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Abstract

Background: Automated treatment planning and/or optimization systems (ATPS) are in the process of broad clinical
implementation aiming at reducing inter-planner variability, reducing the planning time allocated for the optimization
process and improving plan quality. Five different ATPS used clinically were evaluated for advanced head and neck
cancer (HNC).

Methods: Three radiation oncology departments compared 5 different ATPS: 1) Automatic Interactive Optimizer (AIO)
in combination with RapidArc (in-house developed and Varian Medical Systems); 2) Auto-Planning (AP) (Philips Radiation
Oncology Systems); 3) RapidPlan version 13.6 (RP1) with HNC model from University Hospital A (Varian Medical Systems,
Palo Alto, USA); 4) RapidPlan version 13.7 (RP2) combined with scripting for automated setup of fields with HNC model
from University Hospital B; 5) Raystation multicriteria optimization algorithm version 5 (RS) (Laboratories AB, Stockholm,
Sweden). Eight randomly selected HNC cases from institution A and 8 from institution B were used. PTV coverage, mean
and maximum dose to the organs at risk and effective planning time were compared. Ranking was done based on 3 Gy
increments for the parallel organs.

Results: All planning systems achieved the hard dose constraints for the PTVs and serial organs for all patients. Overall,
AP achieved the best ranking for the parallel organs followed by RS, AIO, RP2 and RP1. The oral cavity mean dose was
the lowest for RS (31.3 ± 17.6 Gy), followed by AP (33.8 ± 17.8 Gy), RP1 (34.1 ± 16.7 Gy), AIO (36.1 ± 16.8 Gy) and
RP2 (36.3 ± 16.2 Gy). The submandibular glands mean dose was 33.6 ± 10.8 Gy (AP), 35.2 ± 8.4 Gy (AIO), 35.5 ± 9.
3 Gy (RP2), 36.9 ± 7.6 Gy (RS) and 38.2 ± 7.0 Gy (RP1). The average effective planning working time was substantially
different between the five ATPS (in minutes): < 2 ± 1 for AIO and RP2, 5 ± 1 for AP, 15 ± 2 for RP1 and 116 ± 11 for RS,
respectively.

Conclusions: All ATPS were able to achieve all planning DVH constraints and the effective working time was
kept bellow 20 min for each ATPS except for RS. For the parallel organs, AP performed the best, although the
differences were small.
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Background
In the past decade, intensity modulated radiotherapy
(IMRT) and volumetric modulated radiotherapy (VMAT)
became standard techniques for external beam radio-
therapy treatments (EBRT) of many indications. The in-
verse optimization approach is an iterative process where
optimization objectives are used in order to achieve the
pre-defined clinical goals. Additionally, help structures are
frequently defined to shape the dose distribution and fur-
ther individualize and optimize the treatment plan. The
complexity of the optimization increases with the number
of organ at risks (OAR) and the number of target volumes.
Head and neck carcinoma (HNC) is a typical complex
case where a large number of OARs, typically 10–20, are
surrounding the target volumes irradiated to different
dose levels. This makes inverse planning optimization one
of the most time consuming steps of the overall treatment
planning process.
Additionally, plan quality may vary between planners and

between clinical institutions. Plans produced by an experi-
enced center may outperform those produced in a less ex-
perienced center [1] and the OAR sparing also depends on
the planning target volume (PTV) dose homogeneity re-
quirements [2]. Furthermore, evaluation of plan quality is
often based on population-based dose volume histogram
parameters (DVH), which neglect the nuances of an indi-
vidual patients’ geometry and therefore do not achieve the
optimal solution based on a patient-individual level [3].
In order to overcome these issues, optimization modules
were developed in order to automate part or the entire
optimization [4–9] process. They all aim at reducing the
inter-planner variability, reducing the planning time allo-
cated for the optimization process and finally improving
the overall plan quality [10, 11]. Nowadays, automated
treatment planning and/or optimization systems (ATPS)
are in the process of broad clinical implementation. How-
ever, since ATPS have to be customized in order to fulfill
the specific constraints required by different medical cen-
ters, it could be that an ATPS implemented at one institu-
tion will not necessary work for patients from another
institution. The goal of this study was to compare different
ATPS for HNC planning in a multicenter setting.
Additionally, it was evaluated if a model for automated

planning developed by one institution could be used for
planning cases of another institution using similar but not
the same structures and planning goals. This multi-institu-
tional planning comparison of five ATPS solutions is, to the
best of our knowledge, the first of its kind.

