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Abstract 

Purpose: To develop and validate a nomogram model to predict complete response (CR) after concurrent chemora‑
diotherapy (CCRT) in esophageal squamous cell carcinoma (ESCC) patients using pretreatment CT radiomic features.

Methods: Data of patients diagnosed as ESCC and treated with CCRT in Shantou Central Hospital during the period 
from January 2013 to December 2015 were retrospectively collected. Eligible patients were included in this study and 
randomize divided into a training set and a validation set after successive screening. The least absolute shrinkage and 
selection operator (LASSO) with logistic regression to select radiomics features calculating Rad‑score in the training 
set. The logistic regression analysis was performed to identify the predictive clinical factors for developing a nomo‑
gram model. The area under the receiver operating characteristic curves (AUC) was used to assess the performance 
of the predictive nomogram model and decision curve was used to analyze the impact of the nomogram model on 
clinical treatment decisions.

Results: A total of 226 patients were included and randomly divided into two groups, 160 patients in training set and 
66 patients in validation set. After LASSO analysis, seven radiomics features were screened out to develop a radiomics 
signature Rad‑score. The AUC of Rad‑score was 0.812 (95% CI 0.742–0.869, p < 0.001) in the training set and 0.744 (95% 
CI 0.632–0.851, p = 0.003) in the validation set. Multivariate analysis showed that Rad‑score and clinical staging were 
independent predictors of CR status, with p values of 0.035 and 0.023, respectively. A nomogram model incorporating 
Rad‑socre and clinical staging was developed and validated, with an AUC of 0.844 (95% CI 0.779–0.897) in the training 
set and 0.807 (95% CI 0.691–0.894) in the validation set. Delong test showed that the nomogram model was signifi‑
cantly superior to the clinical staging, with p < 0.001 in the training set and p = 0.026 in the validation set. The decision 
curve showed that the nomogram model was superior to the clinical staging when the risk threshold was greater 
than 25%.

Conclusion: We developed and validated a nomogram model for predicting CR status of ESCC patients after CCRT. 
The nomogram model was combined radiomics signature Rad‑score and clinical staging. This model provided us with 
an economical and simple method for evaluating the response of chemoradiotherapy for patients with ESCC.
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Introduction
Esophageal cancer (EC) is one of the most com-
mon digestive malignant tumors, ranking seventh in 
terms of incidence and sixth in mortality overall [1]. 
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Esophagostomy is the mainstay of treatment option for 
early esophageal cancer [2]. Unfortunately, most patients 
diagnosed as locally advanced esophageal cancers lost 
the opportunity for surgery at the time of diagnosis, for 
which concurrent chemo-radiotherapy (CCRT) has been 
recommended as a standard treatment [3]. However, the 
effect of CCRT remained poor, as more than a half of 
patients treated with standard-dose CCRT were eventu-
ally developed recurrence or distant metastases and suc-
cumbed to this disease [4, 5]. On the other hand, patients 
who achieved clinical complete response (CR) may 
obtain long-term survival [6, 7]. Therefore, early identifi-
cation of patients who would achieve CR and who are at 
risk of poor response before CCRT would allow person-
alization of their treatment.

For patients received CCRT, clinical stage is the most 
important factor for prognosis [8]. Recently, a series of 
clinical biomarkers have been explored and validated to 
be used in prediction of therapeutic response [9–11]. 
Radiomics is an image analysis technology that extracts 
quantitative features from computed tomography (CT) 
images, magnetic resonance (MR) images, positron emis-
sion tomography (PET) images, etc. [12]. Several studies 
have demonstrated that radiomics could be applied in 
prediction of treatment response for patients with EC. 
Yip et  al. [13] combined CT-based texture feature and 
esophageal maximal wall thickness assessment to predict 
the overall survival in a cohort of 31 EC patients treated 
with CCRT. As a result, the model performed better than 
treatment response alone. Jin et  al. [14] developed and 
validated a model combined radiomic features with dosi-
metric parameters to predict the treatment response of 
patients with EC who underwent CCRT with promising 
results.

