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Abstract 

Background:  MR-guided online adaptive stereotactic body radiation therapy (SBRT) for prostate cancer aims to 
reduce toxicity by full compensation of interfractional uncertainties. However, the process of online adaptation cur‑
rently takes approximately 45 min during which intrafractional movements remain unaccounted for. This study aims 
to analyze the dosimetric benefit of online adaptation and to evaluate its robustness over the duration of one treat‑
ment fraction.

Methods:  Baseline MR-scans at a MR-linear accelerator were acquired for ten healthy male volunteers for generation 
of mock-prostate SBRT plans with a dose prescription of 5 × 7.25 Gy. On a separate day, online MR-guided adaptation 
(ViewRay® MRIdian) was performed, and thereafter MR images were acquired every 15 min for 1 h to assess the stabil‑
ity of the adapted plan.

Results:  A dosimetric benefit of online MR-guided adaptive re-planning was observed in 90% of volunteers. The 
median D95CTV- and D95PTV-coverage was improved from 34.8 to 35.5 Gy and from 30.7 to 34.6 Gy, respectively. 
Improved target coverage was not associated with higher dose to the organs at risk, most importantly the rectum 
(median D1ccrectum baseline plan vs. adapted plan 33.3 Gy vs. 32.3 Gy). The benefit of online adaptation remained 
stable over 45 min for all volunteers. However, at 60 min, CTV-coverage was below a threshold of 32.5 Gy in 30% of 
volunteers (30.6 Gy, 32.0 Gy, 32.3 Gy).

Conclusion:  The dosimetric benefit of MR-guided online adaptation for prostate SBRT was robust over 45 min in all 
volunteers. However, intrafractional uncertainties became dosimetrically relevant at 60 min and we therefore recom‑
mend verification imaging before delivery of MR-guided online adapted SBRT.
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Introduction
Stereotactic body radiotherapy (SBRT) has been imple-
mented in the treatment of localized prostate cancer 
and evaluated in multiple prospective phase II trials, 
which have shown comparable outcomes to other treat-
ment modalities both, with regard to toxicities, and to 
long-term recurrence-free survival [1–4]. Consequently, 

SBRT today represents an alternative to conventionally 
fractionated radiotherapy for low to intermediate risk 
prostate cancer at clinics with appropriate technology, 
physics, and clinical expertise according to the NCCN 
guidelines v2.2020 [5–7].

With higher doses per fraction comes the necessity 
of accurate dose-delivery, conformal to the target and 
adjusted to the changing anatomy of the small pelvis. 
Magnetic resonance (MR)-guided radiotherapy with 
daily adaptation has the potential to improve the preci-
sion and accuracy of radiotherapy through continuous 
tracking of the target volume and image-guidance with 
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improved soft-tissue contrast and anatomic visualization 
compared to cone-beam computer tomography (CBCT) 
scans [8]. Daily online plan-adaptation can yield reduced 
planning target volume (PTV) margins by accounting 
for movements in both, the clinical target volume (CTV) 
and organs at risk (OAR) in close proximity. It promises 
to compensate for both, systematic anatomic changes, 
like prostate swelling, as well as random changes, such as 
inter- and intrafractional rectal and bladder fillings.

Prior to the availability of MR-guided online adapta-
tion, stereotactic treatment plans for prostate cancer 
were not routinely adapted online, mainly due to the 
length of the planning process and the insufficient soft 
tissue contrast of CBCT. MR-guided linear accelerators 
are now commercially available offering continuous visu-
alization and online adaptation. However, the workflow 
to perform this adaptation has been reported to be in 
the range of 50 min, which is in agreement with our own 
experiences [9–12].

During this time, bladder filling, peristalsis and air 
passing through the rectum may be sources of significant 
changes in the immediate anatomy of the prostate. The 
aim of this study was therefore to analyze the dosimetric 
benefit of performing an MR-guided online adaptation in 
SBRT for prostate cancer and to elucidate its stability.

Methods
Ten healthy male volunteers (27–51 years of age, median 
35) were recruited and scanned in the ViewRay® MR-
linear accelerator (ViewRay® Inc., Mountain View, CA) 
at the University Hospital Zurich at two different time-
points. All volunteers had previously consented to par-
ticipate in this study. Ethical review and approval was 
acquired from the cantonal ethics committee Zurich 
(2021-00158).

For immobilization, a headrest and a Knee-Fix were 
used. On day one, volunteers were positioned for a mock 
prostate SBRT treatment in the MR-Linac. Set-up images 
were acquired in low resolution, and the couch was 
shifted to the expected isocenter located within the pros-
tate. A 3D-simulation high-resolution MR-scan (with 
0.15  cm resolution during a 128–173-s image acquisi-
tion with a field of view 40 × 43 × 40) was acquired in 
free breathing. True FISP (fast imaging with steady state 
procession) sequences were acquired using balanced 
gradients. A baseline prostate SBRT plan was created 
according to the workflow described below.