Methods
Study design
In this multi-institutional planning study, five automated
treatment planning systems used in 3 different institutes
were evaluated:

1) Automatic Interactive Optimizer (AIO) (in-house
developed) in combination with RapidArc version
13.7 from Eclipse (Varian Medical Systems, Palo
Alto, USA) from hospital B [4, 12];

2) Auto-Planning version 14.0 (AP) from Pinnacle
(Philips Radiation Oncology Systems) from hospital
A [6];

3) RapidPlan version 13.6 (RP1) from Eclipse (Varian
Medical Systems, Palo Alto, USA) using HNC model
from hospital A;

4) RapidPlan version 13.7 (RP2) combined with
scripting for automated setup of fields with HNC
model from hospital B [13];

5) Raystation multicriteria optimization algorithm
version 5 (RS) (RaySearch Laboratories AB,
Stockholm, Sweden), from hospital C.

Ten randomly selected locally advanced HNC cases were
chosen from each of two different institutes (A and B).
Two cases from each group were used to familiarize with
the target volume, concepts, dose constraints and to gener-
ate an automated planning strategy. A single optimization
using the same strategy was performed for the remaining
cases. Only these eight cases for each institution, overall 16
cases, were included in the planning comparison.
Patients from institute A had three PTV dose levels, with

doses of 70 Gy, 60 Gy and 54 Gy planned in 35 fractions
using a simultaneous integrated boost (SIB), see Table 1
and Fig. 1. The dose was normalized to PTV 70Gy mean
dose = 70 Gy.
Patients from institute B had two dose levels defined:

70 Gy and 54 Gy in 35 fractions using a SIB, see Table 1
and Fig. 1. The dose was normalized such that 95% of the
PTV 70 Gy volume received 98% of the prescribed dose
(70 Gy).
For both sets of patients, hard planning constraints were

set for the PTVs and serial OAR, which had to be fulfilled
by all planning system and patient cases, see Table 1. For
the parallel OARs, the mean dose was asked to be kept as
low as reasonably achievable. All plans were optimized
with a 2 arc, 6 MV VMAT technique.

Plan evaluation
Dose-volume histogram (DVH) parameters were calcu-
lated for the PTVs and each of the OARs listed in Table 1.
Maximum doses for the serial OAR were reported but the
differences were not considered in this planning compari-
son. This allows the optimization algorithm to further re-
duce dose to the parallel organs. The dose bath was
evaluated based on the volumes covered by the 50 Gy,
30 Gy and 5 Gy isodose surfaces.
Doses to parallel OARs were evaluated based on their

mean dose. A ranking for each parallel OAR was per-
formed per patient. A rank of 1 was given for the ATPS
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achieving the lowest mean dose for a given OAR. Each
ATPS achieving a dose within 3 Gy to the lowest
achieved dose was given a ranking of 1, assuming that a
dose difference < 3 Gy was not clinically relevant in our
case [14–16]. The ATPS achieving a dose within 3 Gy –
6 Gy to the lowest achieved dose had a rank of 2, within
6 Gy – 9 Gy, a rank of 3, etc. The mean ranking was cal-
culated for the individual swallowing muscles plus tra-
chea and thyroid gland resulting in a structure called
upper aerodigestive tract (UAT).

Finally, an overall mean ranking was taken by aver-
aging the mean rank for parotid glands, submandibular
glands and oral cavity.
The time required to generate a plan was evaluated

and divided into 2 parts:

1) The effective working time was defined as the time
required by the planner to generate a plan. This
included the time needed for the definition of auxiliary
structures and definition of bolus structures if a PTV
reached the skin surface. For RS, it also included the
user navigation through the Pareto-optimal plan
database. This time didn’t include the time required
for the optimization.

