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Abstract

Background: The aim of the present study was to evaluate the influence of the applied safety margins of modern
intensity-modulated radiotherapy (IMRT) in patients with high-grade meningiomas on local control and recurrence
patterns.

Methods: Twenty patients with a neuropathological diagnosis of a high-grade meningioma (WHO°II or °III) treated
with adjuvant or definitive radiotherapy between 2010 and 2015 were included in the present retrospective
analysis. All patients were planned PET-based. Recurrence patterns were assessed by means of MRI and/or
DOTATATE-PET/computertomography (CT).

Results: The median follow-up was 31.0 months [95% confidence interval (CI): 20.1–42.0] and the progression-
free survival (PFS) after 24 months was 87.5%. Overall, four patients had a local recurrence of their meningioma. Of
these, three were located in field according to the prior radiotherapy treatment region, while only one patient had a
distant relapse. There were no independent factors influencing progression-free or overall survival (OS).

Conclusion: After radiotherapy (RT), patients with atypical or anaplastic meningiomas still have a defined risk of tumor
recurrence. The aim of the present study was to examine mono-institutional data concerning target volume definition
and recurrence patterns after radiotherapy of high-grade meningiomas as there are limited data available. Our data
suggest that extended safety margins are necessary to achieve a favorable local control for high-grade meningiomas.
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Background
Meningiomas account for 20–30% of all primary intra-
cranial neoplasms and represent the most common
intracranial tumors in adults [1–4]. High-grade meningi-
omas show an excessive mitotic index on histopatho-
logical examination [5]. Additional criteria for the
diagnosis of atypical meningiomas are brain invasion or
three of the five following histopathological aspects:
prominent nucleoli, high cellularity, small cells, spontan-
eous necrosis or sheeting, i.e. loss of whorling or fascicu-
lar architecture [6, 7]. Overall, high-grade meningiomas

(WHO (World Health Organisation) °II and °III) show a
significantly more aggressive behavior and poorer out-
come as compared to low-grade meningiomas [8–14].
A multimodal treatment approach with a combination

of surgery and radiotherapy (RT) is nowadays considered
to be the treatment of choice [8, 15]. Due to the fre-
quent adhesion to neurological structures such as the
optical nerve, optical chiasm or brainstem, gross total
resections remain challenging [14]. Therefore, postoper-
ative RT is recommended for most cases of atypical
meningiomas WHO grade II and all anaplastic meningi-
omas WHO grade III. A large multicenter analysis with
more than 2000 patients by Wang et al. concludes that
adjuvant radiotherapy after subtotal resection of an adju-
vant meningioma significantly improves the overall sur-
vival while it does not after gross total resection [16]. As
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Condra et al. pointed out, high-grade meningiomas have
a poorer outcome as compared to low-grade meningi-
omas and benefit from a more aggressive treatment in-
cluding postoperative radiotherapy [17], as RT is known
to significantly improve local control [12]. Over the past
decades, radiotherapy techniques improved substantially,
as new modalities such as intensity modulated radiother-
apy (IMRT) or the image-guided application of radio-
therapy (IGRT) using robotic patient positioning
couches increasing the precision and accuracy of radio-
therapy [18]. Thus, radiotherapy has become a more
valuable treatment option in the management of
high-grade meningiomas.
While the indication for postoperative RT in high-grade

meningiomas appears undoubted, the appropriate target
volume definition and radiation dose remain a matter of
debate. We present a mono-institutional retrospective
analysis on the recurrence patterns of high-grade men-
ingiomas after RT with a special emphasis on radiation
dose and safety margins of target volumes.

