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Abstract

Background: Radiation-induced heart disease is mainly caused by activation of the fibrotic process. Transforming
growth factor-beta 1 (TGF-31) and platelet-derived growth factor (PDGF) are pro-fibrotic mediators. The aim of our
study was to evaluate the behavior of TGF-31 and PDGF during adjuvant radiotherapy (RT) for breast cancer and
the association of these cytokines with echocardiographic changes.

Methods: Our study included 73 women with early-stage breast cancer or ductal carcinoma in situ (DCIS) receiving
post-operative RT but not chemotherapy. TGF-B1 and PDGF levels in serum samples taken before and on the last
day of RT were measured by an enzyme-linked immunosorbent assay. Echocardiography was also performed at
same time points. Patients were grouped according to a 2 15% worsening in tricuspid annular plane systolic
excursion (TAPSE) and pericardium calibrated integrated backscatter (cIBS).

Results: In all patients, the median TGF-B1 decreased from 25.0 (IQR 21.1-30.3) ng/ml to 23.6 (IQR 19.6-26.8) ng/m!
(p=0.003), and the median PDGF decreased from 180 (IQR 13.7-22.7) ng/ml to 15.6 (IOR 12.7-19.5) ng/ml (p < 0.001).
The baseline TGF-31, 30.7 (IQR 26.0-35.9) ng/l vs. 23.4 (IQR 20.1-27.3) ng/I (p < 0.001), and PDGF, 21.5. (IQR 15.7-31.2)
ng/l vs. 16.9. (IOR 13.0-21.2) ng/ml, were higher in patients with a 2 15% decrease in TAPSE than in patients with a < 15%
decrease. In patients with a 2 15% decrease in TAPSE, the median TGF-31 decreased to 24.7 (IQR 20.0-29.8) ng/ml (p < 0.
001), and the median PDGF decreased to 16.7 (IOR 12.9-20.9) ng/ml (p < 0.001). The patients with a < 15% decrease had
stable TGF-B1 (p =0.104), but PDGF decreased to 15.1 (IQR 12.5-186), p = 0.005. The patients with a = 15% increase in
cIBS exhibited a decrease in TGF-31 from 26.0 (IQR 21.7-29.7) to 22.5 (IQR 166.-26.7) ng/ml, p < 0.001, and a decrease in
PDGF from 19.8 (IOR 14.6-25.9) to 15.7 (IQR 12.8-20.2) ng/ml, p < 0.001. In patients with a < 15% increase, TGF-31 and
PDGF did not change significantly, p = 0.149 and p = 0.053, respectively.

Conclusion: We observed a decrease in TGF-31 and PDGF levels during adjuvant RT for breast cancer. Echocardiographic
changes, namely, in TAPSE and cIBS, were associated with a greater decrease in TGF-31 and PDGF levels. Longer follow-
up times will show whether these changes observed during RT translate into increased cardiovascular morbidity.
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Background

Late adverse effects of radiotherapy (RT), including
radiation-induced heart disease, are mostly caused by
fibrotic processes and take years to manifest [1]. Al-
though the relationship between fibrosis and early in-
flammatory responses to microvascular damage caused
by radiation is still unclear, it has been shown that
pro-fibrotic mediators, including the fibroblast activating
cytokines transforming growth factor-beta 1 (TGF-p1)
and platelet derived growth factor (PDGF), are released
by inflammatory, endothelial and epithelial cells [2].
Increased expression of TGF-f1 and PDGF in response
to irradiation has been reported in animal and in vitro
studies [3], but evidence describing the behavior of cir-
culating TGF-B1 and PDGF in humans is varying [4—6].

High plasma or serum levels of TGF-B1 before RT
have been associated with fibrosis of the breast [4, 5].
Regardless of whether patients received intra-operative
RT or not, TGF-B1 concentrations in wound fluid were
similar 24 h after surgery [7]. The relationship between
TGEF-B1 and RT has been most extensively studied in
lung cancer patients. A meta-analysis concluded that the
risk of radiation pneumonitis was increased in lung can-
cer patients receiving RT with a post-RT/pre-RT TGEF-
B1 ratio>1 [6]. TGF-P1 expression is also induced after
a myocardial infarction (MI), but the exact role of
TGEF-B1 in MI remains elusive [3].