2) Optimization time, during which no interaction of
the user was needed. For RS, it includes the automatic
generation of Pareto-optimal plans and the final
deliverable plan.

Automated treatment planning system
AIO
Using the application programming interface (API) of
the Eclipse treatment planning system, several scripts
were developed to; create the PTV structures used in the
optimization; generate ring structures around the PTVs;
position two RapidArc fields and the isocenter positioned
in the center-of-mass of the total PTV. The scripts auto-
matically positioned fixed optimization objectives for the
PTVs, serial OARs, and ring structures, while for each
parallel OAR, 10 optimization objectives are positioned
evenly spread among the volume axis. After this, the user
has to manually open the optimization window of the
treatment planning system to start the automatic
interactive optimization (AIO) process. AIO is a pro-
gram that automatically adapts the optimization ob-
jectives of the parallel OAR during the optimization
process, keeping them at a fixed distance from the
DVH-line at all times [12, 17].

Auto-planning
Auto-Planning (AP), included in Pinnacle 14.0 (Philips
Radiation Oncology Systems), is a fully integrated
module in the TPS, similar to the “manual” inverse
optimizer module and has been previously described
[6, 18]. Briefly, Pinnacle AP is a template-knowledge
based treatment planning system. During AP, a plan is
automatically loaded and the isocenter placed at the
center-of-mass of the total PTV. The optimizer is than
automatically run multiple times with the individual
optimization goals, constraints and weights automatically
added and adjusts the priority of clinical goals based on
their probability of being achieved.

Table 1 Targets, organs at risk and objectives used for plan
optimization

Institution A Institution B

Prescription

70 Gy, 60 Gy and 54 Gy 70 Gy and 54 Gy

35 fractions with a simultaneous integrated boost

Beam arrangement

2 volumetric modulated arcs, 6MV photons

PTVs

PTV 70Gy Dmean = 70Gy PTV 70Gy D95% = 98%

PTV 70Gy V95% > 95% PTV 70Gy V107% < 5%

PTV 70Gy D2% > 75Gy PTV 54Gy D95% > 98%

PTV 60Gy V95% > 95% PTV 54Gy V107% < 5%

PTV 54Gy V95% > 95%

Serial organs

Brainstem Dmax < 54 Gy Brainstem + 3 mm Dmax < 50 Gy

Brachial Plexus D0.5cm3 < 60 Gy

Mandible V70 Gy < 1 cm3 Mandible Dmax < 70 Gy

Spinal cord < 45 Gy Spinal cord + 3 mm Dmax < 54 Gy

Parallel organs

UAT Cricopharyngeal

Glottis

Larynx Lower

Larynx Upper

Pharynx constrictor

Superior PCM

Medial PCM

Inferior PCM

Upper esophagus Upper esophagus

Upper Esophageal Sphincter

Thyroid Thyroid

Trachea Trachea

Oral cavity Oral cavity

Parotids Parotids

Submandibular glands Submandibular glands

Abbreviation: PCM pharyngeal constrictor muscles, UAT upper
aerodigestve tract
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RapidPlan with a model from institute A (RP1)
Rapidplan (RP) is a knowledge-based automatic planning
solution. A set of previously created plans representative
of the internal hospital guidelines are fed into the pro-
gram, which through a statistical modeling, creates a
model. This model takes into account the geometrical
and dosimetrical properties of the plans and is able to
generate individualized constraints for the future plans
taking into account their particular geometry, based on
the library plans. Since RP is based on hospital-specific
plans, the model is optimized to produce plans with a
specific dose distribution and to accept OAR within a
certain size and location. RP1 model was based on 83
clinically delivered HNC plans with SIB concept but
variable dose levels created using 6MV photons and 2
full arcs. Since OAR definition from Institution A was
different from Institution B, it was necessary to sum sev-
eral OARs from Institution B before RP1 could be used.

