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Abstract

Background: Prognostic models based on high-dimensional omics data generated from clinical patient samples,
such as tumor tissues or biopsies, are increasingly used for prognosis of radio-therapeutic success. The model
development process requires two independent discovery and validation data sets. Each of themmay contain
samples collected in a single center or a collection of samples from multiple centers. Multi-center data tend to be
more heterogeneous than single-center data but are less affected by potential site-specific biases. Optimal use of
limited data resources for discovery and validation with respect to the expected success of a study requires
dispassionate, objective decision-making. In this work, we addressed the impact of the choice of single-center and
multi-center data as discovery and validation data sets, and assessed how this impact depends on the three data
characteristics signal strength, number of informative features and sample size.

Methods: We set up a simulation study to quantify the predictive performance of a model trained and validated on
different combinations of in silico single-center and multi-center data. The standard bioinformatical analysis workflow
of batch correction, feature selection and parameter estimation was emulated. For the determination of model
quality, four measures were used: false discovery rate, prediction error, chance of successful validation (significant
correlation of predicted and true validation data outcome) and model calibration.

Results: In agreement with literature about generalizability of signatures, prognostic models fitted to multi-center
data consistently outperformed their single-center counterparts when the prediction error was the quality criterion of
interest. However, for low signal strengths and small sample sizes, single-center discovery sets showed superior
performance with respect to false discovery rate and chance of successful validation.

Conclusions: With regard to decision making, this simulation study underlines the importance of study aims being
defined precisely a priori. Minimization of the prediction error requires multi-center discovery data, whereas
single-center data are preferable with respect to false discovery rate and chance of successful validation when the
expected signal or sample size is low. In contrast, the choice of validation data solely affects the quality of the
estimator of the prediction error, which was more precise on multi-center validation data.
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Background
Oncological treatment is based on surgery, radiother-
apy, chemotherapy and immunotherapy for reduction of
tumor burden and for improvement of local control of the
tumor. Of particular importance is radiotherapy, which
has been shown in numerous studies to improve local
control and overall survival of patients [1, 2]. Radiation
oncology treatment strives to optimize the reduction of
tumor cells while preserving the surrounding non-tumor
tissue. Effectiveness is influenced by a number of factors
such as radiation sensitivity, the anatomical borders and
immunogenic constitution of the tumor, and its environ-
ment [1]. The interplay between these factors is complex
and prediction of the radiation response and overall clin-
ical performance requires detailed measurement of the
underlying molecular state of the tissue. This is increas-
ingly attempted through the use of systemic multi-level
omics biology approaches [3, 4]. The complexity of the
interplay is consistently reflected in the heterogeneous
risks of subgroups of cancer patients in terms of local
and distant control and overall survival, e.g. in head and
neck cancer or glioblastoma [5, 6]. This heterogeneity is
a great challenge in oncology since it means that only
a subgroup of treated patients is likely to benefit from
standard therapy. Hence, the need for prognostic fac-
tors predicting individual response is great and a lot of
research effort has been invested in the past decade to
identify molecular prognostic markers from multi-level
omics data generated from clinical patient samples. Exam-
ples that have reached clinical practice are the diagnostic
assays OncotypeDX and Mammaprint, which predict the
risk of recurrence or metastasis in breast cancer [7, 8]. For
locally advanced head and neck cancer and glioblastoma,
prognostic gene and miRNA signatures predicting local
and distant control or overall survival have been recently
identified and are promising markers with the poten-
tial to allow substratification of standard-therapy treated
patients for alternative treatment strategies [9…11].