Increased PDGF levels are linked to the development
of fibrosis, and PDGF also acts as a pro-angiogenic me-
diator [8]. In one study, serum PDGF levels declined
after RT of non-Hodgkin lymphoma with varying target
sites [9], and in another study, serum PDGF levels did
not change after chemotherapy and mediastinal RT for
Hodgkin’s lymphoma [10]. In animal studies, inhibition
of PDGF or both TGF-f1 and PDGF during RT attenu-
ated the development of pulmonary fibrosis [11, 12]. To
our knowledge, PDGF has not been previously studied
in relation to breast cancer RT.

The aim of our study was to evaluate the behavior of
serum TGF-B1 and PDGF during adjuvant RT for early
breast cancer and to find associations with changes in
echocardiographic parameters.

Materials and methods

Patients

This observational, prospective, single-center study in-
cluded 73 women with early stage breast cancer or
ductal carcinoma in situ (DCIS). All patients received
postoperative RT after breast conserving surgery (n = 72)
or mastectomy (n=1), but did not receive chemother-
apy. The patient characteristics of the study population
are shown in Table 1. The inclusion and exclusion cri-
teria have been previously described [13]. The Tampere
University hospital ethics committee approved the
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Table 1 Patient characteristics (n=73)

Age, Md (IQR; range) 64 (58-66; 49-79)
BMI, Md (IQR; range) 26.3 (24.2-29.9; 20-41), n=69
Left-sided BC, n (%) 50 (68.5)

Al use, n (%) 26 (35.6)
Tamoxifen use, n (%) 6 (8.2)

ACE or ARB use, n (%) 22 (30.1)

ASA use, n (%) 8 (11.0)
Beta-blocker use, n (%) 12 (16.4)

Statin use, n (%) 15 (20.5)

CAD, n (%) 3 4.0

Diabetes, n (%) 6 (8.2), n=69
Hypertension, n (%) 30 (41.1)
Hypothyroidism, n (%) 12 (16.4)
Smoking, n (%) 8 amn

Md median, IQR interquartile range, BMI body mass index, BC breast cancer,

Al aromatase inhibitor, ACE angiotensin converting enzyme inhibitor, ARB
angiotensin Il receptor blocker, ASA low dose acetylsalicylic acid, CAD coronary
artery disease, Diabetes use of diabetes medication

study (R10160), and informed consent was obtained
from all participants.

Radiotherapy

The RT protocol has been previously described in detail
[14]. Patients received either 50 Gy in 2 Gy fractions or
4256 Gy in 2.66 Gy fractions. The planning target
volume (PTV) was the remaining breast with margins
for patients with breast conserving surgery and the chest
wall with margins for the post-mastectomy patient. Two
patients had positive axillary nodes, and the PTV in-
cluded axillary and supraclavicular areas.

Serum biomarker analysis

Serum samples were drawn before RT and on the last
day of RT, and they were stored at — 80 °C until analysis.
TGEF-B1 and PDGEF-AB concentrations were determined
with an enzyme-linked immunosorbent assay using the
reagents from R&D Systems Europe Ltd. (Abingdon,
UK). The detection limit and the inter-assay coefficient
of variation were 7.8 pg/ml and 5.4% for TGF-bl and
3.9 pg/ml and 4.6% for PDGF-AB, respectively.