RapidPlan with a model from institute B (RP2)
The same script as for AIO was used for the creation of
the RapidPlan plans. However, instead of positioning all

optimization objectives as a preparation for AIO, a script
was developed to call a RapidPlan model from institute B
to predict achievable OAR doses and position optimization
objectives for the various targets and OARs. This model
was based on 177 clinical patient plans, which is an exten-
sion of a previously made model [13].

Raystation
The MultiCriteria optimization algorithm MCO is a
convex optimization problem [19] based on the approxi-
mation of the Pareto surface-based technique [20] where
a set of Pareto-optimal plans is automatically generated
and stored in a database for each patient. The user can
navigate through this “Pareto-optimal” plans database
and assess in real-time the tradeoff between different ob-
jective functions assigned to each anatomical structure.
The desired plan that meets the clinical goals is then se-
lected by the planner and generated to be delivered to
the patient [21]. In this study, the geometry of planning
targets volumes PTVs were replaced with convex ap-
proximation geometry as a means to control the

Fig. 1 Example of one head and neck case from institution A (a) and one from institution B (b). In red, blue and light green the PTVs
70 Gy, 60 Gy and 54 Gy respectively as well as the OARs
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increased level of fluence modulation otherwise caused
by a non-convex target shape. The DVH-based functions
were used as hard constraints in order to respect the
clinical constraints.

Statistical analysis
The mean dose to the parallel organs were reported as
well as the standard deviation. The Wilcoxon signed
rank test was used to compare the mean doses of the
parallel organs of each planning system with those of the
planning system that achieved the lowest mean dose. A
p ≤ 0.05 was considered significant.

Results
Dose distribution
The detailed results for the five ATPS are included in
Tables 2 and 3. Each planning system were able to be
modified successfully to achieve the hard constraints for
the PTVs and serial organs for each patients listed in
Table 1. Small variations in serial OAR doses were ob-
served between the different ATPS but were judged as
clinically irrelevant.
The dose bath V50 Gy and V30 Gy was lowest for RS,

whereas AIO had the lowest V5 Gy, see Table 2. AP had on
average the largest volume exposed to 50 Gy and 5 Gy.
V50 Gy and V30 Gy were increased in comparison to RS by
1.9 ± 10.6% and 12.9 ± 18.0% (RP1), 6.1 ± 10.4% and 27.0
± 13.7% (RP2), 8.7 ± 12.4% and 33.2 ± 13.0% (AIO), 18.5 ±
17.6% and 23.9 ± 17.8% (AP). V5 Gy was increased in com-
parison to AIO by 2.4 ± 3.7% (RP2), 3.9 ± 4.7% (RS), 6.8 ±
9.9% (RP1) and 11.4 ± 12.8% (AP).
The mean dose results for the parallel organs are sum-

marized in Table 3. Overall, AP had the best overall

ranking for the parallel organs followed by RS (p = 0.20),
AIO (p = 0.03), RP2 (p = 0.01), and RP1 (p < 0.01). When
looking at each organ separately, the oral cavity mean dose
was significantly lower with RS (31.3 ± 17.6 Gy) compared
to AP (33.8 ± 17.8 Gy), RP1 (34.1 ± 16.7 Gy), AIO
(36.1 ± 16.8 Gy) and RP2 (36.3 ± 16.2 Gy), p < 0.05.
The lowest, respectively the highest, parotids mean
dose was 21.2 ± 5.9 Gy (AP) and 22.8 ± 6.2 Gy (RP2)
respectively. No significant differences were observed
between the ATPS (p > 0.2). The submandibular glands
mean dose was 33.6 ± 10.8 Gy (AP), 35.2 ± 8.4 Gy
(AIO), 35.5 ± 9.3 Gy (RP2), 36.9 ± 7.6 Gy (RS) and
38.2 ± 7.0 Gy (RP1). Only RP1 and RS were significantly
different to AP. In the subgroup of the UAT, large dose
variations, up to 15 Gy, were observed for small structures
such as the cricopharynx or the upper pharyngeal con-
strictor muscles between the ATPS. Averaging over all
UAT structures reduced the differences. The lowest UAT
mean dose was obtained with AIO (38.8 ± 9.3 Gy), AP
(39.3 ± 9.4 Gy), RP2 (39.7 ± 8.9 Gy), RS (40.4 ± 8.4 Gy) and
RP1 (43.4 ± 7.6 Gy). RP1 was the only ATPS having a sig-
nificantly higher mean UAT dose compared to the ATPS
achieving the lowest mean dose (AIO), p < 0.01.