However, most radiomic studies enrolled a small num-
ber of investigated patients and included both adenocar-
cinoma and squamous cell carcinoma patients. As we 
know, these two histological types of EC may present 
different sensitive to CCRT. In this study, we used quan-
titative radiomics features based on pretreatment CT 
to develop a model to predict CR to CCRT in patients 
with esophageal squamous cell carcinoma (ESCC). This 
model may help doctors to make the best therapeutic 
management.

Patients and methods
Patients’ selection and randomization
Data of patients diagnosed as esophageal squamous cell 
carcinoma (ESCC) and treated with definitive chemora-
diotherapy (dCRT) in Shantou Central Hospital during 
the period from January 2013 to December 2015 were 
retrospectively collected. Eligible patients were included 
in this study after successive screening, and the patients 

were excluded if they met the exclusion criteria as fol-
lowed: (1) patients with distant metastatic disease; (2) 
patients received low-dose palliative radiotherapy; (3) 
patients received preoperative or postoperative adjuvant 
radiotherapy; (4) patients had incomplete clinicopatho-
logical information; (5) patients diagnosed as esophageal 
fistula and received esophageal stent implantation; (6) 
poor visualization quality due to image artifacts or the 
tumor was too small to be recognized on CT images; (7) 
patients had other primary tumor.

A total of 226 patients were included in the final analy-
sis, and the enrolled patients were randomly divided into 
two groups, with 160 patients in the training set and 66 
patients in the validation set. To maximize the generali-
zation ability of the model, stratification was used to keep 
the class proportions intact according to various vari-
ables. The process of patients’ selection and randomiza-
tion were shown in Fig. 1. This study was approved by the 
Institutional Committee of the Shantou Central Hospi-
tal on Human Rights. Disease of the patients was staged 
according to the 8th edition of AJCC TNM classification 
for esophageal cancer [15].

Fig. 1 Flow chart of patients’ selection and randomization
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Chemoradiotherapy
All patients were treated with three-dimensional con-
formal radiation therapy (3DRT) or intensity-modulated 
radiation therapy (IMRT) technique in this study. A Var-
ian IX or Varian 23EX linear accelerator was used to 
deliver the radiotherapy treatment plan. The gross tumor 
volume (GTV) includes the esophageal cancer (GTVp) 
and the positive regional lymph nodes (GTVnd). The 
GTV was determined by CT, barium esophagogram, 
endoscopic examination or PET imaging. The CTV is 
defined as GTVp with a 0.5–1  cm radial margin and a 
2.5–3  cm proximal and distal margin and the GTVnd 
with a 0.5–0.8  cm margin. The planning target volume 
(PTV) was determined by adding a 0.5–1  cm margin 
to CTV. A total prescribed dose of 50–72  Gy (median, 
64 Gy) in 25–36 fractions was delivered in 5 fractions per 
week.

Two cycles of platinum-based chemotherapy com-
bined with 5-fluorouracil or a taxane (docetaxel or pacli-
taxel) were administered on the patients concurrently 
with radiotherapy. Sixty one patients received TP (pacli-
taxel + cisplatin) chemotherapy, which consists of cispl-
atin (60  mg/m2 on Day 1) plus paclitaxel (135–180  mg/
m2 on Days 1). One hundred and sixty five patients 
received the PF (cisplatin + fluorouracil) regimen, which 
consists of cisplatin (60 mg/m2 on Day 1) and fluoroura-
cil (750 mg/m2/24 h on Days 1–4).

Response assessment
The response of these patients to treatment was evalu-
ated one month after CRT according to the criteria of 
short-term radiotherapeutic effect evaluation standard 
on esophageal cancer by CT images and barium esoph-
agogram. According to the assessment criteria, clinical 
response was classified as complete response (CR), par-
tial response (PR), no response (NR), or progressive dis-
ease (PD). Patients who had a CR as evaluated by barium 
esophagogram and had the maximal esophageal wall 
thickness of ≤ 1.2 cm and the volumes of residual lymph 
nodes of ≤ 1.0 cm3 on CT were defined as CR [16].