From a methodological point of view, molecular prog-
nostic models are specialized statistical regression models
that generate signatures from molecular data measured
in biological samples such as peripheral blood, resected
tumor tissue or tumor biopsies. A major task in prog-
nostic modeling using high-dimensional molecular data
is feature selection, which is often realized by the least
absolute shrinkage and selection operator, called the Lasso
[12]. The selected features with non-zero estimated coeffi-
cients in the prognostic model form a so-called signature.
Conceptually, the approach of using molecular informa-
tion for prognostic modeling is backed by the finding
that many cancer types are tremendously heterogeneous
and form subgroups of different prognosis or differ-
ent therapeutic accessibility [13…15]. Consequently, high-
dimensional measurements at the genome, transcriptome,

post-transcriptome and protein levels, individually or in
combination, were used to generate signatures for the
stratification of breast carcinomas [13, 16…20], glioblas-
toma [11, 21], gastric cancer [22, 23], lung adenocarcino-
mas [24], squamous cell cervical carcinoma [25] and head
and neck squamous cell carcinomas [10, 26, 27].

For all statistical models, the •predictive accuracy on
test sets is the criterion for how good the model is" [28]. In
other words, for prognosis the •usefulness is determined
by how well a model works in practice, not by how many
zeros there are in the associatedP-values" [29]. Thus, with
respect to radiotherapy, the signature must predict satis-
factorily well the treatment outcome of patients other than
those the model was developed on. For prognostic mod-
els in the clinical context, external validation is commonly
considered as the most relevant form of validation [29].
Studies aiming at new prognostic signatures therefore
require two independent cohorts; the discovery cohort is
used to identify a signature from the high-dimensional
data and the validation cohort is used to measure its per-
formance. Note that split sample approaches (including
cross-validation with leave-one-out cross-validation as a
special case) are a form of internal validation and there-
fore are structurally insufficient for estimating the gen-
eralization performance of signatures; instead, external
validation is required. Systematic reviews retrospectively
enlighten the quality of validation strategies and indicate
potential lacks of thoroughness if present [30].

Collecting data sets suitable for molecular prognostic
modeling is a tedious task for several reasons. Firstly, the
number of patients that are homogeneous with respect
to cancer subtype and clinical factors is very limited in
most clinical sites. Secondly, each clinical sample is gen-
erated from tumor tissue, biopsies or blood samples of
a patient. As a consequence, data sets of sufficient size
either come from a large single clinical site (single-center
(SC) data, e.g. Clinical Cooperation Group [5]), are col-
lected from multiple clinical sites (multi-center (MC)
data, e.g. German Cancer Consortium [31]) or are taken
from large databases (MC, e.g. The Cancer Genome Atlas
[15]). Even if cases are assumed to be homogeneous across
centers, there is evidence that site-specific factors influ-
ence molecular high-throughput data despite all standard-
ization efforts being made across clinical sites [32…34].
Therefore, SC data is more homogeneous, whereas, as a
general hypothesis, MC data shows better generalizabil-
ity. Moreover, it has been observed that SC studies are
overoptimistic in terms of estimated effect sizes [35]. Fur-
thermore, center-heterogeneity is sometimes viewed as a
potential reason for failed validation in mono-institutional
validation studies [36].

Shared noise patterns among samples, independent
of the biological factor of interest, are called batch
effects and mask information. They occur particularly
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with complex measurement techniques that process many
probes at a time; in microarray experiments, samples
being processed on the same multiwell plate form batches
that share various noise patterns [37]. Therefore, cen-
ter effects are structurally a mixture of batch effects and
case mix effects, the latter describing effects caused by
differences regarding the case-composition of the center-
wise patient cohorts. Since batch effects occur regularly in
microarray-based studies, strategies for batch correction
are well analyzed and discussed with respect to sample
size and effect size [37…40]. The dominant strategies for
batch correction are methods of location and scale adjust-
ment or matrix factorization [38]. Although batch correc-
tion can mitigate the deranging influence, no method can
spirit away the effect completely. Thus, prognostic models
for tumor samples have to deal with the batch patterns of
the clinical centers involved.

For prognostic modeling, two data sets are required.
When a SC and a MC data set are available, this raises
questions about how to make best use of the data. Which
data should be used for discovery and which for val-
idation? Both strategies (i.e. using the SC data set for
discovery and MC data set for validation, or the other way
around) have been applied recently for prognostic model-
ing of radiotherapy treatment outcomes using molecular
data [10, 11]. More generally, the question arises about
whether a researcher should aim for SC or MC data, when
using resources for data acquisition.

