustness compared to other features (CCC = 0.972, 
62nd percentile). Serving as a visual example, the skew-
ness values from shifted ROIs showed a tight distribution 
of each patient compared to the between-patient variabil-
ity (Fig. 3B). On the other hand, poor spatial robustness, 
or high sensitivity of the feature to ROI shift as small as 
1.5 mm, quantified in low CCC was noted for some fea-
tures, e.g. grey level run emphasis features, as shown for 
High Grey Level Run Emphasis (Fig. 3C), for which the 
spread of the values for the perturbed ROIs is compara-
ble to the dynamic range between patients.

Prior to treatment all but one tumor showed a mild 
positive (rightward) histogram skew (0.60 ± 0.06), with 
the group of patients more likely to progress (high-risk 
group) showing a further increase in right skewness 
during treatment (F5/F1 ratio = 1.52 ± 0.05), while the 
patients less likely to progress (low-risk group) showed 

Fig. 3  Robust analysis requires high spatial stability of features. Heat map (A) shows the distribution of Concordance Correlation Coefficient (CCC) 
for all quantified radiomic features, describing the robustness of the features to small changes in positions of the Region of Interest (ROI), calculated 
through translation of the ROI 1.5 mm in x and y. Results of this quantification for representative features with high CCC (Skewness, B) and lower 
CCC (C) are presented, showing a tighter distribution for repeated measurements for higher CCC. Bars denote distance from min to max value of the 
feature when ROI is shifted, with one bar for each patient
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a decrease in skewness to a more normal distribution 
(F5/F1 ratio 0.60 ± 0.01). The observed changes during 
treatment for representative low and high-risk patients 
and the corresponding image histograms are shown in 

Fig. 4, and while the histograms often shift considerably 
during treatment in both risk groups (Fig.  4A), these 
changes are difficult to discern visually in the images 

Fig. 4  Skewness changes during treatment are not clearly visible in the images. Histograms of the GTV signal intensity distributions at first (black) 
and last (red) fraction are shown in (A) for representative low risk (left) and high risk (right) patients. Axial slices through the body for these patients 
at first and last (5th) fraction are shown in (B) and (C) respectively, outlining the tumor cross-section in dotted white line. Magnified tumor area is 
shown in insets. 
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(Fig. 4B, C) highlighting the value of quantitative tools 
as presented in this paper.

Discussion
Magnetic Resonance Guided Radiation Therapy consti-
tutes one of the most impactful developments in recent 
radiation oncology technologies. Beyond the direct 
improvement in dose delivery precision and motion 
management, the abundance of real time imaging data 
opens significant opportunities for automated radiomic 
image quantification [8]. Our previous work highlights 
the promise of histogram change quantification for pre-
diction of radiation response in preclinical models of 
PDAC [21] in MRI. The results of this study reinforce this 
view, showing that subtle yet quantifiable changes in the 
tumor imaging characteristics during the course of SBRT 
may be strongly associated with disease progression 
in pancreatic cancer, paving the way for image-driven 
dynamic dose adaptation.

We hypothesized that the dynamic information avail-
able from the MRI scans at each radiation fraction may 
provide particularly valuable insight, quantifying the 
early effects of irradiation on the tumor. Rather than 
considering the static image features at fixed timepoints, 
the analysis was therefore focused on parameter ratios at 
last vs. first fraction delivered. Quantifying the change 
in histogram parameters, widely used in MR imaging for 
heterogeneity analysis [18], a strong association of his-
togram skewness change with progression free survival 
was observed. A measure of the asymmetry of the voxel 
intensity distribution, the skewness was found to increase 
during treatment for patients with high progression risk, 
while in non-progressing low-risk patients the skewness 
was more likely to decrease. While highly statistically 
significant and with clear mathematical meaning, the 
changes are not visually apparent, highlighting the value 
of computational radiomic analysis for identification of 
hidden imaging patterns.

