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Abstract

Introduction: Deep learning-based algorithms have demonstrated enormous performance in segmentation of
medical images. We collected a dataset of multiparametric MRI and contour data acquired for use in radiosurgery,
to evaluate the performance of deep convolutional neural networks (DCNN) in automatic segmentation of brain
metastases (BM).

Methods: A conventional U-Net (cU-Net), a modified U-Net (moU-Net) and a U-Net trained only on BM smaller
than 0.4 ml (sU-Net) were implemented. Performance was assessed on a separate test set employing sensitivity,
specificity, average false positive rate (AFPR), the dice similarity coefficient (DSC), Bland-Altman analysis and the
concordance correlation coefficient (CCC).

Results: A dataset of 509 patients (1223 BM) was split into a training set (469 pts) and a test set (40 pts). A
combination of all trained networks was the most sensitive (0.82) while maintaining a specificity 0.83. The same
model achieved a sensitivity of 0.97 and a specificity of 0.94 when considering only lesions larger than 0.06 ml (75%
of all lesions). Type of primary cancer had no significant influence on the mean DSC per lesion (p = 0.60).
Agreement between manually and automatically assessed tumor volumes as quantified by a CCC of 0.87 (95% CI,
0.77–0.93), was excellent.

Conclusion: Using a dataset which properly captured the variation in imaging appearance observed in clinical
practice, we were able to conclude that DCNNs reach clinically relevant performance for most lesions. Clinical
applicability is currently limited by the size of the target lesion. Further studies should address if small targets are
accurately represented in the test data.
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Keypoints

� Deep learning allows accurate detection and
segmentation of brain metastases

� Performance of the algorithm depends on the size of
the target lesion

� Combination of differently trained networks
improves overall performance

Introduction
Stereotactic radiosurgery (SRS) is considered standard of
care in patients with one or multiple brain metastases
(BM) of limited size and number [1]. The high incidence
of BM [2] and the necessity to manually contour each le-
sion for definition of the planning target volumes of ra-
diosurgery results in high workload for the attending
physicians. However, contouring of planning CT and
MR images generates a large amount of clinically repre-
sentative imaging and contour data. This data can be
used to train deep convolutional neural networks
(DCNNs) which have been applied to various tasks in
medical imaging including segmentation in the recent
years [3]. If trained properly, DCNNs could not only in-
crease clinical efficacy by speeding up detection and
contouring of BM but could also increase inter-rater
agreement [4].
The first application which produced state-of-the-art

results in automated segmentation of BM in MRI was
published in 2015 by Losch et al. [5]. Since then, a large
variety of network architectures for deep learning in-
cluding GoogLeNet [6], CropNet [7], DeepMedic [8] and
En-DeepMedic [9] have been tested. A common limita-
tion is the high number of false positives and the small
sample sizes used for training. Also, the performance of
most of the algorithms heavily depended on the volume
of the target lesion. Dikici et al. identified this problem
and developed an algorithm which was trained and per-
formed well only on small BM (mean volume of 160
mm3) [7], which suggests that a single model is unlikely
to solve the segmentation problem for metastases of ar-
bitrary size.
One of the most commonly used network architec-

tures is the so-called U-Net [10]. Recently, Isensee et al.
demonstrated how this relatively simple architecture
combined with a robust training scheme achieved state
of the art performance on different challenges in seg-
mentation of medical images [11]. A slightly modified
version of the architecture was used by Kickingereder
et al. to not only segment brain lesions, but also to pre-
cisely track treatment response by assessing reductions
in diameters of the corresponding automated segmenta-
tion [12]. The capability of this approach is underlined
by the fact that the dataset used in their work not only
included glioblastomas but also lower-grade gliomas

which typically differ markedly in appearance from their
malignant counterparts, which suggests that it may also
be useful for segmentation of brain metastases that differ
in morphology from both types of glioma.
In the present work we applied a state-of-the-art U-

Net to a large and clinically representative dataset of BM
collected from a group of patients, who had been treated
by SRS during a period of 6 years. This allowed us to ac-
curately assess the applicability of such algorithms for
automated segmentation in radiation therapy planning.

