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analysis of ASL, DSC-MRI and DKI in the
grading of cerebral gliomas: a meta-
analysis
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Abstract

Objective: To perform quantitative analysis on the efficacy of using relative cerebral blood flow (rCBF) in arterial
spin labeling (ASL), relative cerebral blood volume (rCBV) in dynamic magnetic sensitivity contrast-enhanced
magnetic resonance imaging (DSC-MRI), and mean kurtosis (MK) in diffusion kurtosis imaging (DKI) to grade
cerebral gliomas.

Methods: Literature regarding ASL, DSC-MRI, or DKI in cerebral gliomas grading in both English and Chinese were
searched from PubMed, Embase, Web of Science, CBM, China National Knowledge Infrastructure (CNKI), and
Wanfang Database as of 2019. A meta-analysis was performed to evaluate the efficacy of ASL, DSC-MRI, and DKI in
the grading of cerebral gliomas.

Result: A total of 54 articles (11 in Chinese and 43 in English) were included. Three quantitative parameters in the
grading of cerebral gliomas, rCBF in ASL, rCBV in DSC-MRI, and MK in DKI had the pooled sensitivity of 0.88 [95% CI
(0.83,0.92)], 0.92 [95% CI (0.83,0.96)], 0.88 [95% CI (0.82,0.92)], and the pooled specificity of 0.91 [95% CI (0.84,0.94)],
0.81 [95% CI (0.73,0.88)], 0.86 [95% CI (0.78,0.91)] respectively. The pooled area under the curve (AUC) were 0.95
[95% CI (0.93,0.97)], 0.91 [95% CI (0.89,0.94)], 0.93 [95% CI (0.91,0.95)] respectively.

Conclusion: Quantitative parameters rCBF, rCBV and MK have high diagnostic accuracy for preoperative grading of
cerebral gliomas.
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Gliomas are the most common primary tumors of the
central nervous system, accounting for about 45% of all
intracranial tumors [1]. On pathology, Gliomas can be
divided into low-grade gliomas (LGGs, including WHO
I ~ II) and high-grade gliomas (HGGs, including WHO
III ~ IV) according to their histological and molecular
features [2]. Surgical resection combined with radiother-
apy and chemotherapy are still the basic treatment for
gliomas. LGGs grow slowly and has a favorable progno-
sis in general [3]; but HGGs are more aggressive with a
5-year relative survival rate of 15–58% for anaplastic as-
trocytomas and of 6–22% for glioblastomas depending
upon their age at diagnosis and various other prognostic
factors [4]. Therefore, accurate assessment of the patho-
logical grade of gliomas before surgery is of great clinical
significance to determine the surgical resection range
and to improve the survival rate of patients.
In the course of gliomas progression, the microstruc-

tures of tumors (tumor cell density, cell proliferation
activity, and microvessel density, etc.) will undergo
tremendous changes, reflecting the changes in histo-
pathological characteristics of tumors [5]. Traditional
morphological magnetic resonance imaging (MRI) can
estimate the extent of histopathological differentiation of
tumors based on cytotoxic edema, hemorrhage, necrosis,
heterogeneity of signal intensity, degree and range of
signal enhancement. However, studies have shown that
the enhancement of gliomas is not completely consistent
with tumor grade [6]. Roy et al. [7] reported that the sensi-
tivity of conventional MRI to differentiate high-grade gli-
omas from low-grade gliomas ranged from 55.1 to 83.3%.
With the continuous development of MRI technology,

multi-modal MRI technology has been used to evaluate
the biological characteristics of gliomas from different
perspectives and has potential application value in the
grading of gliomas. Among them, artery spin labeling
(ASL) and dynamic magnetic sensitivity enhanced perfu-
sion imaging (DSC-MRI) are perfusion-weighted im-
aging techniques, while diffusion kurtosis imaging (DKI)
is a diffusion magnetic resonance imaging technique.
Quantitative perfusion parameters such as relative cere-
bral blood flow (rCBF) in ASL, relative cerebral blood
volume (rCBV) in DSC-MRI and mean kurtosis (MK) in
DKI are receiving more attention in the clinical applica-
tion of preoperative grading of gliomas. Compared with
low-grade gliomas, high-grade gliomas have a more
abundant blood supply, so hemodynamic perfusion
parameters will increase significantly [8]. The cellular
pleomorphism and nuclear polymorphism in high-grade
gliomas are more marked than those in low-grade gli-
omas, and the parameters associated with water molecu-
lar diffusion are also larger [9].
Most previous researches only utilized perfusion im-