Planning time
The effective working time required after volume definition
by the clinicians to the end of the optimization process was
evaluated for every planning system. This time was kept
below 2 min for each plan optimized with AIO and RP 2,
see Table 4. The mean effective working time was increased
by 3 ± 1 for AP, 13 ± 2 by RP1 and 116 ± 11 min by RS,
respectively.

Table 2 Detailed results for the PTVs, dose bath and serial organs

Structure AIO AP RP1 RP2 RS

Mean SD Mean SD Mean SD Mean SD Mean SD

Targets PTV 70Gy Dmean (Gy) 70.9 0.2 70.5 0.3 70.8 0.3 70.5 0.3 70.4 0.2

V95% (%) 97.6 0.6 98.9 0.2 97.7 0.6 97.8 0.5 98.8 0.2

D2% (Gy) 73.4 0.4 72.6 0.2 73.6 0.2 73.3 0.1 72.1 0.1

PTV60Gy V95% (%) 98.9 0.4 99.9 0.1 99.1 0.3 99.0 0.2 99.7 0.2

PTV 54Gy V95% (%) 98.2 0.4 98.7 0.6 98.3 0.4 98.8 0.3 98.0 0.6

Dose bath Body V50Gy (dm3) 1.02 0.34 1.12 0.34 0.96 0.30 1.00 0.32 0.94 0.32

V30Gy (dm3) 2.50 0.62 2.32 0.66 2.12 0.56 2.38 0.61 1.88 0.43

V5Gy (dm3) 6.39 1.28 7.12 1.40 6.83 1.35 6.54 1.40 6.64 1.36

Serial Organs Brachial Plexus D0.5 cm3 (Gy) 53.1 3.5 53.1 4.3 54.2 3.6 52.7 2.7 51.1 7.4

Brainstem Dmax (Gy) 30.2 15.5 27.4 13.6 26.2 14.7 30.6 12.8 23.7 13.4

Mandible Dmax (Gy) 67.8 4.6 66.6 5.5 68.0 7.9 67.1 12.0 67.0 3.2

Spinal cord Dmax (Gy) 40.7 0.8 41.5 2.2 41.3 2.1 40.8 1.3 36.0 2.9

Abbreviations: AIO automatic Interactive Optimizer, AP auto-planning, RP RapidPlan, RS Raystation, V 95% percentage volume receiving 95% of prescribed dose, D 2%

dose corresponding to 2%, D 0.5 cm
3 dose corresponding to 0.5 cm3, V X Gy volume receiving X Gy, Dmax maximal dose, SD standard deviation
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Discussion
This study presented a multi-institutional planning com-
parison study of five ATPS used in 3 different institutes,
performed on 16 locally advanced head and neck cancer
patients coming from two institutes. Although larger dif-
ferences were observed for an individual patient, when
looking at the mean results over all 16 patients, dosimet-
ric differences between ATPS were generally small with
Auto-Planning achieving the best ranking. Effective
working time differed considerably more between ATPS,
from 2 up till 116 minutes.
ATPS can be classified between automated optimization

and automated planning, including optimization. The
automated optimization can again be distinguished as
optimization algorithm driven systems, such as AIO, AP
and RS, were the objectives and/or priorities are automatic-
ally adjusted during the optimization and knowledge based
planning systems based on plan libraries such as RP1 and
RP2. The automated optimization algorithm driven
systems can be easily modified to take into account
possible changes in clinical protocols. This is not ne-
cessary the case for the knowledge based planning
systems which rely on plans for a database of prior pa-
tients. Contrariwise, the use of a database allows a compari-
son between the predicted and achieved dose volume
histogram [13].
The second classification can be performed based on au-