In this article, we address decision making regarding
the choice of SC or MC data for discovery and validation
cohorts for prognostic modeling…as this is often needed
in studies for predicting the outcome of radiotherapy from
high-dimensional molecular data. In addition to the sce-
nario where an SC and an MC data set are available and
have to be assigned to either discovery or validation, we
also consider two scenarios in which only SC or only MC
data are used for both discovery and validation. We use
the Hornung model to simulate gene expression data sets
representing different centers affected by batch effects
[39]. We vary the model parameters signal strength, num-
ber of informative genes, and sample size and show their
impact on the best choice.

To our knowledge, there is no systematic study that
investigates the performance of feature selection pro-
cedures of regression models in the presence of batch
effects. We present a study based on simulated gene
expression data that focuses on batch-type center-effect
while ignoring case mix effect.

Methods
The heterogeneity of microarray data from different clin-
ical sites was modelled by the Hornung batch model [39].
We chose to focus on the multiple linear regression model
to avoid problems related censored survival times and

estimation of the baseline hazard function, which would
only distract from the actual issue of interest and poten-
tially blur the simulation results. Our simulation study
compares the four possible combinations of SC and MC
data for discovery and validation of prognostic models.
The parameters (i) signal strength, (ii) number of informa-
tive genes and (iii) sample size were systematically varied
in three separate scenarios.

In each scenario, the comparison of the four data set
combinations … (SC discovery, SC validation), (SC,MC),
(MC,SC) and (MC,MC) … is based on four performance
scores that were calculated from 1000 iterations (per
parameter set) of data generation, model fitting and val-
idation. Considering the (small) width of the confidence
intervals of the simulation results (see •ResultsŽ section),
this number was considered to be a good compromise
between computing time and precision. In each realiza-
tion we first generated high-dimensional data matrices for
SC and MC discovery and validation data according to the
Hornung model. This means that for samplei of centerj a
true stateaij , an observed stateyij as well as for every gene
g an expression valuexijg were calculated, the latter being
composed of the signal (i.e. expression levels caused by the
true state), a center-specific batch pattern and noise. After
normalization and batch effect correction using ComBat,
we then regressed the observed state vector on the gene
expression matrix using the Lasso method and obtained
candidate signatures for the SC and MC discovery data.
This means that the observed states are used as dependent
variable in the lasso regression and the true states can be
seen as this variable without measurement error. The can-
didate signatures were then applied to the gene expression
matrices of the validation data in order to predict the cor-
responding observed states in the validation data. Finally,
we calculated the performance scores from the deviations
of the predicted from the observed states of the valida-
tion data. An overview of the simulation scheme is given
in Fig. 1. Case mix effects and similar sources of hetero-
geneity, like batch-wise varying signal strength, were not
considered.

Generation of data by Hornungmodel
Hornung et al. [39] presented a model to generate data
affected by batch effects by setting the measured expres-
sion level of geneg for samplei of batchj to:

xijg = αg + aij β̃g + γjg +
mj∑

l=1

bjglZijl + δjgεijg.

Thus, each data pointxijg is constructed as the sum of a
basal gene levelαg, the product of the effect sizẽβg and the
individual true stateaij (representing the signal for sample
i from batchj in geneg), a batch-specific shift on each gene
γjg, the weighted sum ofmj random latent factors with
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Fig. 1 Simulation scheme for the computation of performance scores of molecular prognostic models with center effects. For each parameter set
1000 Monte-Carlo runs are performed. In single-center (SC) and multi-center (MC) data sets, independent variables X and dependent variables Y are
generated from a true state a, noise and the center batch pattern. Each center shares realizations of randomly sampled batch-specific parameters
among its samples. MC data sets are batch corrected, a signature is fitted to the discovery data and used for prediction of validation data.
Performance scores are calculated to measure the average quality of prediction

coefficientsbjgl (representing unobserved environmental,
demographic and technical factors [41] that introduce
center-wise correlation patterns among the features and
are uncorrelated to the true state) and individual weights
Zijl , and the product of noiseεijg and a batch- and gene
specific scaling factorδjg. In contrast to the original use
of the model for binary target variables, we used continu-
ous true statesaij that were measured with additive noise,
such that the target was modelled asyij = aij + ηij , with
ηij ∼ N (0,σ 2

y ). Note that, in contrast to the commonly
considered modeling of a target variabley (representing
the outcome in a multiple linear regression) as a noisy
function of the multidimensional variablex, in the Hor-
nung model,x andy are both modelled as functions of an
unobserved true statea.

