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Abstract

Background: Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial
disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain
metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases’ responses from
radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject
variability in metastases dose-response evaluations.

Methods: Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-
BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse
brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after
half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with
in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size.

Results: In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue
continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the
background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors
remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth
was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume
growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing
dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was
increased.

Conclusions: Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain
unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor
cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post
radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation
provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to
understand radio-resistance in brain metastases.

Keywords: Breast cancer, Brain metastases, Small animal radiation therapy, Radiation dose-response, Magnetic
resonance imaging, DNA double-strand breaks, γ-H2AX

* Correspondence: ewong4@uwo.ca
1Department of Medical Biophysics, University of Western Ontario, London,
Ontario, Canada
3London Regional Cancer Program, University of Western Ontario, London,
Ontario, Canada
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zarghami et al. Radiation Oncology  (2018) 13:104 
https://doi.org/10.1186/s13014-018-1028-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-018-1028-8&domain=pdf
http://orcid.org/0000-0001-6869-0122
mailto:ewong4@uwo.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The parallel developments of modern image-guided pre-
clinical radiotherapy devices, small animal magnetic res-
onance imaging, and mouse model of brain metastasis
presents us with a unique opportunity to ask brain
metastasis-specific radiobiology questions. We, and
others, have recently employed whole brain irradiation in
mouse models of brain metastasis due to breast cancer to
study tumor response after different timing or fraction-
ation regimens of radiotherapy [1–3]. Despite the use of a
tumor bearing animal model, inter-subject variability
remained the major contributor to experimental uncer-
tainties requiring typically 6-12 animals per longitudinal
study group each lasting approximately 30 days, making
these studies challenging.
Examples of contributors to inter-subject variability in-

clude variations in the number of cells delivered to the
brain from intra-cardiac injection, number of proliferat-
ing metastases, and their subsequent growth [4]. In
addition, post-sacrifice immunohistochemistry (IHC)
slide staining results can also vary despite following the
same protocol [5]. This led us [6] and others [7] to de-
velop and validate platforms for specifically half-brain ir-
radiations [8], allowing us to reduce inter-animal and
inter-histological slide variability by using the contralat-
eral brain as the control.
Due to these challenges, tumor radiation dose-response

is generally not well established in-vivo, and we expect
that the dose-response would depend on cell lines and
sublines with specific genes inserted or deleted. In this
study, we present our dose-response findings from our
half brain irradiation of the brain metastasis mouse model
using a well published human triple negative cell line
MDA-MB-231-BR. Endpoints include both tumor metas-
tases volumes from longitudinal magnetic resonance im-
aging brain imaging and histological endpoints.
Ionizing radiation induced DNA double-strand breaks

(DSBs) are known to be lethal lesions that are respon-
sible for cell’s mitotic death [9]. In response to DSBs, a
histone H2A family member X, H2AX, is rapidly phos-
phorylated to form γ-H2AX [10]. Staining for γ-H2AX
are therefore be employed as a measurement of DNA
DSBs [11]. It is known that tumors have higher amounts
of “cryptogenic” γ-H2AX due to endogenous sources
such as replication stress, genomic instability, uncapped
telomeres and apoptosis compared to the healthy tissue
[12–14]. Previous studies have investigated the residual
γ-H2AX of murine normal tissues from days to two
months after exposure to detect radiation-induced tox-
icity such as fibrosis and myelopathy [15–17]. To the
best of our knowledge, tumors’ residual γ-H2AX after
in-vivo irradiation has not been previously reported.
The aim of this study is to measure the radiation dose-

response of a breast cancer brain metastases model to

radiation using half-brain irradiation to reduce inter-
subject variability. We accomplished this using two animal
cohorts. In the first cohort, DNA DSBs within cancer cells
and the brain was assessed via immunohistochemistry
staining of γ-H2AX in the acute setting (30 min after half-
brain treatment) at three radiation dose levels. Tumor
dose-response over time was evaluated in the second co-
hort using longitudinal MRI (prior to and 11 days after
half-brain treatment) as well as immunohistochemistry at
the endpoint using two radiation dose levels. MRI was
used to obtain tumor volumes. In addition to assessing
DNA DSB, 4′,6-diamidino-2-phenylindole (DAPI) immu-
nohistochemistry staining of the cell nuclei was used to
assess tumor cell density and nuclear size. By performing
half brain irradiations in conjunction with MRI and im-
munohistochemistry in the acute and longitudinal set-
tings, we were able to compare responses in the tumors
versus normal mouse brain tissues, and radiated tumors
versus un-irradiated tumors in the same animal at the
various dose levels.