Echocardiographic examination

Echocardiographic examinations were performed by a
single cardiologist (ST) before and at the end of RT. A
commercially available ultrasound machine (Philips
iE33 ultrasound system; Philips, Bothell, WA, USA)
and a 1-5 MHz matrix-array X5-1 transducer were
used to perform the examination, as previously de-
scribed [13], in a standardized manner following
current guidelines [15—18]. The patients were divided



Aula et al. Radiation Oncology (2018) 13:201

into two groups, one with a>15% decline and the
other with a<15% decline in tricuspid annular plane
systolic excursion (TAPSE), as we earlier reported
marked changes in these two parameters [13, 19]. The
decline was chosen to represent an approximately
4-mm decrease in TAPSE, which can be considered a
clinically meaningful change as in patients with pul-
monary hypertension with every 1-mm decrease in
TAPSE, risk of death was increased by 17% [20]. Also,
in our earlier study the significant average reduction
of TAPSE was 2.1 +3.2 mm and TAPSE decreased by
4 mm in 39% of patients [19]. Similarly, a>15% in-
crease and a< 15% increase in the pericardium cali-
brated integrated backscatter (cIBS) were used to
categorize patients into two groups. As the magnitude
of a clinically meaningful change is not known for
cIBS, a 15% cutoff was used to keep the change similar
to the change in TAPSE.

Statistical analysis

As the distribution of all continuous variables was
skewed, medians and interquartile ranges were calcu-
lated. The Wilcoxon signed-rank test was utilized to test
for changes in the biomarkers and the echocardiographic
parameters from before to after RT. To test the linear
relationships among the biomarkers, Spearman’s correl-
ation was used. The patients were divided into two
groups for further analysis according to a 15% change in
TAPSE or cIBS as described above. To test for differ-
ences in patient characteristics, biomarker levels and ra-
diation doses between the described groups, Fisher’s
exact test for categorical variables, and the Mann—Whit-
ney U-test for continuous variables were used. Multivari-
able logistic regression was used to test the change in
TGF-B1 or PDGF and the change in TAPSE and cIBS
using age, use of hypertension medication and mean
heart dose as predictors. IBM SPSS statistics for Win-
dows (version 23, IBM Corp., Armonk, NY, USA) was
used for all statistical analysis. P-values less than 0.05
were considered statistically significant.
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Results

TGF-B1 and PDGF

The TGE-B1 and PDGF levels of all 73 patients were
measured before and after RT. In these patients, the me-
dian (Interquartile Range; IQR) TGF-f1 levels decreased
from 25.0 (IQR 21.1-30.3) ng/ml before RT to 23.6 (IQR
19.6-26.8) ng/ml after RT, p =0.003 (Fig. 1). Similarly,
the median PDGF levels decreased from 18.0 (IQR 13.7—
22.7) ng/ml before RT to 15.6 (IQR 12.7-19.5) ng/ml
after RT, p <0.001 (Fig. 1). TGF-P1 and PDGF exhibited
a strong correlation before RT (Spearman’s rho = 0.802)
and after RT (rho =0.817). The change in TGF-B1 also
correlated with the change in PDGF (rho = 0.817) (Fig. 2).
There was no significant correlation between change in
TGF-B1 or PDGF and the time from surgery to RT
(Additional file 1: Table S1) or radiation doses to the
heart (Additional file 2: Table S2). Median time from
surgery to start of RT was 56.0 (IQR 49.0-64.5) days.

Transforming growth factor-beta 1, platelet-derived
growth factor and cardiac function

TGF-B1 and PDGF levels and changes in TAPSE

Sixty-six of the 73 (90%) patients had echocardiography
completed before and after RT. TAPSE declined by
>15% in 20 patients and by < 15% in 46 patients. In the
20 patients with a>15% TAPSE decline, TAPSE was
25.0 (IQR 23.3-30.0) mm before RT and 20.5 (IQR
18.0-23.0) mm after RT, p <0.001. However, in the 46
patients with a<15% decline, the median TAPSE was
stable with 22.5 (IQR 20.0-26.0) mm and 22.0 (IQR
19.0-25.3) mm (p = 0.298) before and after RT, respect-
ively. The baseline TAPSE was significantly higher in the
group with a>15% TAPSE decline than in the group
with a < 15% decline, p = 0.021. The groups were similar
in body mass index (BMI), age, smoking status, propor-
tion of left-sided breast cancer, coronary artery disease,
hypertension, and use of aromatase inhibitors (AI), tam-
oxifen, acetylsalicylic acid (ASA), statins, levothyroxine,
diabetes medication, angiotensin converting enzyme
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Fig. 1 TGF-31 and PDGF levels decreased significantly during RT, p=0.003 and p < 0.001, respectively
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Fig. 2 Correlation of the changes in TGF-31 and PDGF levels during
RT (Spearman’s rho =0.817)

(ACE) inhibitors or angiotensin reseptor blockers (ARB)
and B-blockers (Additional file 3: Table S3).