Default parameter settings
Unless specified differently,Ns = 100 samples were gen-
erated per data set (i ∈ {1, ..,Ns}). For MC settings, the

samples were distributed randomly toNc = 8 centers
(j ∈ {1, ..,Nc}) [10]. Thereby, the number of samples was
constrained by a minimum ofnmin = 10 samples per
center (realized by assigningnmin samples to all centers
and subsequently distributing the remaining samples with
equal probability).

In our simulations, we chose normally distributed gene
wise basal expression levels (αg ∼ N (0, 1)). The true state
was also chosen to be normally distributed (aij ∼ N (0, 1)).
The target variableyij was modelled as a realization of the
true stateaij distorted by additive noise with a standard
deviation of 0.1:

yij = aij + ηij , ηij ∼ N (0, 0.12).

Following Hornung et al. [39], samples consist ofNg =
1000 genes (g ∈ {1, ..,Ng}). A fraction of 30% of the
genes was considered to be informative (ninf = 0.3 · Ng),
which means„without loss of generality, that β̃g �= 0 for
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g ≤ ninf [39]. The effect size for an informative gene
g was chosen to be graded linearly with averagẽβ as

β̃g = 2β̃
(
1 − g

ninf +1

)
, non-informative genes were given

an effect size of zero. Batch specific shifts were normally
distributed (γjg ∼ N (0, 1)). Following Hornung et al., we
usedmj = 5 latent factors [39]. We drew the coefficients
asbjgl ∼ N (0, 1). Noise termsδjg and εijg were also nor-
mally distributed with mean 0 and variance 1. In each
run, for every center a unique batch pattern was gener-
ated following the model with the parameters specified in
Table1.

Scenarios: systematic parameter variation
The main goal of the simulation study was to investigate
the influences of three different factors (signal strength,
number of informative genes and sample size) on the per-
formances measured when using SC data and MC data
for discovery and validation. To this end, three differ-
ent scenarios were considered; in each of these a single
factor was varied systematically to investigate its influ-
ence and discern this from the influences of the other
two factors. For each of the three scenarios, the val-
ues of the parameters not explicitly mentioned in the
following descriptions were fixed to the values given in
•Default parameter settingsŽ section.

(i) signal strength
Taking the variableaij as the biological true state, the
parameterβ̃g defines the impact of the true state on the

Table 1 Parameters of simulations

Sc1 Sc2 Sc3

signal strength β̃ = [0; 0.5] 0.25 0.125

number of genes, informative ninf = 300 [ 1; 1000] 300

sample size Ns = 100 100 [40 500]

number of genes, total Ng = 103 103 103

number of centers in MC Nc = 8 8 8

minimum samples per center nmin = 10 10 5

basal level gene g αg ∼ N (0, 1) N (0, 1) N (0, 1)

target aij ∼ N (0, 1) N (0, 1) N (0, 1)

fixed batch effect gene g γjg ∼ N (0, 1) N (0, 1) N (0, 1)

number of latent factors mj = 5 5 5

factor loadings bjgl ∼ N (0, 1) N (0, 1) N (0, 1)

impact of factor l on sample i Zijl ∼ N (0, 1) N (0, 1) N (0, 1)

noise scaling of gene g in batch j δjg ∼ N (0, 1) N (0, 1) N (0, 1)

noise εijg ∼ N (0, 1) N (0, 1) N (0, 1)