CT image radiomic feature extraction
CT image acquisitions were performed before radio-
therapy. All patients were scanned using GE Lightspeed 
64-slice spiral CT (GE Medical systems, Milwaukee, Wis) 
according to the following acquisition parameters: The 
CT tube voltage was 120  kV and the tube current was 
120 mAs. Rack rotation time: 0.6 s; Detector collimation 
parameters: 64 × 0.625  mm; field of view (FOV): 400–
500  mm; Matrix: 512 × 512; Layer thickness is 5  mm, 
layer spacing is 5  mm. Contrast medium was injected 
with a high pressure syringe at a flow rate of 3.0  ml/s 

(1–1.5  ml/kg, ioproxamine injection 300), followed by 
30–40 ml of normal saline for flushing, and late arterial 
CT images were collected with a delay of 30 s. To mini-
mize the variability among different images, scan were 
resampled to voxel of 1 × 1 × 1 mm3.

To obtain volume of interest (VOIs) for further radi-
omic analysis, a 3DSlicer (version, 4.10.2, Stable Release) 
with its extension (radiomics) was used for image seg-
mentation. The contours of VOI were consistent with 
gross tumor volume (GTV) delineated by radiation 
oncologists for radiotherapy treatment planning design. 
Any pixel with an attenuation of less than − 50 HU was 
excluded to avoid adjacent air, fat, blood vessels and sur-
rounding organs. In order to assess their robustness of 
radiomics feature, image segmentation was performed 
independently by a radiation oncologist and another 
radiologist. To evaluate the reproducibility of the radi-
omics analysis, tumor segmentation was repeated two 
months later by the same observer for 30 randomly cho-
sen patients.

Pyradiomics V3.6.2 was used to extract radiomic fea-
tures from delineated VOIs. Using this package, several 
categories features were extracted from VOIs, including 
first order statistics features (IH, intensity histogram), 
shape-based histogram features, and texture features 
(gray-level co-occurrence matrix, GLCM; gray-level 
size-zone matrix, GLSZM; gray-level run-length matrix, 
GLRLM; neighboring gray-tone difference matrix, 
NGTDM; and gray-level dependence matrix, GLDM). 
The wavelet filter was used in image pre-processing and 
the texture features were extracted from the images 
preprocessed. In all, for each VOI, 107 original features 
(Additional file 1: Supplemental Table 1) and 744 wave-
let features (Additional file  1: Supplemental Table  1) 
were collected. Among 107 original features, there were 
18 first order statistics features, 14 shape-based histo-
gram features, 24 GLCM features, 14 GLDM features, 16 
GLRLM features、16 GLSZM features and 5 NGTDM 
features. Mathematical definitions of these radiomic fea-
tures have previously been described [17] and available 
at https ://pyrad iomic s.readt hedoc s.io/en/lates t/featu res.
html.

Statistical analysis
Statistical analyses were performed using R software 
version 3.6.2 (R Foundation for Statistical Computing, 
Vienna, Austria). The difference in the clinical character-
istics between training set and validation set was deter-
mined by Chi-squared test or Fisher’s. A p value of < 0.05 
was considered statistically significant.

After features extraction, all the radiomic features were 
normalized using Z-score normalization, by which the 
feature values were centered by removing the mean value 

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html


Page 4 of 11Luo et al. Radiat Oncol          (2020) 15:249 

of each feature, then divided by the standard deviation 
of each features. The pre-processing made feature values 
lie within similar ranges, which reduced the influence of 
features with large discrete values. The intra-class corre-
lation coefficient (ICC) analysis was performed to evalu-
ate the reproducibility of each radiomics feature. Only 
the features with ICCs value ≥ 0.900 were selected for 
further analysis. Then, the least absolute shrinkage and 
selection operator (LASSO) with logistic regression was 
applied to identify the optimal features to predict CR in 
the training set patients. The hyper parameter lambda (λ) 
was chosen based on tenfold cross-validation with the 
smallest mean squared error. We calculated a radiom-
ics feature score (Rad-score) for each patient based on 
the coefficients weighted by LASSO logistic regression 
model in the training set. The LASSO logistic regression 
formula:

In the above formula, Xn represents the radiomics fea-
ture identified by the LASSO-Logistic regression model, 
β0 is the constant for Rad-score, and βn is the regression 
coefficient of the corresponding feature in the regression 
model. The Rad-score for each patient can be calculated 
according to the formula. Receiver operating character-
istic (ROC) curve analysis was used to assess the perfor-
mance of Rad-core.