Methods
Data acquisition
This retrospective single-center study was approved by
the institutional review board and informed consent was
waived. Brain images from a cohort of patients with
cerebral metastases treated by SRS between 2013 and
2019 were used to train a DCNN. All patients under-
went SRS by means of the CyberKnife® (Rel. 9.5,
Accuray) stereotactic treatment system. For treatment
planning MR images including contrast-enhanced T1-
weighted (T1c), T2-weighted and T2-weighted, fluid-
attenuated (FLAIR) images were registered to the plan-
ning CT. Patients were excluded from this study if any
of those sequences was not acquired for treatment plan-
ning. Target structures (planning target volumes, PTV)
were manually delineated on the MR images by board-
certified neurosurgeons or radiation oncologists. Usually,
the contours were first outlined on the axial T1c images
at the rim of the contrast enhancement. In cases with
atypical or no enhancement, contouring was performed
using the information from the other T1c slice orienta-
tions and image types. The original images and contour
data were restored from the archive and randomly split
into a set for training and testing DCNNs. To some ex-
tent, the training data set was only weakly labelled since
not all lesions visible on the MR at the time of treatment
qualified for SRS and were thus not contoured. To prop-
erly evaluate the performance of the algorithm, the test
set was revised by a senior radiation oncologist (M.K.,
25 yrs. experience) who delineated every present lesion.
The MR-images were preprocessed by applying a deep-
learning-based tool for brain extraction HD-BET [13]
and by resampling the image and contour data to iso-
tropic voxels with a size of 0.89mm3. Finally, z-score in-
tensity normalization was applied to all images.

Architecture of the deep convolutional neural network
For the DCNN’s architecture, a conventional U-Net (cU-
Net) [10] and a modified U-Net (moU-Net) with mul-
tiple outputs were implemented using Python 3.6.5 (Py-
thon Software Foundation, Beaverton, Oregon, USA)
and TensorFlow 1.11 [14]. The U-Net is characterized
by an encoder which extracts low-level representations
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of the input data and which is connected to a decoder
which reconstructs the corresponding label map with
skip connections between intermediary stages of both
modules. Since its original inception, several optimiza-
tions in regards to the network structure and the train-
ing process were applied to the U-Net [11].
Modifications to the network included adaptation of re-
sidual connections [15], instance normalization [16] and
the usage of leaky rectified linear units (ReLU) as activa-
tion functions. Robust training was achieved through
sampling of volumetric patches and image
augmentation.
The moU-Net was proposed by Kickingereder et al.

and demonstrated high performance for segmentation of
glioblastoma and lower-grade glioma [12]. While the
network’s encoder and decoder layers are identical to
the conventional U-Net, the moU-Net adds additional
output layers to the decoder. The motivation of this pro-
cedure is to ensure that the network uses its entire re-
ceptive field. During training, the additional outputs are
used as auxiliary loss layers by comparing them to
downscaled versions of the reference label data. Both the
cU-Net and the moU-Net are depicted in Fig. 1.

Training
The training process was adopted from the original
paper describing the moU-Net, see [12] for a detailed
description. During training, the networks were pre-
sented with randomly sampled volumetric patches with

a size of 1283 pixels from all three imaging sequences
(T1c, T2 and FLAIR) resulting in a volumetric patch
with three channels. To improve the network’s
generalizability, image augmentation through random
rescaling [factor 0.75 or 1.25], random rotation [− 45 °,
+ 45°], random flipping [50% along all axes], elastic de-
formation [17] and channel-wise gamma augmentation
[0.8, 1.5] was employed. The networks were optimized
using the soft dice loss formulation:

l P;Tð Þ ¼ 1−2

X

i

piti
X

i

pi þ
X

i

ti

Here, pi is an element contained in the network’s out-
put layer P and ti is the corresponding label in the
ground-truth segmentation T. For the moU-Net, the
output of the auxiliary layers was compared to down-
sampled (factor 1/2 and 1/4) versions of the ground
truth and a weighted sum of the losses were calculated:

L ¼ 0:25 l1
4
þ 0:5 l1

2
þ 1 l1

Both types of networks were trained for 450 epochs
with 200 iterations with an exponentially decaying learn-
ing rate: aepoch = 10−4 ∗ 0.99epoch using a batch size of 2.
The networks’ weights were optimized using Adam [18]
and L2-regularization (β = 0.0001). All models were
trained employing four-fold cross-validation resulting in

Fig. 1 Architecture of the trained U-Net. All convolutions used filters with a kernel size of 3. Before all convolutions, instance normalization and
the activation function (leaky ReLU) were applied to the input. The residual block contained two such convolutions. Downsampling in the
encoding layer was realized using a convolution with a stride of 2. In the output layers the sigmoidal function is applied to the DCNN’s output.
For the moU-Net, two intermediate output layers are added (dashed red lines). The original contour data is then used to compute the
cost function
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an ensemble of four models used for inference on the
test set [19].