tomated planning where not only the optimization process
is automated but also the field setup, gantry and collimator
angles, the positioning of the isocenter and help structures

such as bolus, rings structures or non-overlapping struc-
tures. This fully automated process was used by AIO, AP
and RP2. RP1 and RS could also automate these planning
process but it was not implemented.
After dose optimization, a single plan was generated by

each ATPS except for RS where the user had to select a
plan from a database of Pareto-optimal plans. This manual
step will reduce the inter-planner standardization but will
allow the user to choose the best dose trade-off between
the targets and OARs.
Wu et al. [22] compared AP and RP, for oropharyngeal

cancer patients and found that the plan quality from
both systems was comparable. Differences between the
two systems were in the range of 5%, which is in good
agreement to the small differences observed in our
study. To the best of our knowledge, no other ATPS
comparisons are available.
The two sets of HNC were chosen to evaluate the

flexibility of the different ATPS to take into account new
structures, objectives and/or different dose levels. The
model for AIO, AP and RS could be easily modified be-
cause they are based on a set of user pre-defined DVHs
parameters, which were automatically adjusted during
the optimization. However for the RS, the combination
of objectives/constraints and the selection of their for-
mulation had to be adjusted manually for each plan de-
pending on the overlap between the PTV and OAR
which affects directly the Pareto surface computation.
This is not the case for RP models, which are based on
previously generated site-specific plan libraries. In this

Table 3 Detailed results for the parallel organs. Statistical significance was tested for each parallel organ group in comparison with
the planning system that achieved lowest averaged mean dose (bold). Any 0.01 ≤ p≤ 0.05 is indicated with a *, and p ≤ 0.01 is
indicated with **

AIO AP RP1 RP2 RS

Mean ± SD Rank± SD Mean ± SD Rank ±SD Mean ± SD Rank ±SD Mean ± SD Rank ±SD Mean ± SD Rank ±SD

(Gy) (Gy) (Gy) (Gy) (Gy)

OralCavity 36.1 ± 16.8 ** 2.56 ± 1.21 33.8 ± 17.8* 1.63 ± 0.62 34.1 ± 16.7** 1.81 ± 0.75 36.3 ± 16.2** 2.75 ± 1.34 31.3 ± 17.6 1.06 0.25

Parotid 21.9 ± 6.3 1.31 ± 0.6 21.2 ± 5.9 1.19 ± 0.40 21.6 ± 6.3 1.25 ± 0.45 22.8 ± 6.2 1.50 ± 0.73 21.4 ± 6.2 1.19 ± 0.54

Submand.
Glands

35.2 ± 8.4 1.94 ± 1.34 33.6 ± 10.8 1.44 ± 0.81 38.2 ± 7.0 ** 2.88 ± 1.41 35.5 ± 9.3 1.88 ± 1.09 36.9 ± 7.6* 2.38 ± 1.15

UAT 38.8 ± 9.3 1.49 ± 0.37 39.3 ± 9.4 1.86 ± 0.64 43.4 ± 7.6** 2.99 ± 1.01 39.7 ± 8.9 1.89 ± 0.7 40.4 ± 8.4 2.00 ± 0.70

Average 1.83 ± 1.06* 1.53 ± 0.67 2.23 ± 1.20** 2.00 ± 1.08* 1.66 ± 0.91

Abbreviations: AIO automatic interactive optimizer, AP auto-planning, RP RapidPlan, RS Raystation, SD standard deviation, UAT upper aerodigestve tract