Univariate analysis was performed using correlation 
analysis. The Mann–Whitney U test was used to evaluate 
potential relationships between the clinical factors and 
CR status in the training and validation set. Multivariable 
logistic regression analysis was performed to screen out 
the predictor for CR. A nomogram model predicting CR 
was developed based on the multivariable logistic regres-
sion analysis using rms package and foreign package in 
R software. The model performance was assessed by the 
ROC curve analysis using pROC package in R software 
in both the training and testing groups. Comparison of 
ROCs was performed using Delong test. Decision curve 
analysis was conducted to determine the clinical useful-
ness of the radiomics-based nomogram and clinical stage 
by quantifying the net benefits at different threshold 
probabilities in the validation dataset.

Results
Patients’ characteristics
Patients’ characteristics are listed in Table  1. A total of 
226 ESCC patients who received chemoradiotherapy in 
our hospital met the inclusion criteria and were included 
in this study. They were randomly divided into training 
set and validation set. There are 160 patients enrolled 
in the training set and 66 patients in the validation set. 
There were no significant differences in the distribution 

Rad-score = β0+ β1X1+ β2X2+ β3X3+ · · · + βnXn.

of baseline characteristics such as age, gender, tumor 
location, T stage, N stage, clinical staging, lactate dehy-
drogenase (LDH), neutrophil to 1ymphocyte ratio (NLR) 
and platelet to lymphocyte ratio (PLR). The results were 
not statistically significant (p > 0.05), and the two groups 
of patients were comparable. In addition, the ratio of 
patients who achieved clinical CR after chemo-radiother-
apy was 35.0% in the training set and 33.3% in the valida-
tion set, and the difference was not statistically significant 
(p = 0.624).

Rad‑score building based on radiomics features
LASSO-logistic regression was used to reduce the 
dimensionality of the extracted radiomics features and 
screen out the optimal radiomics features for predict-
ing the patient’s CR in the training set (Fig. 2a, b). As a 
result, seven radiomics features were selected (The fea-
tures and their coefficients were listed in the Table  2). 
In order to ensure the reproducibility of the features, 
intra-observer ICCs and inter-observer ICCs was cal-
culated. The inter-observers ICCs and intra-observ-
ers ICCs of seven features were listed in the Table  3. 
Using the filter criteria of ICCs > 0.900, the seven fea-
tures were stable for further analysis (ICC range: 
0.904–0.978). The Rad-score was calculated as follows: 
Rad-score =  −  0.6786125363–0.4893651433*origi-
na l_shap e_MinorAxi sL eng th  +  0 .0009304499* 
original_GLDM_DependenceNonUniformityNormal-
ized + 0.1346597598* wavelet-LHH_NGTDM_Coarse-
ness +  0.1197247331*wavelet-LHH_NGTDM_Con-
trast + 0.0018481705*wavelet-HLH_NGTDM_Coarse-
ness + 0.0749703324*wavelet-HHL_GLDM_SmallDe-
pendenceLowGrayLevelEmphasis + 0.0557647640*wave-
let-LLL_GLDM_DependenceNonUniformityNormalized.

ROC curve analysis was used to evaluate the predictive 
performance of Rad-score for CR. As shown in Fig.  2c, 
d, the AUCs of the Rad-score predicted CR status in 
the training set and test set were 0.812 (95% CI 0.742–
0.869, p < 0.001) and AUC = 0.744 (95% CI 0.632–0.851, 
p = 0.003), respectively.