Additional training on small metastases
Since the performance of the segmenting DCNNs de-
pends on the target lesions size [6; 7], additional training
on a subsample of the data containing lesions smaller
than 0.4 ml was performed. The resulting U-Nets trained
on data with small lesions (sU-Net) were generated by
further training of the pre-trained conventional U-Nets.
In cases containing lesions above and below the thresh-
old of 0.4 ml, labels contained in the lesions above the
threshold were not considered for loss calculation.

Inference
The performance of the three network types was evalu-
ated by comparing the segmentations generated by the
DCNN based on image data from the test set to the cor-
responding ground truth represented by the manual seg-
mentations. The predictions were gained based on whole
image series. The images were presented to each of the
four trained networks contained in the respective trained
ensemble. Test time data augmentation was employed
by flipping the images along all three axes and averaging
the output of the final layer [20]. Finally, the segmenta-
tions generated by each network of the ensemble were
merged by summation or majority voting. For post-
processing, any remaining structure smaller than the
smallest BM (0.006 ml) contained in the dataset was re-
moved from the generated segmentation. This procedure
was performed for the cU-Net, moU-Net and the sU-
Net. The performance of the combined model was
assessed in two configurations employing different
ensembling techniques for the underlying networks. For
NetMV the cU-Net, sU-net and moU-Net each used ma-
jority voting as ensembling technique before combining
the three resulting automatic segmentations, while Net-
SUM used summation as ensembling technique.

Statistical analysis
To assess the quality of the resulting segmentations,
multiple metrics were employed. The dice similarity co-
efficient (DSC) measures the overlap with the ground
truth (ranging from 0 for no overlap to 1 for perfect
overlap) per patient. The algorithm’s performance in de-
tecting individual metastases was measured by sensitivity
(detected metastases divided by all metastases contained
in ground truth), specificity and average false positive
rate (AFPR). The F1-score combines sensitivity and spe-
cificity into a single metric by calculation of their har-
monic mean and was used to find the most balanced
model. A metastasis was considered detected when the
DCNN’s segmentation overlapped with the correspond-
ing ground truth segmentation. The degree of overlap

was measured as mean DSC per metastasis. Differences
of the tumor volumes between the prediction and the
ground truth were additionally measured using Bland-
Altman plots [21] and the concordance correlation coef-
ficient (CCC) [22]:

CCC ¼ 2ρσTσP
σ2T þ σ2P þ μT−μPð Þ2

where μT and μP are the means for predicted and the
ground truth tumor volumes, σT and σP the respective
variances and ρ the correlation coefficient between both.
All statistical methods except for the CCC, which was
calculated using R (version 3.3.2; R Development Core
Team) with the “epiR” package, were implemented in
Python 3.6. Differences in predictive performance be-
tween types of target lesions was tested using one-way
ANOVA [23].

Results
Patient characteristics
From a list of 1400 SRS treatments between April 2012
and June 2019, 835 treatments of brain metastases were
identified. If a patient was treated multiple times, only
the first treatment was considered for this study, redu-
cing the dataset to 634 patients. 561 of those datasets
could successfully be restored from the imaging archive.
Finally, a dataset of 509 patients (1223 brain metastases)
with the required T1c, T2 and FLAIR images and con-
tour data was used for this study (Table 1). The cohort
was randomly split into a set of 469 and 40 patients for
training and testing the algorithm. A typical distribution
[24] of primary tumor types was observed with lung can-
cer being the most frequent primary tumor (54%/50%),
followed by melanoma (18%/23%) and breast cancer
(10%/10%). All imaging was performed on MR scanners
manufactured by Philips Medical Systems and almost all
series (99.2%) were acquired using a magnetic field strength
of 3 T. Median size of the BM was 0.31ml (training) and
0.41ml (test) with large variability in size demonstrated
through interquartile ranges (IQR) of 1.3ml and 1.6ml re-
spectively. In total, 524 lesions from 257 patients were
smaller than 0.4ml and were used to train the sU-Net.