aging or diffusion imaging to investigate the grading of
gliomas, focusing on meta-analysis of diagnostic accur-
acy. The meta-analysis of quantitative parameters of the
above imaging methods are lacking. Moreover, previous
efforts only focused on the meta-analysis of diagnostic
accuracy and lacked the meta-analysis on quantitative
parameters. Due to the small sample size and incomplete
parameters of individual studies, the reliability and
repeatability of the technology are still unclear. There-
fore, we propose a large sample-size comprehensive
meta-analysis to resolve the conflicting findings in differ-
ent studies and to evaluate the diagnostic performance
of the quantitative perfusion and diffusion parameters in
gliomas grading.

Materials and methods
Literature retrieval
A thorough search for literature from 2005 to 2019 relating
to ASL, DSC-MRI or DKI in the grading of cerebral gliomas
was performed, using sources from PubMed, Embase, Web
of Science, CBM, China National Knowledge Infrastructure
(CNKI), Wanfang Database. English search keywords were
(astrocytoma or glioblastoma or glioma tumor or astrocytic
tumor or gliomas or oligodendroglioma or oligodendroglial
tumor) and (DKI or Diffusional Kurtosis or Kurtosis
Imaging or kurtosis or DSC-MRI or Dynamic susceptibility
contrast-enhanced MRI or Dynamic Susceptibility Contrast
or DSC or rCBV or rCBF or ASL or arterial spin-labeling or
perfusion or Continuous ASL perfusion or PASL or
3DpCASL or three-dimensional pseudo-continuous arterial
spin labeling). In order to avoid missing documents, the
combination of electronic search and manual search were
performed.

Literature inclusion and exclusion criteria
Inclusion criteria
(1) ASL, DSC-MRI or DKI were used to differentiate
gliomas of different grades; (2) At least one quantitative
parameter of rCBF, rCBV and MK could be extracted or
calculated from the study; (3) Only pathological diagno-
ses were included; (4) All subtypes of gliomas were
included; (5) Fourfold table values of diagnostic tests can
be obtained directly or indirectly, i.e. true-positive, true-
negative, false-positive, and false-negative; (6) The qual-
ity evaluation scores of the included studies were at least
9 since high-quality studies are the basis for reliable
meta-analysis.

Exclusion criteria
(1) animal experiments, such as animal experiments
of rats; (2) any unpublished conference abstracts,
comments, duplication of literature or research; (3)
similar studies written by the same author; (4) lack of
key data; (5) use of other imaging methods (such as
CT, PET, etc.).
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Data extraction from literature
The basic information includes first author’s name,
country, the time of publication, patient age, tumor
grade, number of cases, instrument type and field
strength, journal of publication, methods, sequence and
so on. Diagnostic information includes sensitivity,
specificity, Fourfold table and the ROC curve with the
corresponding area under the curve (AUC) value. If the
information could not be obtained directly, the statistics
were performed with the number of HGG and LGG
cases and the sensitivity and specificity provided by the
literature using RevMan 5.3 Software [10]. For articles
providing sample size, median, extremum or quartile,
methods of Luo et al. [11] and Wan et al. [12] were
applied to estimate the mean and standard deviation of
samples [13, 14].

Quality evaluation
Two researchers independently browsed the title and
abstract of the retrieved literature, and read the full text
of the literature that may meet the inclusion criteria, and
finally determine whether to include them. If there were
any disagreements especially on quality assessment, it
was resolved by discussion with a third senior clinician.
All selected studies were previously published, so there
was no need for ethical review and approval or patients
consent.
The quality assessment of diagnostic accuracy studies

(QUADAS-2) recommended by Cochrane Collaboration
was adopted as the evaluation criterion [15]. QUADAS-
2 consists of the following key aspects: patient selection,
index test, gold standard, flow and timing. Each of them
was assessed in terms of risk of bias and signaling
questions (yes/no/unclear) were included to assist in
judgments. When the criterion is yes, the score increases
by 1 point.