In the patients with a > 15% decline in TAPSE, the me-
dian TGF-B1 level decreased from 30.7 (IQR 26.0-35.9)
ng/ml before RT to 24.7 (IQR 20.0-29.8) ng/ml after RT,
p <0.001 (Fig. 3). TGF-B1 remained stable in patients with
a<15% decline in TAPSE, with a median TGF-B1 of 23.4
(IQR 20.1-27.3) ng/ml before RT and 22.6 (IQR 19.0-
25.6) ng/ml after RT, p = 0.104. The baseline TGF-p1 level
was also significantly higher, p < 0.001, in those with a>
15% TAPSE decline than in those without. There was no
correlation between change in TGF-P1 and the change in
TAPSE (Additional file 4: Table S4). In a multivariable lo-
gistic regression analysis the change in TGF-B1 remained
significant, OR 0.85 (95% CI 0.75-0.96) when age, hyper-
tension and mean heart dose were included in the model
to test variables associated with >15% and < 15% decline
in TAPSE (Additional file 5: Table S5).
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PDGEF levels decreased significantly in both groups. In
patients with a>15% decline in TAPSE, PDGF levels
decreased from a median of 21.5 (IQR 15.7-31.2) ng/ml
before RT to a median of 16.7 (IQR 12.9-20.9) ng/ml after
RT, p<0.001. In patients with a<15% decline, PDGF
levels decreased from a median of 16.9 (IQR 13.0-21.2)
ng/ml before RT to a median of 15.1 (IQR 12.5-18.6) ng/
ml after RT, p=0.005 (Fig. 3). In addition, the baseline
PDGF level was significantly higher, p = 0.020, in patients
with a>15% decline than in those with a <15% decline.
The change in PDGF did not correlate with the change in
TAPSE (Additional file 4: Table S4). In a multivariable lo-
gistic regression analysis the change in PDGF remained
significant, OR 0.85 (95% CI 0.75-0.97) when age, hyper-
tension and mean heart dose were included in the model
(Additional file 6: Table S6).There was no difference in ra-
diation doses to the heart between the groups with >15%
or < 15% decline in TAPSE (Table 2).

Fifty patients had left-sided breast cancer. TGF-B1 and
PDGF behavior was similar in the left-sided patients as
described above for the whole group. During RT,
TGEF-B1 levels decreased from 24.1 (IQR 20.9-29.8) ng/
ml to 23.4 (IQR 19.4-26.9) ng/ml, p =0.025, and PDGF
levels decreased from 17.6 (IQR 13.4-22.8) ng/ml to
15.3 (IQR 12.7-19.8) ng/ml, p =0.001. When the pa-
tients with left-sided breast cancer were grouped ac-
cording to the 215% or<15% decline in TAPSE, the
mean radiation dose to the heart was higher in the
group with a=15% decline than in those with a<
15% decline, with 3.9 (IQR 3.2-4.3) Gy and 2.2 (IQR
1.6-3.7) Gy received, respectively, p=0.024. Simi-
larly, the mean doses to the left descending coronary
artery (LAD), 1.1 (IQR 0.4-1.5) Gy vs. 0.7 (IQR 0.4—
0.9) Gy (p=0.006), and the left ventricle, 7.0 (IQR
4.2-8.0) Gy vs. 3.8 (IQR 2.1-5.6) Gy (p=0.005),
were significantly higher in the >15% group com-
pared to the <15% group.
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Fig. 3 Baseline TGF-31 and PDGF levels were higher, p < 0.001 and p = 0.020, respectively, and both decreased significantly, p < 0.001, in patients
with a = 15% decrease in TAPSE compared with patients with a < 15% decrease in TAPSE. TGF-B1 levels were stable, but PDGF levels decreased
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Table 2 Radiation doses according to TAPSE decline
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215% decrease in TAPSE (n=20)