Network performance
The combination of all three networks types with en-
semble building through summation (NetSUM) achieved
the highest sensitivity of 0.82, while the combination
based on majority voting (NetMV) demonstrated a bal-
anced performance of high sensitivity (0.77) while also
retaining high specificity (0.96) measured by the overall
highest F1-score of 0.85 (Table 2). Since performance of
the algorithm depends on the used test set and to allow
fair comparison to previous work, we furthermore report
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the results for different volumes of target lesions (Fig. 2). A
large drop in performance is observed for lesions smaller
than 0.06ml (25% of test data). Sensitivities and specificities
for BMs above this threshold are 0.92 and 1.00 for NetMV
and 0.97 and 0.94 for NetSUM respectively.
Agreement between the total tumor volumes predicted

using NetSUM and the ground truth volumes, visualized
in a Bland-Altman plot (Fig. 3 a) and measured by a
CCC of 0.87 (95% CI, 0.77–0.93), was excellent (Fig. 3b).
Mean difference between both volumes was 0.15 ml
(95% CI, − 3.73 ml – 4.03 ml). Samples containing de-
tected and missed lesions are depicted in Fig.4. Quality
of segmentations was above a 0.8 DSC for 52%, 0.6–0.8
DSC for 37% and below a 0.6 DSC for 11% of all de-
tected lesions. Undetected lesions had volumes between
0.017 ml and 0.06 ml, with two exceptions (Fig. 4b): one
lesion with uncharacteristic contrast-uptake (0.489 ml)
and one where image sequences were acquired during
different studies (0.288 ml). We also tested if the mean
DSC varies between the types of primary tumors (Lung,
Melanoma, Breast and other) using one-way ANOVA
and no significant influence (p = 0.60).

Ablation study
To assess how the cU-Net, moU-Net, sU-Net perform
individually the networks were each evaluated on the
test set (Fig. 5, Table 2). For all networks, using summa-
tion as ensembling technique resulted in a higher sensi-
tivity, but lower specificity compared to majority voting.
The highest overall sensitivity of 0.71 was achieved by
both the cU-Net and the moU-net, where the cU-Net
had a higher specificity (0.94) compared to the moU-net
(0.89) and a higher F1-score of 0.81. Majority voting re-
duced sensitivity to 0.63 and 0.65, but increased specifi-
city to 1.00 and 0.96 for the cU-Net and moU-Net
respectively. While the sU-Net had the lowest overall
sensitivities (0.53 summation/0.43 majority voting), it
outperformed the other networks in sensitivity for
smaller lesions (0.68 / 0.52).

Table 2 Performance of the algorithms by network type and type of ensemble building. SUM: summation, MV: majority voting

DCNN
Type

Ensemble Sensitivity Precision F1-
Score

Sensitivity
Small BM

AFPR Mean
DSC

DSC

Method per Lesion

moU-Net SUM 0.71 0.89 0.79 0.51 0.18 0.71 0.74

cU-Net SUM 0.71 0.94 0.81 0.51 0.1 0.7 0.73

sU-Net SUM 0.53 0.85 0.65 0.68 0.2 0.27 0.61

NetSUM 0.82 0.83 0.82 0.7 0.35 0.7 0.74

moU-Net MV 0.65 0.96 0.78 0.43 0.05 0.71 0.73

cU-Net MV 0.63 1 0.77 0.4 0 0.69 0.73

sU-Net MV 0.43 0.95 0.59 0.62 0.05 0.21 0.52

NetMV 0.77 0.96 0.85 0.64 0.08 0.71 0.71

DSC dice similarity coefficient, AFPR average false positive rate, F1-score combines sensitivity and specificity into a single metric by calculation of their harmonic
mean in order to find the most balanced model

Table 1 Characteristics of the patient cohort enrolled in this
study

Train Test

No. of Patients 469 40

Gender (Female/ Male) 244 / 225 26 /14

Mean Age 61 62

No. of Metastases 1149 83

Metastases < 0.4 ml (No. of Patients) 524 (257) 47 (24)

Median Lesion Size 0.31 ml 0.47 ml

IQR (0.09–1.32 ml) (0.14–1.82 ml)

Mean Lesion Size 1.29 ml 1.92 ml

Primary Tumor

Lung 255 20

Melanoma 85 9

Breast 48 4

Other 66 6

Mixed 9 0

CUP 6 1

Year of Treatment

2013 13 1

2014 78 2

2015 98 6

2016 97 14

2017 97 8

2018 63 6

2019 23 3

MR Device (Field Strength)