On a different day, the volunteers were positioned iden-
tically in the MR-Linac and another low-resolution MR-
scan was acquired for set-up. The prostate position was 
registered in AP, LR and SI direction between the baseline 
scan and the verification scan to compensate for inter-
fractional translational shifts of the prostate position, and 

the couch was shifted accordingly. By correcting these 
translation shifts, we were able to independently analyze 
the effect of rotational errors as well as deformations of 
the prostate. The baseline SBRT plan was copied onto 
the first MR of the day and was subsequently optimized 
to create the plan-of-the-day using identical IMRT plan-
ning objectives as at baseline. Over 1 h, we acquired addi-
tional high-resolution MR scans in 15  min intervals in 
treatment position to analyze the stability of the adapted 
plan over these 60 min. For every consecutive MR-scan, 
a registration of the prostate in translational AP, LR and 
SI directions was performed, and the couch was shifted 
accordingly. The shifts are shown in Additional file  1: 
Table S1. The adapted plan was then copied onto the con-
secutive MR-scans and was recalculated on the anatomy 
from the consecutive MR-scans obtained after 15, 30, 45, 
and 60 min (MR2-5).

The target volume included the healthy prostate and 
the lower third of the seminal vesicles, which were con-
toured by one physician (JS) using MIMvista software as 
the clinical target volume (CTV), and a margin of 5 mm 
(3  mm posteriorly towards the rectum) was added to 
form the planning target volume (PTV). OAR including 
the entire rectum (not rectum wall), entire bladder, penile 
bulb, and femur heads were contoured for all volunteers 
at all timepoints. Contours were propagated and adjusted 
to changes of volume and shape over time. The workflow 
is outlined in Fig. 1. Of note, we abstained from bladder 
or rectum filling regimens, and folly catheters for the 
healthy volunteers.

Fractionation, plan evaluation and analysis
A dose of 36.25 Gy in 5 fractions (equal to an estimated 
2 Gy-equivalent dose of 90.5 Gy for an alpha/beta value 
of 1.5) was prescribed to the planning target volume to 
cover 95% of the PTV with 95% of the prescribed dose. 
PTV and OAR constraints are shown in Additional file 2: 
Table  S2. We deemed a threshold of 32.5  Gy to be the 
minimally acceptable D95CTV according to Kishan et al. 
as their study represented a similar dosing regimen to 
this study [1]. 32.5  Gy in 5 fractions is equivalent to an 
EQD2 dose of 74 Gy, assuming an alpha/beta value of 1.5. 
This dose is considered as the minimum dose in a cura-
tive setting in conventional fractionation.

A 9-field step-and-shoot IMRT plan was calculated 
with the ViewRay® Planning System using 6 MV flat-
tening filter free photons with a maximum dose rate of 
600 MU/min; dose calculation used Monte Carlo with a 
statistical uncertainty of 1% and grid spacing of 3  mm. 
All plans were verified with the MR-compatible Delta 4 
Phantom (ScandiDos, Uppsala, Sweden) and passed with 
a gamma criterion of 3% 3 mm with a passing rate above 
95%.
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In order to compare the different plans, all treatment 
plans were transferred into MIM-software® (MIM-soft-
ware® Inc., Cleveland, OH) and dose volume histograms 
were exported for evaluation.

Statistical analyses were performed with GraphPad 
Prism software version 8.2.0. Distribution of data was 
assumed to be non-Gaussian and therefore only non-par-
ametric tests were applied. For comparing the difference 
in absolute dose to different targets, Wilcoxon matched 
pairs signed rank test was used. A p value of 0.05 was 
deemed to be statistically significant.

Results
Online adaptive re‑planning
Image quality of the MR-scans was deemed sufficient for 
baseline planning and adaptive re-planning in all volun-
teers and at all timepoints by a highly experienced medi-
cal physicist and a  radiation oncologist experienced  in 
MR-based prostate delineation. Both, CTV- and PTV-
coverage were improved by MR-guided online adapta-
tion in 90% of volunteers (Fig. 2 baseline vs. adapted plan 
D95CTV, Table 1).

The median D95CTV- and D95PTV-coverage was 
improved from 34.8 to 35.5  Gy (p = 0.006) and 31.4 to 
34.6 Gy (p = 0.005), respectively. Online adaptive re-plan-
ning with recovery of target coverage was not associated 
with higher doses to the OAR, most importantly the rec-
tum (Additional file  3: Fig. S1). The median D1ccrectum 
was lower in the adapted plans compared to the base-
line plan copied onto the MR of the day with 33.33  Gy 
versus 32.3  Gy. Similar results were observed for the 
Dmeanbladder (9.6 Gy vs. 8.8 Gy, Table 1).