Table 4 Effective working time and optimization time

AIO AP RP1 RP2 RS

Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev

Eff. working time (min) < 2 < 1 5 1 15 2 < 1 < 1 116 11

Optimization time (min) 31 4 83 10 27 4 28 7 218 30

Abbreviations: AIO automatic interactive optimizer, AP auto-planning, RP RapidPlan, RS Raystation
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case, the model had to be manually modified to take into
account the structures not defined in the library. RP1
and RP2 were both used without considering whether a
particular structure was an outlier. At later inspection,
all OAR of the third case from group A were listed as
“outside threshold values” for RP2 as the PTV_70Gy size
of 585cm3 was above the 90 percentile value of the
model. This could have a negative effect on the predic-
tions. RP2 parotid gland doses were 7 Gy higher than for
AP for this case. Similarly, when applying RP1 to the pa-
tients in the group B, the Glottis was marked as outlier
for each single patient, and the swallowing muscles re-
ceived with RP1 in these patients the highest mean dose.
This was also the organ in which the highest differences
between RP1 and the other ATPs were observed, clearly
showing that the model was not able to predict the cor-
rect objectives for this case. This could be overcome by
deciding that patients with such warning signs by Rapid-
Plan should not be subject to automated planning. In
spite of this, we compared how RP1 and RP2 performed
for each organ with the data from the own institution
and the external patient data. We did not notice large
dosimetric differences, demonstrating that rapidplan also
works for patients with slightly different structure sets
and prescriptions.
The time required to generate VMAT or IMRT plans has

been reduced in the past years by improvement of the avail-
able tools in planning system as well as automation of steps
in the optimization process time. Nowadays, planning tem-
plates, scripts and optimization automation are available in
TPS. This allows a gain of time on one side and a
standardization of the plan quality at a high level on the
other side. The effective working time for ATPS planned
with VMAT was reported to be less than 10 min with
iCycle [23] and less than 4 min with AP [6], but the overall
time was not recorded. The effective working time reported
are in the same order as those from our study. By adding
scripting to the automated optimization processes, effective
planning time could be reduced to less than 2 min with RP
and AIO. Similar scripting tools are also available in AP but
were not implemented. This might have led to a similar re-
duction of the effective working time.
RS required substantially more time to generate VMAT

plans as the other ATPS mainly for two reasons. The first
reason is the technique employed in this study where each
PTV geometry was approximated by a “more convex” or
“less concave” geometry depending on the type of the
nearest OAR (serial or parallel architecture). This add-
itional planning step was introduced as earlier publica-
tions had shown that RS generated high quality plans in
an efficient treatment planning time for convex target
geometry [6, 17, 18]. Therefore, each PTV geometry was
approximated by a “more convex” or “less concave” geom-
etry depending on the type of the nearest OAR (serial or

parallel architecture). The second reason is that the HNC
patients required a high-dimensional Pareto-surface
approximation. Thus, the optimization time rises with
the number of objective functions used during the
optimization process. In our case, 20 objectives on average
were used leading to a Pareto-surface approximation gen-
erated by 40 plans, as recommended by Craft et al. [20]
for each patient. The optimization time was similar for RP
for both institutions. AIO, which is running on the same
system as RP, needed a few minutes longer to finish the
optimization since the optimization is paused to automat-
ically adjust the objectives. AP performs multitude steps
of optimization and dose calculation where the objectives
and help structures are automatically adjusted and cre-
ated. This iterative process is time consuming and lasts
typically between 1 h and 1.5 h. The optimization time is
increased to three to 4 h with RS due to the reasons men-
tioned above. However, this approach allows the user to se-
lect the plan having the best balance between the targets
and OARS dose. The optimization time mentioned above
can be influenced by the number of users working in paral-
lel on the server as well as its performances; therefore this
parameter should be taken only as a rough estimation of
the optimization time.
This study was focused on HNC treatment and whether

similar results will be obtained for other sites still needs to
be assessed.

Conclusion
The results obtained for the five ATPS evaluated on two
different set of HNC patients show that all ATPS were able
to fulfill the hard constraints. For the parallel organs, AP
achieved the best results followed by RS, AIO, RP2 and
RP1. Nevertheless, the differences were small. The effective
working time was reduced to less than 20′ for each ATPS,
except RS, and could be reduced to less than 2′ when using
scripting, which was the case for AIO and RP2.
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