Ingenia (3.0 T) 372 37

Ingenia (1.5 T) 2 0

Archieva (3.0 T) 93 3

Intera (1.5 T) 2 0
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Discussion
In this work, a deep learning-based algorithm was suc-
cessfully trained to automatically segment brain metasta-
ses. The final model was tested in two configurations,
with the more sensitive one reaching an overall sensitiv-
ity of 0.82. Compared to previous studies the same
model was highly specific with a specificity of 0.83 [7].
The data contained a broad range of metastases in
regards to both primary cancer type and volume. While
primary cancer type had no influence on the DCNNs
performance, we observed a reduction for lesions smaller
than 0.06 ml. Above this threshold the sensitivity and
specificity of the algorithm were 0.97 and 0.94 respect-
ively. This underlines how important usage of clinical
representative data is to properly evaluate such algo-
rithms. Having this current lower limit in mind enables
controlled clinical usage for automated segmentation in
radiation therapy. Quality of the automatically segmenta-
tions was very high (1 ≥DSC≥ .8) for 52% of lesions and
high (.8 ≥DSC≥ 6) for 37% of lesions, which demon-
strated that this algorithm can provide a robust segmen-
tation for therapy planning. In addition to high
performance in both detection and segmentation, usage

of GPUs (NVIDIA RTX 2080ti) allows for rapid comput-
ing, resulting in a computation time between 4 and 5
min for loading, preprocessing and segmenting the
image data.
Regarding optimization of the DCNN, our results in

the ablation study show the commonly used cU-Net per-
forming similarly to the moU-Net, demonstrating that
the conventional U-Net is already well optimized. For
small BMs, the sensitivity of both the cU-Net and the
moU-Net dropped to values ranging from only 0.40 to
0.51. Addition of the sU-Net, which was a conventional
U-Net trained on a subsample containing only small
BMs with a sensitivity for small lesions of 0.62–0.68, to
the ensemble improved the sensitivity of the combined
model considerably. Interestingly, the sU-Net didn’t de-
tect larger BMs (see Fig. 2) which indicates that a com-
bination of networks trained on different subsamples of
the data is needed for the overall model to fully
generalize. The higher false-positive rate of the sU-Net
compared to the other models, suggests that subsamples
need to be of sufficient size to ensure high specificity.
Comparability of models to other work is often diffi-

cult due to differences in how the data was generated

Fig. 3 a: Bland-Altmann plot visualizing agreement between manually delineated ground truth and automatic segmentation by DCNN per
patient. The middle horizontal line is drawn at the mean difference (0.15 ml) between both measurements and the lines below and above at the
limits of agreement (95% CI). b: Volume predicted by DCNN plotted against manual segmentation. The concordance correlation coefficient (CCC)
measuring deviation from the diagonal line depicting perfect agreement between both volumes was 0.87

Fig. 2 Sensitivity and Specificity of the developed networks plotted against the minimum volume of the considered target lesions. Dashed lines
depict the four quartiles (Qi) of the measured volumes of target lesions in the test data (Q1 = 0.06 ml, Q2 = 0.29 ml, Q3 = 1.29 ml, Q4 = 8.05 ml).
The largest drop in both sensitivity and specificity is observed for lesions smaller than 0.06 ml. At this threshold the sensitivities and specificities
are 0.97/0.92 and 0.92/1.00 for NetSUM and NetMV respectively
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and rated. Overall, our model was slightly less sensitive
in detecting metastases compared to other models
(Table 3). The model with the highest sensitivity of 0.93
by Charron et al. [8] also used data generated for SRS,
but their dataset included more larger lesions, on which
a DCNN typically performs well. Dikici et al. [7] used a
set of homogeneously small lesions and achieved results
similar to ours. This confirms our findings that a specific
dataset could allow DCNNs to perform similar on small
lesions and probably on atypical lesions (see Fig. 4 b)
compared to average-sized and typically configured BM.
With regard to specificity, our model outperforms all
other models by a magnitude, which demonstrates that
recent optimizations of the structure and training
scheme of the U-Net could eventually allow to use it in
a clinical context.
A very recent study by Xue et al. [25] is not listed in