Stability of online adapted SBRT plans
Repetitive MR-scans were acquired for ten volunteers 
in 15 min intervals for a total duration of 60 min. There 
was no systematic shift in any direction and at any time-
point larger than 2 mm. The 3D vectors of intrafractional 
prostate drifts at timepoints 15, 30, 45 and 60 min were 

1.2 mm, 1.6 mm, 1.0 mm and 0.4 mm, respectively. Full 
shifting data is displayed in Additional file 1: Table S1.

For assessment of recalculated plans at 15, 30, 45 
and 60  min, we defined a threshold of 32.5  Gy as 
the minimally acceptable D95CTV, which represents 
74  Gy EQD2Gy assuming an alpha/beta value of 1.5  Gy 
[13]. Consider that all translational drifts of the pros-
tate have been corrected before dose re-calculation. 
The median D95CTV remained stable (0  min: 35.5  Gy, 
60 min: 35.3 Gy) and the difference compared to baseline 
remained statistically non-significant for all timepoints 
(p = 0.26 for timepoint 0 vs. timepoint 60  min). Target 
coverage remained above this threshold for all ten volun-
teers at timepoints 15, 30 and 45 min (Fig. 3). At 60 min, 
three volunteers had an unacceptable D95CTV below the 
threshold of 32.5 Gy due to non-rigid anatomical defor-
mations. With respect to doses to OAR, the Dmeanbladder 
decreased significantly over the one-hour time period 
due to increasing filling (Fig.  4A p = 0.01 timepoint 0 
vs. timepoint 60  min). The D1ccrectum did not differ 
between timepoint 0 and 60 min (Fig. 4B p = 0.59).

Discussion
This analysis shows that MR-guided online adaptation 
of SBRT for prostate cancer achieves a dosimetric ben-
efit that is stable over the time currently required for 
this complex and multi-professional process and may 
yield clinical benefits. However, caution should be taken, 
because larger non-rigid intrafractional variations were 
observed in few volunteers, which resulted in decreas-
ing target coverage at 60 min. We therefore recommend a 
verification MR-scan after the plan adaption process and 
before SBRT delivery to assess stability of the adapted 
treatment plan as a standard procedure.

We showed that a better target coverage was not asso-
ciated with higher dose to the OAR, most importantly 
the rectum. Here, we would like to stress that we deline-
ated the entire organ and not just the rectum and bladder 
wall as an OAR and therefore hotspots could have been 

Fig. 1  The workflow
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located in the lumen not contributing to possible clinical 
toxicity. In future, delineation of rectum or bladder wall 
may be considered in MR-based planning.

To date, the stability of MR-guided adaptation ben-
efit for prostate SBRT over time has only been inves-
tigated in a small number of patients (n = 5) treated 
with 20 × 3.1  Gy by de Muinck Keizer et  al. [14]. Dur-
ing the on-couch period of 45  min in accordance with 

our assumptions, the group showed that the variance of 
intrafraction motions grows over time but that margins 
do not need to be increased beyond 5  mm. The group 
had formerly investigated intrafractional motion dur-
ing prostate MR-guided SBRT using four implanted gold 
fiducial markers [15]. Here, they reported movements 
of the markers at ten minutes of X: 0.0 ± 0.8  mm; Y: 
1.0 ± 1.9 mm and Z: 0.9 ± 2 mm, as well as mean rotation 

Fig. 2  Dosimetric benefit of adaptation compared to original plan A, B median D95CTV and D95PTV comparison of absolute doses with 
blue = baseline plan and orange = adapted plan C, D dose volume histograms for D95CTV and D95PTV for blue = baseline plan and 
orange = adapted plan

Table 1  Comparison of absolute dose (Gy) for organs at risk and coverage for the baseline plan on the MR of the day versus the 
adapted plan for ten volunteers

Ten baseline plans of the day were compared with ten adapted plans, respectively

Baseline plan on MR of the day Adapted plan

Median Mean Max Min Median Mean Max Min

D1ccrectum 33.3 31.6 37.0 21.3 32.3 33.0 35.5 30.7

Dmeanbladder 9.8 12.0 19.8 3.3 10.1 11.9 20.1 3.4

D95PTV 30.7 29.1 34.7 19.3 34.6 34.7 35.2 34.4

D95CTV 34.8 32.6 35.4 25.9 35.5 35.6 35.3 35.1
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of X: 0.1 ± 3.0°, Y: 0.0 ± 1.3° and Z: 0.1 ± 1.2°. However, 
the dosimetric consequences were not analyzed and the 
time frame was rather short with ten minutes. Before 
MR-guided radiotherapy was available, inter- and intra-
fractional motion has been described using electromag-
netic transponders (Calypso® system) and gold markers 
[16–23]. In these studies, maximal mean interfractional 
motion of the prostate varied between 3.1 and 5  mm. 
For intrafractional motion, studies showed both, persis-
tent drifts and rapid movements with varying reports 
of > 5  mm deviations in 15% of cases to intrafractional 
changes of < 1 mm in all cases.