Materials and methods
Patient selection
Patients with histopathologically proven atypical or ana-
plastic meningioma who underwent RT at our depart-
ment from 05/2010 to 09/2015 were included in this
retrospective study. Even if patients did not have prior
surgery within 12 weeks before radiotherapy, there was a
former histopathological result confirming a high-grade
meningioma. Patients were excluded if they had prior
radiosurgical treatment or EBRT at the same site.
Altogether 20 patients with atypical or anaplastic
meningioma were included in this analysis. All of
them were initially PET-positive and therefore were
planned DOTATATE-based. Fourteen patients had
prior surgery, while six patients were treated with de-
finitive radiotherapy. Patients’ and tumor characteris-
tics are shown in Table 1.
All patients gave their written informed consent for

the treatment. This retrospective analysis was approved
by the ethics committee of the LMU Munich on record
number 545–16. There was no experimental research on
humans or animals performed or reported. The declar-
ation of Helsinki has been obeyed in all points.

Treatment and follow-up
A [68Ga]-DOTATATE-PET/CT and a Gadolinium-en-
hanced magnetic resonance imaging (MRI) of the brain
were performed and fused with the treatment planning
CT to delineate the target volume. To ensure reproduci-
bility patients were immobilized with a thermoplastic
mask system. For critically located lesions, a
double-layered thermoplastic mask system was used to
minimize setup uncertainties. Treatment planning was

Table 1 Patient characteristics, n= 20 (PTVhom = PTV homogenous,
PTVext = PTVextended, PTVboost = PTV simultaneous integrated boost,
CTVhom = CTV homogenous, CTVext = CTV extended)

Characteristic Patients

Sex

Male 14 (70%)

Female 6 (30%)

Median age (range) 61 years (26–79)

Age < 50 years 6 (30%)

Median follow-up [months], 95%-CI 31.0 (20.1–42)

Surgery pre-RT 14 (70%)

Gross total resection 10 (50%)

Subtotal 3 (15%)

Debulking 1 (5%)

Simpson grade of resection

I 9 (45%)

II 1 (5%)

III 0

IV 3 (15%)

V 1 (5%)

Recurrence patterns

No recurrence 16 (80%)

In-field recurrence 3 (15%)

Marginal recurrence 0

Ex-field recurrence 1 (5%)

Median dose of RT [Gy] 60 (59.4–60.0)

Median interval between PET-scan
and RT [months]

1.3 (0–9)

WHO grade

II 16 (80%)

III 4 (20%)

Localization

Frontal 14 (70%)

Frontoparietal 3 (15%)

Frontotemporal 1 (5%)

Parietooccipital/occipital 2 (10%)

Technique

Step-and-shoot-IMRT (# SIB) 18 (90%)/6 (SIB)

3D 2 (10%)

Median safety margin GTV →
CTVhom or CTVext

15 mm (2–20 mm)

Median safety margin CTV →
PTVhom or PTVext [mm]

4 (2–7)

Median safety margin GTV →
PTVboost [mm]

3 (0–10)

Mean GTV size [ml] 64.5 (14.8–192.7)

Mean PTV size [ml]

PTVext or PTVhom 301.5 (83.7–743.0)

PTVboost 190.3 (20.5–586.2)
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performed using the Oncentra® treatment planning
system (OTP MasterPlan®, Elekta, Crawley, UK) for
3D-conformal RT and Hyperion® for IMRT which em-
ploys constrained optimization using a Monte Carlo
dose algorithm [19]. Intensity-modulated radiotherapy
(IMRT) was used if adjacent critical organs at risk struc-
tures were present. Organs at risk (OAR) constraints
were chosen according to conservative estimates given
by QUANTEC [20] - the constraints for maximum point
doses were 54Gy for optic pathway structures including
optic chiasm [21] and 54 Gy for the brainstem [22]. The
mean cochlear dose was optimized to be lower than
45 Gy. Planning target volume (PTV) was defined as
gross tumor volume (GTV) for patients with macro-
scopic tumor or resection cavity for patients with prior
surgery plus a 15 mm isotropic margin for clinical target
volume (CTV) with an additional 3–5 mm PTV expan-
sion. Individual adaptions were made and are shown in
Table 1. GTV included the contrast enhancing lesion in
T1w +Gd MRI and was adapted to the DOTATATE-en-
hancement to detect tumoral dural tails or bone infiltra-
tion. All patients with prior resection were planned on
the resection cavity,
The outcome was evaluated on a regular basis (first time