Beyond demonstrating the relationship with outcome, 
the study is the first to develop the protocol for MRgRT 
image analytics. We show that linear image normaliza-
tion not only reduces signal variability between scans 
but is required to remove technical global signal drift 
and identify the tumor-specific signal intensity changes. 
As part of previously untested technical validation of 
MRgRT radiomics, we discuss the spatial robustness of 
the quantified radiomic features. The anatomical char-
acteristics of PDAC lesions, notoriously challenging to 
segment reliably, highlight the relevance of this analy-
sis. While some feature groups showed high technical 
variability following small changes in segmentation, 
suggesting poor reproducibility, the work revealed mul-
tiple robust features, promising for further radiomic 

studies. Conservative choice of small 1.5 mm ROI per-
turbation was designed to highlight the most unsta-
ble features to be avoided in future MRgRT radiomic 
analysis. Histogram features including the skewness 
were found to be highly spatially robust to these small 
changes. This is key for the clinical implementation of 
radiomic features into the clinical workflow. While this 
approach provides a robust automated framework for 
stability analysis, future work should also include direct 
measurements of inter- and intra-observer variability 
through repeated manual segmentation.

Progression free survival was chosen as the most 
appropriate and meaningful outcome metric, in line 
with the recent reports [5]. With a 60% event rate and 
follow-up as long as 13  months, the study was well-
powered for identification of the observed progres-
sion patterns. Local control was not considered as the 
great majority of patients in this study (22/26) exhib-
ited stable disease by RECIST, consistent with the low 
(10–20%) rate of local failure at 1 year in the literature.

Previous reports showed that radiomics may poten-
tially be used to quantify image textures in MRgRT 
data, and relate them to outcome in pancreatic [12] 
and rectal cancers [10, 11] both in static and delta radi-
omic setting. Given the large number of features tested 
in small patient cohorts, as well as lack of image nor-
malization, the results presented will require further 
validation. However, the rapidly increasing number of 
publications and conference presentations on the topic 
indicate significant interest in MRgRT radiomics. To 
minimize over-fitting in a small dataset, the analysis 
was limited to univariate signatures and focused firstly 
on histogram features. A larger study will be needed to 
verify the observed relationships, understand the link 
between radiomic features and treatment response, as 
well as to optimize the signatures through multivariate 
analysis. A higher-powered study may reveal further 
associations in the data not reported here, including 
relationships between pre-treatment imaging features 
and local control after irradiation, as reported in previ-
ous studies [12].

Given the increasing number of patients treated with 
this technology, a relatively simple pipeline required 
beyond standard of care to collect and analyze the data 
will enable quick accumulation of available data vol-
ume. This will soon allow for well-powered retrospec-
tive studies with 100 s of patients to be conducted. The 
uniformity of the acquisition settings between patients 
and imaging centers, especially on the 0.35T systems, 
will further accelerate the process, allowing for simpler 
multi-center collaborations, as already reported on a 
small scale [11]. Open access to the analytical pipeline 
developed in this study, including the necessary image 
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processing and quantification code, may contribute to 
further simplification of the process.

Histogram features have been discussed in numer-
ous MRI studies as descriptors of tumor heterogene-
ity [22, 23]. In particular the skewness of several MRI 
parameters, representing the asymmetry of voxel value 
distribution, has been reported to correlate with prog-
nosis and outcome [18], especially in brain cancer [24]. 
Skewness changes during therapy were found to predict 
response [25, 26], as reported in this study, for the first 
time in MRgRT. However, understanding of precise 
biological underpinnings of these confirmed relation-
ships poses a significant challenge [27]. Compared to 
some more established quantitative MRI metrics such 
as ktrans or ADC the Balanced Steady State Free Preces-
sion sequence signal intensity, used as a core sequence 
in 0.35T MRgRT, has a less well-defined biological 
meaning. Further work, including analysis of additional 
correlates may be required to provide a definite expla-
nation. Insight may also be provided through histologi-
cal comparison between the imaging and pancreatic 
resection specimens as part of a clinical trial underway 
at our institution.

The data presented above suggests that delta radiom-
ics of Magnetic Resonance guided Radiotherapy imag-
ing data shows significant promise for prediction of 
patient radiotherapy response, based on early changes 
in tumor morphology during radiation treatment, 
quantified in MR scans using histogram analysis. With 
further research, the findings may shed more light on 
the role of intratumor heterogeneity in radiotherapy 
response potentially increasing the reliability of pre-
dicting which patients can proceed to R0 resection, 
which can dramatically improve survival.
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