Development and validation of a predictive nomogram 
based on Rad‑score
We conducted univariate and t multivariate analyses to 
identify predictive factors for CR status in training set. 
Univariate analysis showed that the clinical staging of 
the patients was significantly associated with CR sta-
tus. However, CR status was not related with age, sex, 
tumor location, radiation dose, serum LDH level, NLR 
and PLR (As shown in Table 4, all p > 0.05). The results 
were validated in validation set. Therefore, the clinical 
staging and Rad-score were enrolled into the logistic 
multivariate analysis model. The results of multivariate 
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analysis showed that the clinical staging and Rad-score 
were independent predictors of CR status for ESCC 
patients treated with CCRT both in training set and 
validation set (as shown in Table 5, all p < 0.05).

Based on the results of multivariate analysis, we 
developed a nomogram model as easy-to-use tool 
(Fig. 3a). As shown in Fig. 3b, c, the nomogram model 
performed well in CR status prediction for ESCC 
patients treated with CCRT in the training set with an 
AUC of 0.844 (95% CI 0.779–0.897), and showed simi-
lar discrimination in validation set (AUC = 0.807, 95% 
CI 0.691–0.894).

Performance comparison of clinical staging 
and nomogram model
We further used the Delong test to compare the pre-
dictive performance of the nomogram model, Rad-
score and the clinical staging for CR status. As shown 
in Fig.  4, the AUC of nomogram model was higher 
than that of the clinical staging, indicating that the 
nomogram model achieved considerably better dis-
crimination capability than clinical staging both in the 
training set (DeLong’s test, p < 0.001) and in the valida-
tion set (p = 0.026). The same result was found between 
the nomogram model and the Rad-score both in the 

Table 1 Comparison of patients’ characteristics between training set and test set

Variables Training set (n = 160) Validation set (n = 66) χ2/t P

Age (years), mean ± SD 65.12 ± 10.22 66.20 ± 9.23 − 0.741 0.459

Gender 0.004 0.951

 Male 117 (73.1) 48 (72.7)

 Female 43 (26.9) 18 (27.3)

Tumor location 1.120 0.772

 Cervical 10 (6.3) 4 (6.1)

 Upper thoracic 39 (24.4) 12 (18.2)

 Middle thoracic 87 (54.4) 40 (60.6)

 Lower thoracic 24 (15.0) 10 (15.2)

T stage 1.362 0.715

 T1 1 (0.6) 1 (1.5)

 T2 16 (10.0) 4 (6.1)

 T3 65 (40.6) 29 (43.9)

 T4 78 (48.8) 32 (48.5)

N stage 0.522 0.914

 N0 23 (14.4) 11 (16.7)

 N1 71 (44.4) 27 (40.9)

 N2 54 (33.8) 24 (36.4)

 N3 12 (7.5) 4 (6.1)

Clinical stage 1.759 0.624

 I 1 (0.6) 1 (1.5)

 II 17 (10.6) 10 (15.2)

 III 92 (57.5) 33 (50.0)

 Iva 50 (31.3) 22 (33.3)

Radiation dose, median (range) 64 (60–66) 64 (60–66) − 0.630 0.529

Chemotherapy regimen 1.580 0.209

 PF 113 (68.5) 52 (31.5)

 TP 47 (77.0) 14 (23.0)

LDH group 3.189 0.074

 High 79 (50.6) 42 (63.6)

 Normal 81 (49.4) 24 (36.4)

NLR, median (range) 2.73 (2.00–3.71) 2.82 (1.82–3.71) − 0.149 0.882

PLR, median (range) 134.49 (102.43–176.55) 144.47 (96.72–196.38) 0.571 0.568

CR ratio 56 (35.0) 22 (33.3) 0.057 0.811

Rad‑score, mean ± SD − 16.1105 ± 4.03384 − 15.8565 ± 3.69877 − 0.441 0.660
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Fig. 2 Selection of radiomics features for predicting CR using the LASSO logistic regression model. a LASSO coefficient profiles of the radiomicis 
features. b The cross validation curve. c ROC for Rad‑score in training set. d ROC for Rad‑score in validation set