Real-time tracking and adaptation has recently 
become semi-automated as an algorithm proposed by 
Olsen et  al. shows [24]. The authors have described a 
method that reduced the workload of adaptive plan-
ning and included compensation for both, translational 
and rotational movements—however the authors point 
out that fiducial geometry and axis of rotation has 
large impact on interpreting tracking data. While this 
algorithm is able to facilitate tracking, implanting the 

required markers remains an invasive method, which 
poses interventional risks such as bleeding and infec-
tion, possibly superfluous with this advanced image 
guidance.

A recent phase III study comparing normofraction-
ated, hypofractionated and stereotactic radiotherapy 
for low to intermediate risk prostate cancer showed no 
increase in toxicity for SBRT compared to hypofrac-
tionation, although long-term data is still lacking [25]. 
However, image-guidance and adaptive planning may 
yield clinical relevance through reducing margins in 
light of the development towards even more extreme 
hypofractionation which are associated with higher risk 
for toxicities. A recent phase I dose escalation trial con-
cluded that 36 Gy in only 4 fractions (with a 2-day break 
between fractions) prescribed at the 95% isodose level is 
recommendable with an acceptable toxicity profile [26]. 
Of note, the authors did not report the image-guidance 
that was available to them for delivery of single doses of 
8–9 Gy. Potter and colleagues investigated delivering up 
to 50 Gy in 5 fractions using a Calypso-based system and 
kV and CBCT-image guidance in a phase I trial with an 
improved PSA-nadir for 45–50  Gy total dose without 
higher incidence of grade 3 toxicity [27]. Studies evalu-
ating even single-fraction SBRT are currently enrolling 
patients [28].

Multiple treatment regimens for all stages of prostate 
cancer are currently vigorously examined by a multitude 
of phase I–III trials (One-Shot NCT03294889, PRIME 
NCT03561961, PATRIOT [29] and others). First clini-
cal experience shows favorable quality of life for patients 
treated with MR-guided SBRT for prostate cancer [12].

All new hypofractionated treatment regimens have in 
common the need for daily imaging to minimize toxicity 
and avoid underdosing of target volumes highlighting the 
future utility of MR-guided online adaptation systems.

The limitations of this study include its single center 
character, the relatively small sample size, the omission of 
a bladder or rectum protocol, as well as Foley catheters 
in this set of volunteers that was younger than the usual 
patient cohort.

A bladder and rectum protocol, as well as Foley cath-
eters were omitted, because albeit side effects of these 
interventions are rare, we did not wish to expose the 
healthy volunteers to any risks. We acknowledge, that this 
might present a deviation from clinical practice; however, 
the clinical benefit of a bladder and rectum preparation 
protocol remains uncertain and has not been validated 
in randomized trials [30, 31]. From an anatomical and 
dosimetric perspective, rectum filling and bladder filling 
do influence the doses delivered to these organs at risk. 
An empty rectum and a full bladder would be optimal for 
OAR sparing. However, the reproducibility especially of 
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a filled bladder during a course of fractionated radiother-
apy is an issue of concern.

Importantly, the volunteers were younger (median age 
35 years) than the average prostate cancer patient, which 
may result in higher compliance and fewer internal ana-
tomical shifts. While constipation or flatulence might be 
more common in an older age group (although data sup-
porting this are missing), in clinical practice, the bladder 
or rectum protocol would be in place to at least alleviate 
the effects. Due to the possibility of target and OAR shifts 
over time, it is of utmost importance to perform imaging 
and treatment as promptly as is safely possible.

This study does not unequivocally imply a clinical ben-
efit for patients. The small sham trial was not designed 
to prove such clinical benefit. The study does, however, 
show dosimetric benefits that may translate to clinical 
benefits. Larger studies designed to show a clinical ben-
efit will need to examine whether that hypothesis holds 
true.

In conclusion, when performing prostate SBRT, daily 
imaging is of utmost importance due to interfractional 
anatomic variability. Daily plan-adaptation yields sig-
nificant dosimetric and potentially clinically relevant 
benefits, that are stable over at least 45  min. Crucially, 
outliers exist with large intrafractional deformations and 
given the lack of markers to identify these movers pro-
spectively, a MR verification scan before dose-delivery is 
highly recommended to ensure exact treatment. In the 
future, faster and possibly (semi-) automated adaptation 
workflows, or continuous imaging could speed up the 
adaptation process, reducing the relevance of intrafrac-
tional motion during adaptation.
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