Methods
Table 1 provides an overview of the study experiments
performed and analyzed. We will describe them in more
details in this section.

Cell culture
For this study, the brain tropic clone of human triple-
negative breast cancer cell line, MDA-MB-231-BR, sta-
bly transfected with enhanced green fluorescent protein
(EGFP) was used [18]. Cells were cultured and main-
tained in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum and 1% penicillin/
streptomycin. Cultured cells were kept in 5% CO2 at
37 °C. Trypan blue exclusion assay was done to deter-
mine cell viability.

Animal tumor model
To deliver MDA-MB-231-BR cells into the brain, the
intra-cardiac injection method was used to distribute
cells through arterial circulation. Female nu/nu mice (N
= 19, 6–8 weeks old; Charles River Laboratories) were
anesthetized with 1.5 to 2% vaporized inhaled isoflurane
in O2. A suspension containing 1.5 × 105 MDA-MB-231-
BR cells in 0.1 ml of Hanks balanced salt solution was
slowly injected into the left ventricle of the beating heart
of the mouse [19]. Animals were housed in ventilated
cages with a 12-h light/dark cycle and controlled
temperature (20-22 °C), fed normal chow and given
water ad libitum. Animal’s appearance and behavior was
scored daily through the experiment and no profound
effect of pain and distress on behavior was observed.
This study followed animal care protocols approved by
the Animal Use Subcommittee of The University of
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Western Ontario and were consistent with the policies
of the Canadian Council on Animal Care. Mice received
half brain radiation 26 days after cell injection.

Mouse half-brain irradiation
Mice received half brain radiation therapy on the modi-
fied GE eXplore CT 120 (GE Healthcare, Milwaukee,
WI) preclinical imaging system [20, 21]. They were anes-
thetized using 1.5 to 2% vaporized inhaled isoflurane
and were immobilized using the customized 3D-printed
mouse head holder with a targeting accuracy of < 0.
15 mm [6]. Mice were set-up in a feet first prone position.
The longitudinal fissure (LF) was visually set as the ana-
tomical target for the radiation field. Setup lasers and CT
images were used to verify the alignment of the animal’s
head in the head holder. Once the mouse was immobi-
lized for treatment, online dorsal-ventral fluoroscopy was
acquired to identify the rim of the skull and to position
the collimators. A small CT localization marker was
placed on the right side of the head holder to help with
animal orientation on CT and fluoroscopy. The right half
of the brain was irradiated with a single field (14 × 20
mm2) from the dorsal direction. Mice received doses of 8,
16 or 24 Gy in a single fraction. These dose levels were
chosen because the biological effective dose (BED,
assuming α/β = 10 Gy) of 16 Gy and 24 Gy in a single
fraction are meant to represent doses prescribed for whole
brain radiation therapy (30 Gy in 10 fractions) [22, 23]
and stereotactic radiosurgery respectively (18-24 Gy in
one fraction) [24]. Figure 1 shows a representative dose
distribution in the mouse brain for 16 Gy. The 16 Gy iso-
dose line (magenta color) in Fig. 1 shows homogenous ra-
diation dose for the hemisphere away from the field edge
near the midline of the brain. We have measured the dose
drop off to be 7.5% per 5 mm [20]. We prescribed the
dose to the midplane of the brain, and expected then the
variation to be +/− 3.75%. That is, when we prescribed
16 Gy to the midplane, the variation across the brain will

be 16 Gy +/− 0.6 Gy. This dose variation is minimal com-
pared to the dose levels of 8, 16 and 24 Gy. The dose re-
ceived by the un-irradiated side of the brain and tumors
were denoted as 0* and will be employed as the control of
the irradiated side in the same mouse. After recovery from
radiotherapy, mice were selected either for acute or longi-
tudinal dose-response study.