three months after RT, later once per year) using an MRI
of the brain and/or DOTATATE-PET-CT in case of suspi-
cious MRI findings. Similarly to the study of Lee et al. re-
currence of the tumor was defined as “in-field” if more
than 80% of the tumor were located within the prescribed
95%-isodose [23]. A “marginal” recurrence was present if
20–80% were inside the 95%-isodose surface. And any
other recurrence was defined as “ex-field”. If there was
multifocal recurrence, the tumor volume that was most
distant to the initial tumor site was taken as a reference.

Statistics
Overall survival (OS) as well as progression-free survival
(PFS) and local progression-free survival (LPFS) were
measured from the beginning of RT to progression, death
or respectively the date of last follow-up. For the latter, pa-
tients who died because of medical co-morbidities or had
a distant relapse were censored. The Kaplan-Meier
method was used for survival analysis. 95% confidence in-
tervals (CI) were calculated using the associated estimated
standard errors. Survival estimates were compared using
the log-rank test. A Cox regression analysis was per-
formed to identify factors influencing overall survival or
progression-free survival. P-values were considered as sig-
nificant at ≤0.05.

Results
A summary of baseline patient, tumor and treatment
characteristics is shown in Table 1. Median age was
59.7 years (range 26–79 years). Sixteen patients had a

meningioma grade II and four patients had a meningi-
oma grade III. Fourteen patients underwent surgery be-
fore RT (within ≤12 weeks). Four patients had a relevant
time delay to the start of RT due to various reasons (re-
fusal, comorbidities). Two patients had no surgery prior
to RT, as the tumor volume was too extensive. Surgery
resulted in a gross total resection in 10 cases, subtotal in
three and a debulking resection in one case. Grading for
the extent of tumor resection was determined according
to the study of Simpson et al. [24]. Nine patients had a
Simpson-grade I resection, one patient a grade II resec-
tion, three had a grade IV resection and one had a
Simpson-grade V resection. Nine of the patients having
surgery within 12 weeks before radiotherapy had under-
gone at least one other previous resection before the
surgery that led to radiotherapy. Tumor localization was
frontal (70%), frontoparietal (15%), frontotemporal (5%),
occipital (5%) and parietooccipital (5%).
Concerning radiotherapy, median number of fractions

was 30 (28–33) with a median dose per fraction of
2.0 Gy (1.8–2.14 Gy) and a median total radiation dose
of 60.0 Gy (59.4–60.0 Gy) (Table 1). Moderate hypofrac-
tionation (single dose 2.14 Gy) was only exceptionally
used as simultaneous integrated boost (SIB) dose in two
cases (59.92 Gy cumulative SIB dose). All patients had a
pre-radiotherapeutic [68Ga]-DOTATATE-PET-CT. Mean
tumor maximum standardized uptake volume (SUVmax)

was 9.76 (0–25.3). Fig. 1 shows a patient with a right
frontal meningioma where the additional [68Ga]-DO-
TATATE-PET-CT shows an impressive infiltration of the
skull base which was not unequivocally visualized by
postoperative MRI.
The median cumulative margin from gross tumor vol-

ume (GTV) to planning target volume (PTV) was
20 mm at maximum, in median 15 mm to generate the
CTV and additional 4 mm in median for PTV. In five
patients, the pre-operative volume was mainly used to
define the adapted clinical target volume, in all other pa-
tients either remaining macroscopic tumor or the resec-
tion cavity was used. Six patients had a concept with a
simultaneous integrated boost (SIB). We considered the
high-dose volume as the PTVboost in case of a SIB and
the surrounding PTV-volume as PTVextended (PTVext).
In cases without SIB the PTV was named PTVhomoge-

neous (PTVhom). For PTVboost the GTV was expanded
3 mm in median.
Four of the 20 patients had a relapse of their meningi-