Data analysis
Heterogeneity test
Heterogeneity caused by different type of research de-
sign, age and gender of patients, pathological subtypes
and other variables is a critical factor influencing the
accuracy of results. The existence non-threshold effect
was tested by Q-test and I2 value using RevMan 5.3 Soft-
ware. I2<50% indicates insignificant heterogeneity, and a
fixed-effect model was applied to merge statistics. I2 ≥
50% indicates substantial heterogeneity, and a random-
effect model was used to merge statistics. Q-test level
was P < 0.05.

Meta-analysis
RevMan 5.3 Software (Cochrane Collaboration, Oxford,
UK) was used to calculate the effect size and 95% CI.
The pooled sensitivity, specificity, positive likelihood
ratio, negative likelihood ratio, diagnostic ratio, AUC
and its 95% CI were calculated by Stata 13.1, and SROC
curves were constructed.

Publication bias
Publication bias was evaluated with Deek’s funnel plot
by Stata 13.1 software. P > 0.1 indicated that there was
no publication bias.

Sensitivity analysis
The stability of included studies was evaluated. We
eliminated an individual study and calculated the pooled
effect of the rest of studies.

Results
Literature retrieval results
Fifty-four studies were selected for inclusion after read-
ing the full text, of which 43 were in English and 11
were in Chinese. Patients include both adults and chil-
dren. The studies were conducted in the following coun-
tries: China (n = 24), India (n = 2), Italy (n = 3), Spain
(n = 1), Turkey (n = 1), Sweden (n = 2), Japan (n = 3),
Norway (n = 1), the United States (n = 5), Canada (n = 1),
Korea (n = 2), France (n = 1), Germany (n = 4). Denmark
(n = 1), Belgium (n = 1), Brazil (n = 1), Australia (n = 1).
Seven studies reported two methods. Of those studies
including quantitative data and Continuous Variable
Forest Map, 20 was in ASL, 22 in DSC-MRI, 15 in DKI.
Of those studies including fourfold table data for meta-
analysis of diagnostic tests, 19 was in ASL, 19 in DSC-
MRI, 16 in DKI. The flowchart of retrieval process is
presented in Fig. 1. The basic information of the litera-
ture included is presented in Table 1.

Analysis
rCBF in ASL
Twenty studies assessing the difference of rCBF between
HGGs and LGGs were included. Heterogeneity test
showed that χ2 = 66.79, I2 = 72%, P < 0.001, indicating
substantial heterogeneity. Therefore, the random effect
model was applied to estimate the pooled rCBF. The
pooled rCBF was 1.45 (1.12, 1.77), P < 0.001 (Fig. 2).

rCBV in DSC-MRI
Twenty-two studies assessing the difference of rCBV be-
tween HGGs and LGGs were included. Heterogeneity test
showed that χ2 = 74.23, I2 = 72%, P < 0.001, indicating sub-
stantial heterogeneity. Therefore, the random effect model
was applied to estimate the pooled rCBV. The pooled
rCBV was 1.37 (1.08, 1.66), P < 0.001 (Fig. 3).

MK in DKI
Fifteen studies assessing the difference of MK between
HGGs and LGGs were included. Heterogeneity test