In-vivo MRI
All mice were imaged on a 3 T GE clinical MR scanner
(General Electric, Mississauga, Canada) with a custom-
built gradient insert coil on day 26 after tumor injection
and before receiving radiation. MRI was performed to ver-
ify the presence of the tumors in the mouse brain, particu-
larly in both brain hemispheres. Mice that had no
identifiable brain metastases on MR did not proceed to RT
and excluded from this study. Images were acquired using
3D balanced steady-state free precession (bSSFP) protocol
(acquisition resolution = 100 × 100 × 200 μm, repetition
time = 8 ms, echo time = 4 ms, flip angle = 35°, receive
bandwidth = 19.23 kHz, signal averages = 2, radiofrequency
phase cycles = 8, scan time = 29 min, along with ZIP2 and
ZIP512 upscaling), a well-established imaging technique
for this model [25–27]. To evaluate the response of breast
cancer brain metastases to different radiation doses in-
vivo, the longitudinal group was imaged again 11 days after
receiving half brain radiotherapy (37 days after tumor in-
jection) with the same imaging protocol.

MRI analysis
Brain metastases were segmented manually on pre and
post-radiotherapy images by a single observer using
open-source OsiriX image software version 6.0. Tumors
in the midline of the brain (±200 μm of the longitudinal
fissure) were excluded from the study as only part of
these tumors may have been irradiated. Figure 2a
showed an example of the manual segmentation of the
tumors performed on an MR acquired on day 11 after

Table 1 Summary of experiment: number of animals and MRI-identified irradiated metastases for the acute and longitudinal study

Study Group Number of Mice Minimum number of tumors visualized on
MR

Dose (Gy) Dissection after radiation therapy

Irradiated Shielded

Acute (dissection after 30 min) A 3 90 90 8 30 minutes

B 3 90 90 16 30 minutes

C 4 120 120 24 30 minutes

Number of tumors tracked on longitudinal
MR

Irradiated Shielded

Longitudinal (dissection 11 days) A 3 68 85 16 11 days

B 3 49 60 24 11 days

Zarghami et al. Radiation Oncology  (2018) 13:104 Page 3 of 11



RT. Mean fractional volume changes of the tumors were
calculated by dividing the post-treatment tumor volume
by the volume of the same tumor before treatment and
averaged for all brain metastasis for mice in each group.
One mouse in the 24 Gy longitudinal cohort had to be
sacrificed at 7 days due to its deteriorating condition.

Immunohistochemistry
At the two post-irradiation time-points (30 min or 11 days)
mouse brain samples were collected and processed for im-
munohistochemistry staining. Mice were perfused with 0.
9% saline followed by 4% paraformaldehyde (PFA). Brains

were harvested and post-fixed in 4% PFA and transferred
to 30% sucrose solution until the specimen sank to the
bottom. Brain samples were embedded in Tissue-Tek
OCT Compound (Sakura, Torrance, CA) and frozen.
Cyrosectioning of coronal slices was performed with 10-
μm slice thickness. Tissue sections were stained with
hematoxylin and eosin (H&E) to assess the morphology of
the tumors.
Immunostaining was performed with the primary

monoclonal antibody against γ-H2AX using a protocol
published by Ford et al. [28]. Staining of sections con-
sisted of antigen retrieval with sodium citrate, 1 h

Fig. 2 a Manual segmentation of tumors on an MR scan acquired 11 days after RT of an animal treated to 24 Gy to the right brain. Original MR
image is on the left panel and segmented MR image is on the right. Tumors segmented in green are in the right (irradiated) half of the brain,
and tumors segmented in orange are in the left (shielded) brain. b An example of our segmentation of DAPI-stained tumor nuclei. Original DAPI
image of a tumor cluster is shown on the left panel. Segmented tumor nuclei are shown on the right which we employed in our analyses