< 15% decrease in TAPSE (n=46)

Md (IQR) Md (IQR) p
Heart
Dmean (Gy) 339 (08-4.2) 1.8 (0.8-3.5) 0.343
Dmax (Gy) 46.1 (5.3-49.0) 459 (11.8-47.5) 0676
V45 (%) 0.2 (0-1.3) 0.1 (0-0.7) 0.630
V20 (%) 43 (0-5.2) 14 (0-4.8) 0.330
LAD
Dmean (Gy) 237 (0.3-285) 10.3 (2.3-23.5) 0414
Dmax (Gy) 44.1(0.7-48.1) 40.8 (5.0-46.1) 0460
V45 (%) 0(0-5.2) 0(0-7.3) 0.663
V20 (%) 436 (0-67.6) 19.7(0-54.9) 0.193
Left ventricle
Dmean (Gy) 4.6 (0.2-7.2) 2.7 (1.2-55) 0273
Dmax (Gy) 446 (0.8-47.6) 44.1 (5.0-46.7) 0691
V45 (%) 0.1 (0-2.0 0 (0-04) 0.360
V20 (%) 6.0 (0-11.7) 1.7 (0-7.8) 0.192
V10 (%) 88 (0-15.1) 34 (0-11.0) 0.150
Right ventricle
Dmean (Gy) 2.0 (0.8-7.2) 16 (0.9-2.9) 0.692
Dmax (Gy) 276 (3.1-434) 21.3 (33-42.8) 0.988
V45 (%) 0 (0-0) 0 (0-0) 0.925
V20 (%) 0.1 (0-1.3) 0(0-13) 0.848
V10 (%) 0.7 (0-3.6) 0.1 (0-3.8) 0.714
Ipsilateral lung
Dmean (Gy) 8.1 (64-9.1) 7.7 (6.2-9.0) 0484
Dmax (Gy) 49.2 (46.2-52.7) 485 (47.1-51.6) 0.994

Md median, IQR interquartile range, Dmean mean radiation dose to the structure, Dmax maximum radiation dose within the structure, V45 percentage of the
structure volume receiving 45 Gy of radiation, V20 percentage of the structure volume receiving 20 Gy of radiation, V10 percentage of the structure volume

receiving 10 Gy of radiation, LAD left anterior descending coronary artery

TGF-B1, PDGF and change in cIBS

Sixty-four of the 73 (88%) patients had cIBS measured
by echocardiography. Twenty-nine patients had a>
15% increase in cIBS, from a median of -19.8 (IQR
-22.6- -16.6) dB before RT to a median of - 13.3 (IQR
-15.3- -9.5) dB after RT, p < 0.001. The group of 35 pa-
tients with a <15% increase in cIBS had a significant
decrease in cIBS from -17.1 (IQR -21.5- -14.6) dB
before RT to —18.3 (IQR -24.0- -16.7) dB after RT,
p=0.033. The baseline cIBS values between the
groups did not differ significantly, p = 0.257. Further-
more, the groups had similar baseline characteristics
(Additional file 7: Table S7). There was a tendency
for patients with a>15% increase to be older than
those with a<15% increase, 65 (IQR 59.5-69) years
old and 62 (IQR 58-66) years old, respectively (p =
0.079). Additionally, smokers tended to more likely
have a < 15% increase in cIBS (p = 0.063).