Fig. 1 Flow chart of literature screening and identification process
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showed that χ2 = 46.39, I2 = 70%, P < 0.001, indicating
substantial heterogeneity. Therefore, the random effect
model was applied to estimate the pooled MK. The
pooled MK was 1.57 (1.21, 1.93), P < 0.001 (Fig. 4).
Diagnostic value
Sensitivity, specificity, positive likelihood ratio, negative
likelihood ratio, diagnostic ratio and area under curve
were summarized according to the studies including
fourfold table (Table 2). The results showed that rCBF
had the highest diagnostic ratio (DOR) of 71 (31,163).
The SROC curve suggested that rCBF had the highest
AUC value of 0.95 (0.93,0.97), followed by MK 0.93
(0.91,0.95), and rCBV 0.91 (0.89,0.94) (Fig. 5).
The incidence of gliomas is about 45% of all intracra-

nial tumors [63]. The Fagan diagram of rCBF, rCBV and
MK in the grading of gliomas is shown in Fig. 6.
Compared with 45% pre-test probability, the post-test
probability of rCBF, rCBV and MK increases to 88, 80
and 83%, respectively. The DOR value of rCBF is 71 (31,
163), indicating a high pooled diagnostic accuracy.

Meta-regression
The results of meta-regression are shown in Table 3.
Among the five covariates in ASL study, region, year of
study, number of patients and QUADAS-2 score were
all important factors contributing to heterogeneity
except for field strength. Among the six covariates in
DSC-MRI study, region, year of study, number of
patients, field strength and QUADAS-2 score, none had
significant impact on heterogeneity. Among the five co-
variates in DKI study, the year of study, age of patients,
number of patients and QUADAS-2 score all had no
significant impact on heterogeneity except for region.

Subgroup analysis
Subgroup analysis was successively carried out according
to the region and technique in ASL, the region and
magnetic resonance field strength in DSC-MRI, and the
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Fig. 2 Forest plot of mean difference in rCBF between HGGs and LGGs in ASL. Positive results were observed between HGGs and LGGs

Fig. 3 Forest plot of mean difference in rCBV between HGGs and LGGs in DSC-MRI. Positive results were observed between HGGs and LGGs
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Fig. 4 Forest plot of mean difference in MK between HGGs and LGGs in DKI. Positive results were observed between HGGs and LGGs
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region in DKI. The results of subgroup analysis are
shown in Table 4.
Publication bias
Deek’s test was used to evaluate publication bias for
studies containing fourfold Tables. P > 0.1 indicated
that there was no publication bias. 19 studies of ASL,
19 studies of DSC-MRI, 16 studies of DKI were eligible
for Deek’s test. Deeks funnel plot (Fig. 7) showed no
significant publication bias for all groups (P = 0.85,
P = 0.45, P = 0.12, for ASL, DSC-MRI, DKI group,
respectively).
Sensitivity analysis
Sensitivity analysis is a key method for assessing hetero-
geneity and publication bias. We eliminated an individual
study and calculated the pooled effect of the rest of stud-
ies. Compared with the pooled effect of all the included
studies, we could determine the influence of individual
study on the pooled effect. Results of this meta-analysis
revealed that the included studies had no significant
changes on the pooled value of rCBF and rCBV. However,
the MK of Delgado et al. [53] showed significant influence
on heterogeneity and publication bias before it was elimi-
nated (I2 = 70% to I2 = 54% calculated by Revman5.3).
Table 2 The values of rCBF, rCBV and MK

index n Sen (95% CI) Spe (95% CI) PLR (95

rCBF 19 0.88 (0.83,0.92) 0.91 (0.84,0.94) 9.3 (5.4

rCBV 19 0.92 (0.83,0.96) 0.81 (0.73,0.88) 5.0 (3.3

MK 16 0.88 (0.82,0.92) 0.86 (0.78,0.91) 6.2 (4.1
Discussion
This meta-analysis revealed the pooled rCBF, rCBV and
MK of HGGs were higher than those of LGGs, with the
results statistically significant. The specificity of rCBF is
the highest among all parameters, suggesting that the
rate of misdiagnosis in rCBF is the lowest. The sensitiv-
ity of rCBV is the highest, suggesting that the rate of
missed diagnosis in rCBV is the lowest. The results of
meta-regression showed that there were many factors
contributing to the heterogeneity of ASL studies, while
the studies of DSC-MRI and DKI were relatively stable.
Although three kinds of MRI techniques included in this
study could be applied to grade gliomas, the DOR sug-
gested that rCBF in ASL had the highest diagnostics
accuracy.
DSC-MRI perfusion imaging uses an exogenous con-