standard deviation of observation noise σy = 0.1 0.1 0.1

Each column shows the parameter set for one of three simulated scenarios. The
intervals indicate the ranges in which the parameter values were varied in the
respective scenarios. Fixed parameters are indicated by ‘=’, while sources of
heterogeneity as signal, noise and batch effects are characterized by the parameters
of their densities, indicated by the ’∼’ symbol

measured expression levelxijg. Thus, larger values of̃βg
increase the signal in the covariates, without changing
the variance of the outcome variable across simulations.
Strictly speaking, this parameter describes to what extent
a true stateaij influences the measured expression level
xijg, which reflects the effectiveness. For the sake of sim-
plicity, we denote it as signal strength. In this scenario,̃β

was stepwise increased from 0 to 0.5 (taking the values{0,
1, .., 9}/50, {8, 9, .., 15}/40, {40, 43, 46, 50}/100). The num-
ber of informative genes was kept constant at 300, which
is the same value used by Hornung et al. [39]. The sam-
ple size was set to 100, which corresponds to the order of
magnitude of the MC and SC data of Hess et al. [10].

(ii) number of informative features
In the second scenario, the impact of the signal spiki-
ness was analysed. The performance of prognostic models
using SC and/or MC data consisting of 1000 features with
only a few features carrying strong signals was contrasted
to the performance in the case of many informative fea-
tures carrying weak signals. Takingι = ∑ninf

g=1 |β̃g| as a
measure for information in the data, we keptι constant
throughout all settings of this scenario and varied̃βg as
a function of ninf . For the default number of 300 infor-
mative features, we chose a signal strength ofβ̃ = 0.25,
which is just the middle of the covered parameter interval
of scenario (i). The information valueι was kept constant
at 300·0.25 over all settings and the signal strength param-
eter value in each setting was calculated according to the
respective number of informative features. The number of
informative featuresninf was varied from 1 to 1000 (tak-
ing the values 1, 5, 10, 25, 50, 75, 100, 150, 200, 250, 300,
350, 400, 450, 500, 550, 600, 670, 750, 850, and 1000). The
sample size was again set to 100, in order to match the first
scenario.

(iii) sample size
The sample size obviously plays a major role in identifying
signals in noisy settings. Therefore, the sample size was
varied from 40 to 500 (taking values 40, 45, 50, 60, 80, 100,
125, 150, 200, 250, 350, and 500). In this scenario, the min-
imum number of samples per centernmin was reduced to 5
in order to allow for sample sizes as low as 40. The number
of informative features was again set to the default value
of ninf = 300, whereas the signal strength was reduced to
β̃ = 0.125 in order to prevent unrealistically strong signals
in the cases of the larger sample sizes.

Normalization and batch correction
Initially every generated sample was normalized to have
zero mean and unit standard deviation. After normaliza-
tion, MC data sets were batch corrected using standard
tool ComBat [37]. For all following analyses, readily pro-
cessed (normalized and batch-corrected) discovery and
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validation data are denoted asXc,disc and Xc,val, respec-
tively, with c ∈ {MC,SC} indicating whether data was
generated from one or more centers.

Model fitting
To identify a signatureβ̂c, a linear model

Yc,disc = β0 + Xc,discβ + ε; ε ∼ N (0,σ 2
e )

was fitted to the discovery data using the Lasso method
[12], as implemented in the R package glmnet (cv.glmnet
function) [42]. In Lasso regression, the criterion to be
minimized is the sum of squared errorsplus a penalty
term that penalizes the absolute values ofβ. By constrain-
ing the coefficients in this way, some coefficients (hope-
fully those of non-informative genes) are pushed to zero
and the remaining genes„with non-zero coefficients„
are considered selected and form the signature defining
the prognostic model. Lasso regression involves a tun-
ing parameter calledλ that has to be chosen. A common
approach, implemented in the function predict.cv.glmnet
(through the option •s = lambda.1se•) and adopted here,
is to use a slightly more strongly penalizingλ value than
the one obtained from minimizing the cross-validated
prediction error.