In patients with a = 15% increase in cIBS, the median
TGEF-B1 level decreased significantly from 26.0 (IQR
21.7-29.7) ng/ml before RT to 22.5 (16.6-26.7) ng/ml
after RT (p <0.001) (Fig. 4). TGF-B1 remained stable in
patients with a < 15% increase in cIBS, with a median
TGE-B1 level of 24.0 (IQR 20.7-31.4) ng/ml and 24.1
(IQR 21.1-22.5) ng/ml before and after RT, respectively
(p=0.149). The baseline TGF-B1 levels were similar in
both groups, p=0.518. There was no correlation be-
tween the change in TGF-fland the change in cIBS
(Additional file 4: Table S4). In a multivariable logistic
regression analysis the change in TGF-$1 remained bor-
derline significant, OR 0.91 (95% CI 0.82-1.00) when
age, hypertension and mean heart dose were included in
the model (Additional file 5: Table S5).

In addition to declining TGEP-1 levels, a significant
decrease in PDGF levels was observed from 19.8 (IQR
14.6-25.9) ng/ml before RT to 15.7 (IQR 12.8-20.2) ng/



Aula et al. Radiation Oncology (2018) 13:201 Page 6 of 10
p
—| [Jbefore RT — [Cbefore RT
g0 BertorRT 60 Battor T
°
50— 50— °
8
=40 =40
s . E ’
c =
230 =30
g 8
20 820
104 10
0 0
215% increase in <15% increase in 215% increase in <15% increase in
clBS clBS clBS clBS

Fig. 4 TGF3-1 and PDGF levels decreased significantly in patients with a =
with a < 15% increase in cIBS

15% increase in cIBS, p < 0.001 for both, but remain stable in patients

ml after RT, p <0.001, in patients with a>15% increase
in cIBS. There was no significant change in PDGF levels
in patients with a < 15% increase in cIBS, with a median
PDGEF of 16.6 (IQR 11.7-22.6) before RT and 15.2 (IQR
12.6-19.8) after RT, p =0.053. The baseline PDGF level
tended to be higher in those with a >15% increase than
in those with a<15% increase in cIBS, p =0.050. The
change in PDGF did not correlate with the change in
cIBS (Additional file 4: Table S4). In a multivariable lo-
gistic regression analysis change in PDGF remained sig-
nificant, OR 0.88 (95% CI 0.78-0.99), when age,
hypertension and mean heart dose were included in the
model (Additional file 6: Table S6).

The radiation doses, especially those to the left side of
the heart and to the ipsilateral lung, were higher in those
with a > 15% increase in cIBS than those with a < 15% in-
crease in cIBS. Table 3 presents a detailed depiction of
the radiation doses.

Discussion

In this study, we demonstrated the behavior of serum
TGEF-P1 and PDGF during adjuvant RT for breast cancer.
A small decline was observed in all patients, but the de-
cline was most pronounced in patients with worsening
cardiac function and structural changes observed in echo-
cardiography. We also found a strong correlation between
baseline TGF-p1 and PDGF levels and the change in
TGF-B1 and PDGF levels during RT. This correlation is
probably explained by the same origin of both cytokines,
which are produced by macrophages, although TGF-p1 is
additionally produced by endothelial and mesenchymal
cells [1, 2]. This result suggests that the behavior of both
cytokines depict the same phenomenon during adjuvant
RT for breast cancer. The time from surgery to RT did not
affect TGF-B1 and PDGEF levels and change in these levels.
This is probably because the wound was healed by the
time RT started and the half-life of TGF-p1 and PDGF in
serum is short [21].

Transforming growth factor-beta 1 and cardiac function

It is generally accepted that TGF-B1 is a pro-fibrotic
cytokine that initiates fibrosis in response to RT [1, 2].
Additionally, it plays a role in cardiac remodeling after
myocardial infarction [3]. Earlier studies have shown
that an increase in TGF-B1 during RT for non-small cell
lung cancer is likely to be predictive for the development
of radiation pneumonitis [6]. However, some studies do
not confirm this finding, and in patients who do not de-
velop radiation pneumonitis, a decrease in TGF-B1 levels
is seen [22, 23]. In lung cancer, this decline is thought to
represent a decrease in production of TGF-B1 by tumor
cells. However, this explanation probably does not
explain the decline in TGF-B1 in our study since our pa-
tients underwent breast conserving surgery or mastec-
tomy and the likelihood of macroscopic tumor residual
is extremely small.