trast agent and relies on the acquisition of T2* images.
DSC-MRI detects changes in MR signal as the contrast
agent passes through the blood vessels, thus haemo-
dynamic parameter (rCBV) can be indicative of micro-
vascular properties such as vascular flow [8]. Compared
to LGGs, HGGs have more abundant blood supply;
therefore, the hemodynamic parameters (rCBV) would
manifest notable increases significantly, which is consist-
ent with the findings of Winkler et al. [68]. Awasthi
et al. [36] observed that the microvessel density (MVD)
% CI) NLR (95% CI) DOR (95% CI) AUC (95% CI)

,16.0) 0.13 (0.09,0.20) 71 (31,163) 0.95 (0.93,0.97)

,7.4) 0.10 (0.05,0.22) 50 (20,129) 0.91 (0.89,0.94)

,9.3) 0.14 (0.10,0.21) 44 (26,75) 0.93 (0.91,0.95)



Fig. 5 SROC Curve for Each Parameter in the Grading of Cerebral Gliomas. A.ASL, B. DSC-MRI, C.DKI
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and the positive expression of vascular endothelial
growth factor (VEGF) had significant correlation with
the pathological grade of gliomas and the rCBV value.
Although the range of rCBV values reported in the
literature amongst various types of gliomas, the most
researchers observed higher rCBV in HGGs [69]. In this
meta-analysis, we found that the discriminative values of
sensitivity and specificity were 92 and 81% by rCBV
between HGGs and LGGs.
ASL is a completely non-invasive MRI technique

which measures blood flow by using magnetically labeled
water protons in arterial blood as an endogenous tracer.
It is not affected by the integrity of blood-brain barrier,
therefore accurately evaluates gliomas microcirculation
Fig. 6 Fagan Map for Each Parameter in the Grading of Cerebral Gliomas. A
information, reflecting the situation of tumor angiogen-
esis, and thus the gliomas grade can be more accurately
assessed [70, 71]. The relative rCBF has been widely
used to discriminate between LGGs and HGGs. Al-
though ASL suffers from low signal-to-noise ratio as well
as sensitivity to motion, Cebeci and Luh et al. reported a
strong correlation between ASL-derived CBF values and
DSC-derived CBF values in brain tumours [17, 72].
Several studies had revealed that rCBF of ASL was a
rigorous parameter of grading gliomas, thereby allowing
it an alternative method of DSC-MRI [73–75].
Diffusion kurtosis imaging (DKI), first proposed by

Professor Jensen of New York University in 2005, is a
technique intending to explore the properties of non-
.ASL, B. DSC-MRI, C.DKI



Table 3 Meta-regression

Variable Subgroup n Overall estimate of meta-regression

Sensitivity(95% CI) p Specificity(95% CI) p

ASL Region China 14 0.89(0.84,0.94) 0.01 0.89(0.83,0.95) 0.71

others 5 0.86(0.77,0.95) 0.94(0.88,1.00)

Year 2008–2014 8 0.87(0.80,0.93) 0.00 0.88(0.80,0.96) 0.01

2015–2019 11 0.89(0.83,0.95) 0.92(0.87,0.98)

Number of patients ≤40 10 0.90(0.84,0.95) 0.00 0.93(0.87,0.99) 0.01

>40 9 0.87(0.81,0.93) 0.88(0.81,0.95)

Field strength 1.5 T 2 0.90(0.79,1.00) 0.21 0.96(0.90,1.00) 0.13

3.0 T 17 0.88(0.83,0.93) 0.89(0.84,0.94)

QUADAS-2
score

≤10 7 0.93(0.89,0.98) 0.00 0.94(0.89,1.00) 0.01

>10 12 0.84(0.79,0.90) 0.88(0.81,0.94)

DSC-MRI Region China 4 0.94(0.83,1.00) 0.77 0.88(0.74,1.00) 0.14

others 15 0.91(0.84,0.99) 0.80(0.72,0.88)

Year 2006–2014 10 0.95(0.89,1.00) 0.07 0.80(0.69,0.90) 0.20

2015–2017 9 0.87(0.74,0.99) 0.83(0.73,0.93)