Table 2 The radiomics features selected by LASSO regression analysis

Radiomics features Coefficients

Original_shape_MinorAxisLength 0.4893651433

Original_GLDM_DependenceNonUniformityNormalized 0.0009304499

Wavelet‑LHH_NGTDM_Coarseness 0.1346597598

Wavelet‑LHH_NGTDM_Contrast 0.1197247331

Wavelet‑HLH_NGTDM_Coarseness 0.0018481705

Wavelet‑HHL_GLDM_SmallDependenceLowGrayLevelEmphasis 0.0749703324

Wavelet‑LLL_GLDM_DependenceNonUniformityNormalized 0.0557647640
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Table 3 Reproducibility of the radiomics features selected by LASSO regression analysis

Radiomics features Reproducibility

Intra‑observer‑ICC (95% CI) Inter‑observer‑ICC (95% CI)

Original_shape_MinorAxisLength 0.975 (0.949–0.988) 0.949 (0.896–0.975)

Original_GLDM_DependenceNonUniformityNormalized 0.940 (0.879–0.971) 0.913 (0.826–0.958)

Wavelet‑LHH_NGTDM_Coarseness 0.978 (0.954–0.989) 0.954 (0.905–0.978)

Wavelet‑LHH_NGTDM_Contrast 0.963 (0.924–0.982) 0.939 (0.876–0.971)

Wavelet‑HLH_NGTDM_Coarseness 0.954 (0.907–0.978) 0.921 (0.841–0.962)

Wavelet‑HHL_GLDM_SmallDependenceLowGrayLevelEmphasis 0.949 (0.897–0.976) 0.937 (0.872–0.969)

Wavelet‑LLL_GLDM_DependenceNonUniformityNormalized 0.922 (0.843–0.962) 0.904 (0.809–0.953)

Table 4 The association between clinicopathological characteristics and CR status in ESCC patients received CCRT 

Variables Training set (n = 160) P Validation set (n = 66) P

CR Non‑CR CR Non‑CR

Age (years), mean ± SD 66.18 ± 9.55 64.55 ± 10.56 0.337 65.64 ± 10.09 66.48 ± 8.88 0.730

Gender 0.064 0.258

 Male 36 (30.8) 81 (69.2) 15 (31.2) 33 (68.8)

 Female 20 (46.5) 23 (53.5) 7 (38.9) 11 (61.1)

Tumor location 0.221 0.216

 Cervical 4 (40.0) 6 (60.0) 2 (50) 2 (50)

 Upper thoracic 16 (41.0) 23 (59.0) 6 (50) 6 (50)

 Middle thoracic 32 (36.8) 55 (63.2) 13 (32.5) 27 (67.5)

 Lower thoracic 4 (16.7) 20 (83.3) 1 (50%) 1 (50%)

Clinical stage < 0.001 0.016

 I 1 (100.0) 0 (0) 1 (100.0) 0 (0)

 II 12 (70.6) 5 (29.4) 5 (50.0) 5 (50.0)

 III 40 (43.5) 52 (56.5) 14 (42.4) 19 (57.6)

 Iva 3 (6.0) 47 (94.0) 2 (9.1) 44 (90.9)

Radiation dose, median (range) 64 (61.25–66) 64 (62–66) 0.221 63 (60–65.75) 63 (60–65.75) 0.737

Chemotherapy regimen 0.209 0.831

 PF 43 (38.1) 70 (61.9) 17 (32.7) 35 (67.3)

 TP 13 (27.7) 34 (72.3) 5 (35.7) 9 (65.3)

LDH 0.226 0.587

 High 24 (30.4) 55 (69.6) 7 (29.2) 17 (70.8)

 Normal 32 (39.5) 49 (60.5) 15 (35.7) 27 (65.3)

NLR, median (range) 2.59 (1.72–3.14) 2.87 (2.01–3.99) 0.033 2.80 (1.88–3.58) 2.9 (1.56‑.3.90) 0.935