The dynamics of TGF-B1 during adjuvant RT for
breast cancer have not been previously reported; how-
ever, two studies found that an increased TGF-p1 level
before RT was predictive of fibrosis of the breast [4, 5].
Neither of these studies reported the behavior of
TGEF-P1 during RT. In our patients with a 15% decline
in TAPSE, the baseline TGF-PB1 level was higher than
that in patients without the decline, indicating an associ-
ation between high TGF-B1 levels and right ventricular
dysfunction induced by RT.

TGEF-P1 also seems to be a marker of radiosensitivity. A
decrease in TGF-P1 levels during RT is associated with a
positive response to RT [24]. Additionally, in vitro experi-
ments suggest that blockade of TGF-B1 during RT for
non-small cell lung cancer and breast cancer increases ra-
diosensitivity [25, 26]. Therefore, increased TGF-P1 levels
seem to be a marker for both radioresistance and radio-
sensitivity, depending on the tissue in question. As the as-
sociation of TGF-P1 and echocardiographic has not been
studied during RT, we present a novel finding. Levels of
TGE-B1 decreased significantly in patients with a decline
in TAPSE and an increase in cIBS. TAPSE is in wide
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Table 3 Radiation doses according to the change in cIBS
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Structure 215% increase in clBS (n = 29) < 15% increase in cIBS (n=35)
Md (IQR) Md (IQR) p
Heart
Dmean (Gy) 34 (1.1-42) 1.6 (0.8-27) 0.011
Dmax (Gy) 47.2 (15.0-488) 445 (6.4-47.1) 0.068
V45 (%) 05 (0-1.7) 0 (0-04) 0.025
V20 (%) 44 (0-6.2) 1.1 (0-24) 0.005
LAD
Dmean (Gy) 229 (2.3-27.3) 7.3 (04-180) 0.042
Dmax (Gy) 459 (53-46.8) 363 (06-45.3) 0.040
V45 (%) 04 (0-13.9) 0(0-03) 0.008
V20 (%) 42.7 (0-68.7) 8.9 (0-384) 0.041
Left ventricle
Dmean (Gy) 49 (1.2-7.0) 23 (02-38) 0.023
Dmax (Gy) 458 (9.0-47.8) 417 (0.7-45.9) 0.080
V45 (%) 0.1 (0-29) 0(0-0.2) 0.006
V20 (%) 6.7 (0-10.4) 1.3 (0-4.7) 0.021
V10 (%) 9.0 (0-15.0) 3.0 (0-6.5) 0.006
Right ventricle (n=49)
Dmean (Gy) 24 (1.1-3.) 1.5 (0.9-2.3) 0074
Dmax (Gy) 29.6 (3.6-44.0) 8.1 (3.0-39.3) 0.189
V45 (%) 0 (0-0) 0 (0-0) 0.150
V20 (%) 0.1 (0-2.7) 0 (0-04) 0.053
V10 (%) 09 (0-6.5) 0(0-14) 0.019
Lung
Dmean (Gy) 8.2 (7.6-9.6) 6.8 (5.5-8.2) 0.001
Dmax (Gy) 50.1 (47.9-56.7) 475 (464-49.7) 0.009

Md median, IQR interquartile range, Dmean mean radiation dose to the structure, Dmax maximum radiation dose within the structure, V45 percentage of the
structure volume receiving 45 Gy of radiation, V20 percentage of the structure volume receiving 20 Gy of radiation, V10 percentage of the structure volume

receiving 10 Gy of radiation, LAD left anterior descending coronary artery

clinical use as a reliable measurement of the right ven-
tricular function, and a decline in TAPSE correlates with
poor cardiac prognosis in many patient groups [17, 20].
Myocardial reflectivity can be determined with off-line
analysis of the echocardiography acquisition (cIBS). Even
though the exact basis for the changes in cIBS are not
completely understood, an increase in cIBS presents
changes in three-dimensional myocardial structure due to
factors such as tissue edema or interstitial fibrosis [27].