Age ≤45 9 0.94(0.87,1.00) 0.31 0.85(0.75,0.95) 0.03

>45 10 0.90(0.80,1.00) 0.79(0.68,0.89)

Number of patients ≤40 10 0.95(0.88,1.00) 0.33 0.89(0.82,0.95) 0.56

>40 9 0.89(0.79,1.00) 0.72(0.62,0.83)

Field strength 1.5 T 4 0.98(0.93,1.00) 0.23 0.76(0.60,0.92) 0.00

3.0 T 15 0.90(0.82,0.98) 0.83(0.75,0.91)

QUADAS-2
score

≤10 10 0.94(0.88,1.00) 0.14 0.86(0.77,0.95) 0.01

>10 9 0.88(0.77,0.99) 0.77(0.66,0.88)

DKI Region China 9 0.89(0.83,0.95) 0.01 0.89(0.82,0.95) 0.01

others 7 0.86(0.77,0.94) 0.81(0.69,0.92)

Year 2010–2015 4 0.85(0.75,0.95) 0.14 0.89(0.79,0.99) 0.06

2016–2019 12 0.89(0.84,0.94) 0.85(0.77,0.96)

Age ≤48 9 0.85(0.78,0.92) 0.14 0.87(0.79,0.94) 0.02

>48 7 0.91(0.85,0.97) 0.84(0.75,0.93)

Number of patients ≤40 11 0.83(0.77,0.89) 0.32 0.88(0.81,0.94) 0.00

>40 5 0.93(0.89,0.98) 0.80(0.70,0.90)

QUADAS-2
score

≤10 10 0.84(0.78,0.91) 0.18 0.87(0.80,0.94) 0.02

>10 6 0.92(0.87,0.97) 0.83(0.72,0.93)
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gaussian diffusion of water molecules [76, 77]. It has
been proposed to more accurately characterise the
complicated water diffusion in biological tissues. The
most commonly used parameter of DKI is mean kurtosis
(MK) which provides additional information about
tumour heterogeneity. The cellular pleomorphism and
nuclear polymorphism in HGGs are more significant
than those in LGGs. The proliferation of interstitial
vessels is also more abundant in HGGs and thus the MK
value is higher [9]. Some studies indicated that MK was
higher in HGGs. Raab et al. [61] found that the AUC of
MK was 92.3% for differentiating HGGs from LGGs,
which were in strong agreement with the findings in this
meta-analysis.
Heterogeneity is common in meta-analysis. After

excluding the research of Falk Delgado et al., the hetero-
geneity of MK decreased from 70 to 54%. Since there is
moderate heterogeneity in this meta-analysis, clinical
decisions should be made cautiously based on these
results. Heterogeneity may be caused by the following
aspects: (1) imbalance in the distribution of HGGs and
LGGs: for instance, grade I gliomas were not studied in
some research which resulted bias in case selection; (2)
different experimental conditions set by researchers,
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Fig. 7 Funnel plot of publication bias. a ASL group; (b) DSC-MRI group; (c) DKI group
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such as different instrument models, parameter settings,
post-processing methods, etc. (3) regional heterogeneity
resulted from inclusion of literature from different coun-
tries and regions; (4) The region of interest (ROI) and
the reference region were heterogeneously placed in the
different studies, which may have an impact on the
results.
The main limitations of this study are: 1. This study

only focused on diagnostic value of ASL, DSC-MRI and
DKI in distinguishing LGGs from HGGs, their role in
the follow-up and each specific pathological grade of
gliomas were not discussed; 2. Only research in Chinese
and English were included, the sample size was relatively
small; 3. Most studies used the WHO classification
system without molecule genomics.

Conclusion
Quantitative parameters rCBF in ASL, rCBV in DSC-MRI
and MK in DKI had excellent diagnostic performances for
differentiating HGGs from LGGs. rCBF is a rigorous
parameter of grading gliomas with AUC of 0.95, thereby
allowing it an alternative method of DSC-MRI or DKI.
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