oma. Regarding recurrence patterns, two patients (10%)
with a recurrence after radiotherapy had an in-field re-
currence concerning the PTVhom. One patient (5%) had
radiotherapy with a simultaneous integrated boost con-
cept whose recurrence was located in field of the PTVext

but a marginal recurrence regarding the PTVboost. An-
other patient developed a distant relapse of the tumor,
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which may be considered as a second meningioma with-
out any relation to the primary lesion. Regarding the
in-field relapses, all patients had macroscopic tumor at
the time of RT: in one case, there was a debulking resec-
tion prior to radiotherapy, in another case there was a
relapse of the tumor after surgery and in the third case,
there was no resection possible, as the tumor, volume
was considered too large. One recurrence occurred in a
patient with an anaplastic meningioma, the other three
occurred in patients with atypical meningioma. There is
no statistical significance, which is due to the small
number of only four patients having a recurrence. In
two cases, recurrence was diagnosed by MRI and
DOTATATE-PET/CT. In the two other cases, recur-
rences were also diagnosed by MRT and PET, but sur-
gery was performed afterwards so that there is also a
histopathological proof for the recurrence.
Median follow-up was 31.0 months [95%-CI: 20.1–

42.0]. Median overall survival was 64.7 months [95%-CI:
52.6–76.8] (Fig. 2). Two patients died shortly after treat-
ment, one of them had a relapse of the tumor. Both
deaths were not related to the meningioma. Local pro-
gression free survival was 87.5% after 24 months and
70% after 36 months (Fig. 2).
Patients presenting with a local recurrence had a me-

dian margin from GTV to CTV of 12.5 mm plus an-
other 4 mm margin for PTV (either PTVext or PTVhom).
In one patient with a local relapse who had a SIB con-
cept, the GTV was planned as boost volume without any
additional safety margin.
In one case with a recurrence, there were relatively

small safety margins from GTV to PTV (5 mm in total),
the other three patients presenting with local relapse
adequate margins of at least 15 mm were identified.
Therefore, the detected tumor relapses would not have
been avoided by using larger margins. Only in the case
of the SIB-concept, a larger safety margin to the

Fig. 1 Example of a patient with a right frontal meningioma s/p subtotal resection while postoperative MRI does not unequivocally show a tumor
residual but radiologists describe postoperative granulation tissue. The PET/CT scan nicely visualizes the bone involvement, on the right the IMRT plan
including PTV and 95%/90%/80%/50%/30%-isodoses, respectively

Fig. 2 Local progression-free survival (LPFS) and overall survival (OS)
[Kaplan-Meier method]
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PTVboost would have been advantageous but was not
possible because of the surrounding organs at risk (op-
tical system).
Overall, radiotherapeutic toxicity was low. Despite

mild radiodermatitis Grade I-II (n = 9), there were no
higher graded toxicities such as radiation necrosis. One
patient suffered from a transitory severe hyperglycemia
associated to steroid medication given due to increased
intracranial pressure.
On univariate analysis for categorical variables

(Table 2), no significant factors influencing OS or PFS
were identified (age < 50 years, WHO grade, SIB or
non-SIB-concept, type of resection (total vs. subtotal/bi-
opsy), histology or Simpson grade of resection). For con-
tinuous variables such as age, SUVmax, time between
DOTATATE-PET and treatment beginning, timing of RT
(post-operative versus salvage), size of the PTVhom/ext no
influence on PFS or OS could be detected as well. All
patients were DOTATATE-planned and there was a
slight trend that patients with a high SUVmax were more
likely to have a relapse of the tumor reflecting macro-
scopic tumor at the beginning of the treatment.