In studies of cardiac function after an experimental myo-
cardial infarction in mice, blockade of TGF-B1 by an anti-
body increased mortality and left ventricular dilatation [28].
Another study concluded that early inhibition of TGEFp-1
was detrimental and that later inhibition was beneficial to
the cardiac function of mice after an MI, which indicates
that the role of TGEB-1 may be different in various phases
of the healing process [29]. In obese, hypertensive patients,
an abundance of circulating TGF-B1 is associated with left

ventricular filling abnormalities [30]. As concluded by a re-
view conducted by Bujak, the role of TGF-B1 after an MI
remains elusive [3].

Platelet-derived growth factor and cardiac function

PDGF consists of two linked chains, designated A, B, C
or D. It can be assembled as a hetero- or homodimer
[8]. We measured the heterodimer PDGF-AB and found
that RT induced a decrease in PDGF that was associated
with a decrease in TAPSE and an increase in cIBS. The
role of PDGF in long-term adverse effects of RT is not
as extensively studied as is the role of TGFf-1. During
RT, PDGF levels were decreased in non-Hodgkin lymph-
oma patients with varying RT sites, some with preceding
chemotherapy and some without [9]. In patients receiv-
ing chemotherapy and RT, PDGF and TGEF-B1 levels
remained unchanged [10]. Because the sites of RT varied,
some patients had intact tumors and some patients had
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chemotherapy that also may influence cytokine levels,
indicating that the studies were quite different from our
study.

The effect of PDGF has also been studied through in-
hibition of the PDGF receptor. In mice, treatment with a
PDGEF receptor tyrosine kinase inhibitor, imatinib, atten-
uated the development of lung and skin fibrosis [11, 31].
The function of PDGF in cardiac tissue remains elusive,
as blockade of PDGF receptor improved cardiac function
[32], but injection of exogenous PDGF-AB or PDGF-BB
improved heart function after an MI [33-35].

Echocardiographic changes associate with radiation doses
In our earlier study, we reported changes in TAPSE dur-
ing RT of left-sided breast cancer patients but found no
association with radiation doses [19]. In this study, only
patients with available serum samples were included.
We found that patients with left-sided breast cancer that
had a > 15% decline in TAPSE had higher radiation doses
to the whole heart, the left ventricle and the LAD than
those with a<15% decline in TAPSE. There were even
more differences in the radiation doses to the whole
heart or parts of the heart when patients were grouped
according to >15% and < 15% increases in cIBS. An in-
crease in cIBS represents an increase in the reflectivity
of the cardiac tissue, probably due to structural changes
caused by RT-induced inflammation. TAPSE is a param-
eter depicting longitudinal function of the right ven-
tricle. Its decrease may portray inflammatory changes
because the thinness of the right ventricle makes it more
sensitive to RT-induced changes [19].

Study limitations

The limitations to our study are that the population is
rather small and the follow-up time is very short, as we
only studied the changes that occurred during adjuvant
RT. At this stage, we do not know if the echocardio-
graphic changes are permanent or if they are associated
with the development of fibrosis, which is thought to be
responsible for the increased risk of cardiac morbidity
after irradiation of the heart [36]. Thus, longer follow-up
times are needed to determine whether the behavior of
TGF-B1 and PDGF during adjuvant RT depict perman-
ent damage to the heart.

Conclusion

In this study, we demonstrated that RT induces a
decrease in TGF-B1 and PDGF levels in accordance with
worsening cardiac function and structural changes,
namely, a decrease in TAPSE and an increase in cIBS.
Additionally, higher baseline TGF-f1 and PDGF levels
were associated with a decrease in TAPSE, possibly
indicating a higher susceptibility to RT-induced cardiac
changes. Decreases in TGF-B1 and PDGF levels and the
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association of these cytokines with echocardiographic
changes could depict increased sensitivity of the heart to
the effects of radiation. These novel findings are prelim-
inary and need to be confirmed by more studies and
longer follow-up, as serum biomarkers are an attractive,
minimally invasive and easily available option to identify
RT patients in need of closer cardiological follow-up.
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