PLR, median (range) 128 (100.20–160.47) 139.74 (103.63–181.40) 0.158 127.37 (95.64–192.44) 148.26 (94.90–197.13) 0.924

Rad‑score, mean ± SD − 13.39 ± 3.39 − 17.58 ± 3.58 < 0.001 − 13.87 ± 3.30 − 16.81 ± 3.51 < 0.001

Table 5 Multivariate analysis of factors associated with CR status for ESCC patients received CCRT 

Variables Training set (n = 160) Validation set (n = 66)

OR (95% CI) p OR (95% CI) p

Clinical staging 0.260 (0.117–0.576) 0.001 0.392 (0.164–0.938) 0.035

Rad‑score 1.355 (95%CI:1.180–1.556)  < 0.001 1.236 (1.029–1.484) 0.023
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training set (DeLong’s test, p = 0.030) and in the vali-
dation set (p = 0.045).However, the difference between 
the Rad-score and the clinical staging was not signifi-
cant both in the training set (p = 0.139) and in the vali-
dation set (p = 0.553).

Clinical usefulness of the nomogram model
We used a decision curve to analyze the impact of 
the nomogram model on clinical treatment decisions. 
Through the decision curve, we can see that when the 
risk threshold was greater than 10%, the clinical stag-
ing or nomogram model was better than "all treatment" 
or "no treatment". When the threshold was greater than 
25%, the predictive ability of the nomogram model was 
superior to clinical staging (Fig. 5).

Discussion
For patients with ESCC who cannot be operated or 
refused surgery, CCRT was the main treatment. Previous 
studies have shown that patients who achieved CR after 
CCRT had a better prognosis than those didn’t achieve 
CR [7]. A predictive model of CR status would help us to 
classify patients’ radio-sensitivity, and formulate more 
personalized treatment plans before treatment. In the 
present study, we developed and validated a nomogram 
model combined clinical staging and radiomics signa-
ture Rad-score for predicting CR status of ESCC patients 
treated with CCRT. The AUCs of the nomogram were 
0.844 and 0.807 in the training set and the validation set, 
respectively, indicating a high predictive ability.

Radiomics is an emerging image analysis method, 
which can convert CT, MRI and PET-CT images into 

Fig. 3 Development and validation of a predictive nomogram model for predicting CR status. a A predictive nomogram model combined 
Rad‑score and clinical stage. b, c ROC curve for predictive model in training set and validation set
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high-throughput radiomics feature data [12]. Investiga-
tors can extract radiomics features data from regions of 
interest by using the python software, including inten-
sity, texture, shape, wavelet features, and so on. Then a 
radiomics signature was developed by linear or nonlin-
ear machine learning methods to achieve a comprehen-
sive quantitative description of the tumor for diagnosis, 
efficacy prediction and survival prognosis analysis [18]. 
Due to the advantages of radiomics feature signature 
over traditional imaging techniques, the application of 
radiomics to predict treatment response and prognosis 
has been launched widely. For patients with esophageal 
cancer who undergo concurrent chemoradiation, the 
treatment response assessment and prognosis predic-
tion rely on medical image evaluation. However, there 

were many uncertainties, which had attracted attention 
of many investigators.

To date, several studies have reported the application of 
radiomics features in predicting the treatment response 
and prognosis for patients with esophageal cancer [10, 
13, 14, 19–22]. Hou et  al. [22] extracted 214 radiomics 
features from the pretreatment enhanced CT images of 
49 patients with esophageal cancer. A model based on 5 
radiomics features was developed with an AUC of 0.686–
0.727 and the classification accuracy is 0.891 and 0.972, 
respectively. Li et al. analyzed the changes of CT radiom-
ics features during the radiotherapy of esophageal can-
cer patients, and found that the tumor volume and CT 
value varied with the irradiation dose. Therefore, the CT 
based radiomics features can be used to early predict the 

Fig. 4 ROC curve comparison of nomogram model and clinical stage in training set (a) and validation set (b)

Fig. 5 Decision curve analysis of the nomogram model
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response of chemoradiotherapy in patients with esopha-
geal cancer. Jin et  al. [14] combined CT radiomics fea-
tures and dosimetric parameters to establish a model for 
predicting the response of esophageal cancer to chemo-
radiotherapy. However, the sample size included in pre-
vious studies was small. In our present study, 226 ESCC 
patients treated with CCRT were included for investi-
gation. As a result, 7 CT radiomics features and clinical 
staging were selected to develop a nomogram model for 
predicting CR status of patients after CCRT. This model 
can provide an economic and non-invasive method for 
clinicians to predict the treatment response of ESCC 
patients treated with CCRT.