the comparison in Table 3. They also used data gained
from SRS and claimed an accuracy of 100% on their
data. The median volume of lesions in their dataset was
2.22 ml which is more than quadruple the median size in
our training (0.31 ml) and test (0.47 ml) set and also lar-
ger than any other dataset in our comparison. The smal-
lest lesion in their training set had a size of 0.07 ml,
while 26% of lesions in our test set were in fact smaller.
Additionally Xue et al. [25] calculated sensitivity and
specificity of their model per pixel and nor per lesion,
which heavily favors larger lesions. The used dataset also
has a typical distribution of primary cancer types, which
we used to show the robust performance of the DCNN
for different primary tumors. Overall, we are confident
that our study is a realistic and thus clinically relevant
observation of how a DCNN is expected to perform.
Our results suggest that mining image and contour

data acquired for SRS is a viable option for in-house de-
velopment of powerful deep learning algorithms. As
demonstrated on other non-clinical datasets before [26],
the learning process is robust to partially missing labels.
A benefit of in-house development is the option to mod-
ify the algorithm, e.g. by changing the method used to
ensemble the trained networks from majority voting
(high specificity) to summation (high sensitivity) de-
pending on the task. Trained networks can furthermore
easily be shared, which would boost reproducibility [27]

Fig. 4 Samples of T1c images (if not otherwise specified) containing
ground truth segmentations (blue lines) and segmentations by
DCNN (purple lines). a: Randomly selected samples of detected
lesions. Number in bottom left of each image is the percentage of
segmentations with similar quality of segmentation measured by
DSC. b: Samples of undetected lesions. Atypical BM: Largest
undetected lesion with minor contrast-uptake in rim. Wrong T1c:
Second-largest undetected lesion where T1c images came from a
different study than T2 and FLAIR images. Small BM: Randomly
selected samples of undetected lesions
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and overall performance by generating an ensemble of
models trained at various sites.
By including an established deep learning-based tool

for brain extraction [13] in our preprocessing pipeline it
was also demonstrated that artificial intelligence is
reaching a point where algorithms can be used reliably
in well-defined tasks. Such pipelines have to be imple-
mented and supervised carefully to ensure that errors
don’t propagate through the chain of algorithms. The
present pipeline can eventually be expanded to include
automatic classification of a BMs histology [28], predic-
tion of treatment response [29] or to directly influence
the treatment e.g. through dose optimization [30].

A limitation of this study is that only patients eligible
for SRS were considered. While SRS is a viable option
for patients with multiple small to medium-sized metas-
tases, exemplified by a treatment of nine lesions con-
tained in the present cohort, our dataset and thus the
developed network could be biased due to a fraction of
patients undergoing other treatments such as whole
brain radiation therapy.

Conclusion
In summary, we demonstrated that neural networks de-
veloped using data acquired during clinical practice are
capable of automated image segmentation. We also

Fig. 5 Results per lesion for all algorithms (cU-Net, moU-Net, sU-Net and their combination) and ensemble building through summation and
majority voting. A lesion in the test set (40 patients, 83 lesions) was considered detected if it overlapped with a segmentation produced by the
respective algorithm. The degree of overlap and thus the quality of the segmentation was assessed using the dice similarity coefficient (DSC). The
dashed blue line is the threshold at which a lesion was defined as small (< 0.4 ml) and thus used to train the sU-Net

Table 3 Comparison of deep learning based segmentation studies for brain metastases (adapted from Dikici et al. [7]). AFPR:
average false positive rate

Study Patients Multiparametric MRI Dedicated Test Set Mean BM volume (mm) Median BM volume (mm) Sensitivity AFPR

Losch et al. [5] 490 no yes NA NA 0.83 7.7

Charron et al. [8] 182 yes yes 2400 500 0.93 7.8

Grøvik et al. [6] 156 yes no NA NA 0.83 8.3

Dikici et al. [7] 158 no no 159.6 50.4 0.9 9.12

Present paper 509 yes yes 1290 (train) 310 (train) 0.77–0.82 0.08–0.35

1920 (test) 470 (test)
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pointed out that the performance of such algorithms still
depends on the size of the target lesion. Further studies
should ensure that performance on such lesions is prop-
erly measured, to ensure clinical applicability. For the
large majority of target lesions however, automated seg-
mentation for treatment planning is already a viable op-
tion to provide a robust baseline segmentation.

Abbreviations
BM: Brain metastasis; DCNN: Deep convolutional neural network;
AFPR: Average false positive rate; DSC: Dice similarity coefficient;
CCC: Concordance correlation coefficient; SRS: Stereotactic radiosurgery;
T1c: T1-weighted contrast-enhanced MRI; FLAIR: Fluid-attenuated inversion
recovery
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