Discussion
The aim of the present study was to examine
mono-institutional data concerning target volume defin-
ition and recurrence patterns after radiotherapy of
high-grade meningiomas as there are limited data avail-
able. Table 3 shows an overview of the existing data in
comparison to our study.
Compared to the existing literature this analysis shows

a favorable local control rate for high-grade meningioma
after radiotherapy with a total dose of 60 Gy and a safety
margin of 15 mm for CTV and additional 4 mm for

PTV. In the present analysis, most recurrences were ob-
served in field in patients with macroscopic tumors. A
local dose escalation could probably improve the local
control rates and should be evaluated in further studies.
In comparison with other studies we could not identify
factors which influenced overall or progression-free
survival.
In contrast to other studies, all treatments of the

present analysis were planned by using an MRI and a
[68Ga]-DOTATATE-PET/CT fusion. Usually, target
delineation is mainly based on contrast-enhanced MRIs
(pre- and postoperative) only [25, 26]. Additional
[68Ga]-DOTATATE-PET/CT scanning can provide valu-
able information on bone infiltration or dural tails [27].
Goyal et al. noticed that atypical meningioma benefit

from gross total resection (Simpson Grades I-III), as
gross total resection is associated with better local con-
trol rates, but he concludes that the role of postoperative
RT remains unclear [28]. In contrast, Milosevic et al.
recommend immediate RT after initial surgery for
high-grade meningiomas [29]. Choi et al. conclude with
the fact that postoperative radiotherapy could improve
local control in patients with high-grade meningiomas
after incomplete surgical resection and emphasize that
a gross total resection is the most important factor
for local control [30]. In contrast to these studies,
Champeaux et al. failed to demonstrate a significant
improvement in different clinical outcomes after RT
for meningioma grade II [31]. We could not identify
a difference between patients treated post-operative or
salvage, which is likely due to our small number of
patients.
Goldsmith et al. suggested a radiation dose of

60 Gy for high-grade meningiomas [32]. This sugges-
tion is based on their retrospective analysis of 140 pa-
tients whereas 23 of them had a malignant type of
meningioma and were treated in median with 54 Gy
(range 44.62 to 69.26Gy) [32]. Katz et al. performed
an analysis with an accelerated hyperfractionated RT
for patients with atypical and anaplastic meningioma
[33]. Thirty-six patients were treated with 60 Gy in
1.5 Gy single dose twice per day [33]. Local control
rate was significantly poorer with 45% in comparison
to less aggressive treatment schedules but caused sig-
nificantly higher toxicity [33]. This study concluded
that 50–60 Gy delivered with once-daily fractionation
seems feasible as it looks unlikely that more aggres-
sive RT could improve outcome [33]. Combs et al.
suggest on the one hand that PTV has to be en-
larged to the resection cavity plus a safety margin of
1–2 cm and on the other hand advocate for a dose
escalation to 60–66 Gy [8].
The results of the EORTC-trial 22,042–26,042 are

eagerly awaited and will highlight the role of dose

Table 2 Cox regression analysis on potentially prognostic
factors and their impact on overall and progression-free
survival, n = 20, HR = hazard ratio

Variable HR (Univariate p-value)

OS PFS

Age 1.24 (0.31) 1.04 (0.40)

Sex 0.00 (0.81) 0.55 (0.63)

PTVhom/extended volume 0.00 (0.38) 0.03 (0.35)

SIB vs. Non-SIB 0.03 (0.58) 0.6 (0.66)

Size of PTV 1.00 (0.63) 1.00 (0.40)

Simpson grade 0.25 (0.58) 1.06 (0.90)

Histology (°II vs. °III) 2.24 (0.57) 1.82 (0.61)

Type of resection
(total vs. subtotal/biopsy)

0.01 (0.58) 0.92 (0.90)

Timing of RT (immediately
vs. after ≥1 recurrence)

3.54 (0.38) 4.4 (0.22)