As we all know, tumor staging is the most important 
prognostic predictor for patients with malignant tumors, 
which is the basis for clinicians to make a treatment strat-
egy. Previous study have found that patients with AJCC 
stage II were more likely to achieve CR after chemo-radi-
otherapy [23]. Other studies have shown that patients 
with more advanced T staging before treatment have a 
lower probability of achieving CR after CCRT [24]. In the 
T staging of esophageal cancer AJCC staging, the staging 
criteria are determined based on the depth of esophageal 
tumor infiltrating the esophagus wall and the relationship 
with the surrounding tissues and organs, which only rep-
resent the depth of the invasion of the esophageal cancer 
lesion in the horizontal axis direction but not the infil-
tration of the esophageal cancer lesion in the direction of 
the longitudinal axis of the esophagus [25]. Therefore, the 
primary tumor cannot be comprehensively evaluated due 
to deficiency of some prognostic information. In addi-
tion, the clinical staging of esophageal cancer relies on 
imaging examination, which was inevitably inconsistent 
with pathological staging. Radiomics analysis can extract 
the three-dimensional image information of tumors and 
provide information that comprehensively represents the 
tumor, consequently improving the accuracy of clinical 
staging. Our results showed that there was a significant 
correlation between the pretreatment clinical stage and 
treatment response of CR, with p < 0.001 in the train-
ing set and p = 0.016 in the validation set. Multivariate 
analysis showed that pretreatment clinical staging and 
radiomics signature Rad-score were independent predic-
tors for CR status. Then a nomogram was developed and 
validated with AUCs of 0.844 in training set and 0.807 in 
validation set, respectively. Furthermore, we compared 
the performance of nomogram model and clinical staging 
and found that the prediction ability of the nomogram 
model was significantly better than clinical staging both 
in the training set and the validation set. These results 
suggested that the nomogram model we developed was 
superior to clinical staging in predicting chemoradiother-
apy response.

Compared with previous studies, this study has its own 
advantages. First, the CT images collected in this study 
were the radiotherapy simulation positioning CT image, 
which were from the same CT machine with the uni-
fied scanning parameters to avoid the impact of different 
machines and different scanning parameters on radi-
omics features. Second, all esophageal cancer patients 
included in this study were pathologically diagnosed 
as esophageal squamous cell carcinoma and the sample 
size was the largest of its kind so far. Third, all patients 
received concurrent chemo-radiotherapy with a defini-
tive radiation dose of 50–72 Gy.

Of course, this study also has several limitations. First 
of all, this study is a retrospective and single center inves-
tigation. The conclusion of the study still needs to be 
verified externally with larger sample size of patients. If 
possible, a prospective investigation will be more illus-
trative. Secondly, this study included only a few clinical 
features, and there were some confounding variables in 
this study, such as T stage T stage was correlated with 
clinical stage and the response to chemoraditoherapy, 
as well as correlated with the radiomics features which 
were extracted from the primary tumor lesion.Third, the 
treatment response evaluation was performed using CT 
images and barium esophagogram but not pathologically 
evaluation.

Conclusion
In summary, we retrospectively analyzed the radiomics 
features of pretreatment CT images in ESCC patients 
treated with CCRT and developed a non-invasive, com-
prehensive, and personalized radiotherapy response 
prediction model. The nomogram model was combined 
radiomics signature Rad-score and clinical staging. 
This model provided us with an economical and simple 
method for evaluating the response of chemoradiother-
apy for patients with ESCC.
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