Performance scores
Four performance scores were calculated from 1000 runs
(Nsim = 103). The mean values of the four scores and the
corresponding standard errors of the mean are reported.
For visualization, the mean values and the corresponding
99% confidence intervals are plotted.

We included the results obtained for all simulation
iterations in the evaluation. Thus, we also included the
iterations in which lasso did not select any variable, even
though it would not be meaningful to use empty signa-
tures in practice. Excluding these iterations would have
potentially biased the results; it is important to keep the
evaluation of simulation studies neutral by considering
each simulation iteration instead of letting the results
influence the decision on whether or not to include the
individual iterations. Nevertheless, we also analyzed the
performance of non-empty signatures separately and the
results did not change substantially (data not shown).

The 99% confidence intervals contain the true means
with probability 0.99. Thus, non-overlapping confidence
bands are a strong indication for systematic differences
between the data usage settings.

Performance scores were calculated by the following
procedure. The two signaturesβ̂MC and β̂SC were used
to predict the target variableYp,val of the independent
validation data sets from their expression dataXp,val by

Ŷp,c = β̂0 + Xp,valβ̂c; p,c ∈ {MC,SC}.

Four performance scores were computed in every iter-
ation based on the estimated signaturêβc and on the
deviation of the predictionŶp,c from the true valuesYp,val
of the target variable in the validation data.

(A) false discovery rate: FDR
Usefulness of a signature is connected with the identifica-
tion of informative features. Particularly, any element of
the gene set returned by model fitting should be unlikely
to be a false positive finding.

The FDR returns the proportion of features in a signa-
ture, that are actually non-informative.

In empty signatures, this proportion does not exist. The
FDR of empty signatures was set to 1. The rationale for
assigning the worst score is that in all simulations (with
β̃ �= 0) truly was signal in the data, which was completely
missed by the model fitting in those realizations. Miss-
ing all existing information in prognostic modeling is a
clear failure and far from the goal of signatures built of
informative features.

(B) mean square prediction error: MSPE
The most common and most important performance
score is the expected prediction error. Particularly for clin-
ical applications, the prognosis should be as close to the
true outcome as reasonably achievable.

The MSPE of a signature in a validation data set is an
estimator for the expected squared prediction error of
single future samples. Because batch correction is not pos-
sible in single sample prediction, the batch correction of
the validation data is removed for calculating the MSPE
(in contrast to the other performance scores). The MSPE
is defined as

MSPEp,c = 1
Ns

Ns∑

i=1

(
(Ŷp,c)i − (Yp,val)i

)2
,

where (Ŷp,c)i and (Yp,val)i denote the predicted and true
values of the target variable of samplei in the validation
data set. In case of empty signatures, the prediction̂Yp,c

equals the baselinêβ0 and the MSPE is calculated accord-
ingly. The expectation ofMSPEp,c equals the expectation
of (Ŷc − Y)2 of single future samples. Analysis of the qual-
ity of these estimators (MSPE of SC and MC validation
data) compared to the true MSPE-value of a signature is
shown in Table2.

(C) successful validation: SV
The lowest requirement of a signature is a performance
on independent validation data significantly better than a
random prediction. This is indicated by a positive (signifi-
cantly larger than zero) correlation between the predicted
values of the target variablêYp,c and the true values of the
target variableYp,val in the validation data (sample size
identical with that of the corresponding discovery data).
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Table 2 Quality of MSPE-estimation by SC and MC validation data sets

Signature approx. MSPE SEM Validation estim. MSPE SEM squared error SEM

SC 5.74 0.14 SC 5.49 0.17 15.68 2.04

MC 5.49 0.12 2.73 0.31

MC 0.87 <0.01 SC 0.87 0.01 0.06 <0.01

MC 0.88 0.01 0.02 <0.01

The average true MSPE value of a signature discovered in SC or MC data is approximated in 1000 iterations by 105 sample data sets with different random batch patterns on
each sample. The approximated MSPE-value is reported with its standard error of the mean as well as the MSPE estimated in the validation data and its standard error. The
average squared error of this estimator ((MSPEestim − MSPEapprox)2) was calculated from 1000 discovery data sets with 100 independent validation data sets each

SV equals 1 if p (thep-value of a one-sided correlation
test on(Ŷp,c,Yp,val)) is smaller than 0.05, and 0 otherwise.