SUVmax (DOTATATE-PET) 0.98 (0.88) 1.15 (0.09)
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escalation in this setting. In this trial, patients with
Simpson grades 1 to 3 receive standard postoperative
RT, while patients with a higher grade receive an
additional boost. There are also few data indicating that
hypofractionation might be an effective option.
Maranzano et al. describe their long-term results of
moderate hypofractionated stereotactic radiotherapy for
intracranial meningiomas [34]. In this study 77 patients
were treated with a median volume of 23 cm3 while dose
was prescribed either in 15 × 3 Gy or 14 × 3 Gy [34]. The
authors conclude that moderate hypofractionation had a
good outcome and was tolerated well [34] whereas a
longer follow up and further trials should be performed
to corroborate these findings.
However, any kind of dose escalation or hypofractiona-

tion should be done carefully, considering the adjacent
organs at risk and their dose tolerance. Bostrom et al. re-
port about a patient developing severe radiation necrosis
due to the RT in several lesions (some of them treated
hypofractionated) [35].
Considering the planning process and the safety mar-

gins an analysis by Press et al. found that meningioma
grade II treated with conformal IMRT and limited safety
margins < 1 cm, did not lead to a higher rate of recur-
rence [36]. Six of 46 patients had a tumor relapse [36].
The study confirms the findings of the present analysis,
as most relapses occurred “in-field”. Press et al. found 5
of 6 recurrences within the prior radiation volume and
one was combined in-field and marginal [36]. A safety
margin of 5 mm for CTV and 3 mm for PTV was ap-
plied in this patient cohort [36]. Press et al. postulate
that as none of their patients relapsed marginally safety
margins of < 1 cm might be sufficient [36]. In contrast
to the present study, the majority of patients did not
have macroscopic tumor. Taken together, the margins
for grade II meningiomas cannot be transferred unre-
flectedly to meningiomas grade III. Regarding the exist-
ing studies a limited safety margin might be an option
for some atypical meningiomas grade II, but for anaplas-
tic meningiomas grade III a limited safety margin might
be harmful and could lead to tumor relapse. The present
data suggest that safety margins for anaplastic meningi-
omas have to be sufficiently large.
Over the last decades, modern radiotherapy tech-

niques (IMRT or volumetric modulated arc therapy
(VMAT)) were introduced in the treatment of
meningiomas. Anvari et al. conclude that utilizing
high-technology equipment and new techniques might
improve the outcome after RT [37].
Madani et al. describe that dose-painting intensity

-modulated proton therapy (IMPT) using a SIB is a feas-
ible therapy option with excellent dose coverage with
minimal or no dose to brain, brainstem or optical system
[38]. A study by Simon concludes that carbon-ion RT

could be the preferred therapy option [39]. Similarly,
Harrabi et al. describe that proton beam RT shows dosi-
metric advantages over conventional radiotherapy that
might be essential for neurologic function [40]. There-
fore, future concepts might include carbon-ion or pro-
ton RT.
The present study is limited due to its retrospective

nature and the small number of patients. Obviously the
number of or presented patients is smaller than in most
of the mentioned studies in Table 3. In contrast you have
to consider that in the other mentioned studies, there
are all kind of meningioma, not only high-grade men-
ingiomas as presented here.
The follow-up time has a wide range, as some patients

had to be censored very early. Furthermore, a multivari-
ate analysis was not reasonably feasible due to the small
number of cases, which is another weakness of the
analysis.

Conclusion
Even following postoperative radiotherapy, high-grade
meningiomas relapsed frequently “in-field” of the prior
target volume.
We consider postoperative radiotherapy after resection

of a high-grade meningioma essential to minimize the
risk of local failure, even if a gross total resection of the
tumor was performed. Especially patients with macro-
scopic tumor should receive postoperative RT immedi-
ately. Patients who cannot be treated with a resection of
the tumor at all should receive a definitive radiotherapy.
Concerning target volume delineation, the present

data show a good local control with the applied margins
and confirm the common used safety margins. We sug-
gest a CTV margin of 15 mm starting from the GTV
and additional 3–5 mm for the PTV, depending on the
available image-guidance.
It would be valuable to have future studies including a

higher number of patients to evaluate which patients
would benefit from a dose escalation, e.g. in form of a
simultaneous integrated boost, or a CTV margin
reduction.
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