For empty signatures, there is no successful validation
possible and therefore SV is set to 0.

Note that statistical significance is a problematic per-
formance score. Firstly, in real data applications anything
will be significant with sufficient sample size, regardless of
the true effect size. Secondly, the goal of clinical biomark-
ers is not merely to perform slightly better than a random
prediction. Nevertheless, at least for candidate screening
studies, successful validation is an important milestone.

(D) calibration slope: CS
CS is a common measure of prediction quality. It is calcu-
lated as the slope in a simple linear model regressing the
validation data outcome on the predicted values.Yp,val =
a + c · Ŷp,c + ε with ε ∼ N (0,σ 2

c ). Let ĉ denote the esti-
mated coefficientc, then CSp,c = ĉ. Since constants are
uncorrelated with any data, the CS of empty signatures is
set to 0. Note that CS indicates an association of the pre-
dicted with the observed data on average, not regarding
the variance, and it is precisely this variance that can be
very harmful in single sample prognosis.

Results
In three different simulation scenarios, the factors sig-
nal strength, number of informative genes and sample
size were analyzed, one at a time. Their influence on the
predictive performances achieved, when using different
combinations of SC and MC data for discovery and valida-
tion, are reported in the following. Data generating code,
data files as well as functions for reporting the numbers
and creating the figures can be downloaded via thislink. 1

Scenario 1: signal strength
The true state aij affects the raw gene expression data
xijg of a geneg through the parameterβ̃g. The average
parameter value of the informative genes is denoted̃β
and called signal strength. In the first scenario, the signal
strength was varied systematically from 0 to 0.5, while all
other parameters were kept constant at values provided

1https://www.helmholtz-muenchen.de/fileadmin/ZYTO/other/
onlMatSamaga.zip

in Table 1. The average performance scores according to
simulation scenario 1 are presented in Fig.2.

For signal strengths ofβ̃ lower than 0.1, the average
FDR was higher than 0.9 for both MC and SC discovery
data, indicating that the signal was too low for prognos-
tic modeling under the given parameters independently
of the data type. Forβ̃ between 0.1 and 0.2, the FDR
in SC signatures was significantly lower than the one of
MC signatures (e.g.β̃ = 0.14: mean FDR in SC signa-
tures 0.429± 0.003 SEM; mean FDR in MC signatures
0.885± 0.008).

At the sameβ̃ of 0.14, the average MSPE of the prognos-
tic models trained on SC data and validated on MC data
was 8.51 (±0.32), in contrast to the average of 1.03 (±0.01)
in the setting, where MC data was used for discovery and
SC data was used for validation.

Thus, the low FDR of SC signatures was accompanied by
a high MSPE. This discrepancy in the two scores under-
lines the multidimensional nature of quality concepts for
prognostic models; data usage strategies may perform bet-
ter with respect to one score but worse with respect to the
other. To examine the role of empty candidate signatures
in the reported performance scores, we conducted further
simulations and analyzed the chance to discover a non-
empty candidate signature, the mean signature length as
well as the performance scores of the prognostic model,
under the exclusion of those cases where no signature
was discovered at all (seesupplementary information).
Heterogeneous batch patterns of MC data, for instance,
bury weak signals (̃β < 0.15) and thus no informa-
tive features enter the signature. At the same time the
prediction error stays in the range of random predic-
tions unless the signal is strong enough to systematically
reduce this error (β̃ > 0.2). In contrast, homogeneous
batch patterns of SC data sometimes allow identification
of informative features, but the predictions are of low
accuracy and accompanied by a dramatic increase in the
MSPE. Therefore, at̃β = 0.15 with respect to quality cri-
terion A, SC discovery was the best choice, while with
respect to quality criterion B, MC discovery was the best
choice.

We also investigated the dramatic increase of the MSPE
of SC signatures, which turned out to be a result of the
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