Fig. 1 a Calculated dose distribution on coronal CT plane of the mouse brain for a 16 Gy (magenta isodose line) half brain irradiation. b Whole
brain image of γ-H2AX stained section (red), imaged at 10X. DAPI counterstaining of DNA is shown in blue. Stable EGFP labeled tumors are in
green. γ-H2AX stain shows the sharp edge of the beam in the middle of the brain along the longitudinal fissure
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incubation in blocking serum (10% goat serum with 0.
1% Triton X-100 for membrane permeabilization), over-
night incubation at 4 °C in mouse anti-γ-H2AX antibody
(anti-phospho-histone H2AX, Ser139, clone JBW301;
Millipore, Billerica, MA, USA) at the dilution of 1:700,
1 h incubation in secondary antibody (1:500 goat anti-
mouse Alexa Fluor 594 conjugated, Life Technologies,
Carlsbad, CA, USA.), DAPI counterstain 5 min, and
mount with anti-fade mounting medium Vectashield
(Vector Laboratories, Inc. Burlington, ON). This proto-
col was used consistently to stain sections from the two
time-points. For quantification, images were acquired
with 100X (oil immersion) objective lens on a fluores-
cence microscope (Carl Zeiss Canada Ltd). Imaging pa-
rameters such as intensity, exposure time and gain were
kept consistent during the experiment. We collected a
total of ten to thirteen images of different tumors for
each mouse.

Histological quantification
To evaluate the DNA damage response, γ-H2AX
stained sections of tumors were analyzed for each
radiation dose level. The amount of damage was also
quantified in neighboring normal brain tissues under
the same conditions as the tumors. Initially, we
employed an inverted confocal microscope (Olympus
Fluoview FV1000 Confocal Imaging System) for high
resolution 3D images of γ-H2AX foci within the nu-
clei [29]. We observed in the acute setting γ-H2AX
foci were over-lapping, which made detection of in-
dividual foci impossible. Similarly, foci saturation
was observed in the irradiated tumors in the longitu-
dinal experiment. Unable to count individual foci, we
quantified γ-H2AX based on the fluorescent stain in-
tensity, which is a more reliable method for high ra-
diation doses [30, 31].
All IHC analyses were performed on images taken

from the fluorescence microscope using 100X oil
immersion objective. The γ-H2AX intensity was mea-
sured for both normal mouse brain and tumor tis-
sues. Tumor nuclei were visually distinguished from
mouse nuclei based on the characteristic punctuate
pattern of mouse DAPI staining [32]. To quantify γ-
H2AX intensity, DAPI-stained nuclei were used to
generate nuclear outlines in which the γ-H2AX inten-
sity would be measured. Nuclear segmentations were
used to eliminate signal from background fluores-
cence. Nuclei on DAPI images were manually seg-
mented using Adobe Photoshop CC. For each field of
view, total γ-H2AX fluorescence intensity was ob-
tained by summing the intensity values of all pixels
within the segmented boundary using an in-house
code developed and validated in MATLAB (Math-
Works, Natick, MA, USA). The total γ-H2AX

fluorescence intensity for each field of view was nor-
malized to the total area of segmented nuclei for the
same field (Eq. 1).

γ−H2AX intensity density¼Total γ−H2AX intensity in segmented nuclei
Total area of segmented nuclei

ð1Þ

Mean γ-H2AX intensity per unit area was determined
for each treatment condition in the acute and longitu-
dinal settings. The total number of nuclei analyzed for
each dose level varied from 350 to 950.
We observed that MDA-MB-231-BR tumors grew in

clusters surrounded by edema. We obtained the number
of tumor nuclei per cluster area. This index gave us the
density of tumor nuclei/cells in each cluster (Eq. 2).

Tumor cell density¼Number of tumor nuclei in cluster
Area of segmented cluster

ð2Þ

We quantified both the tumor cell density and size of
tumor nucleus for all radiation doses at the two time-
points. Figure 3 shows the flow chart of the processes in-
volved in these histological quantifications. IHC staining
was repeated three times for the acute study and twice
for the longitudinal study.
We also observed an increase in tumor nuclei size and

we quantified the size of tumor nuclei by computing the
average area of each nucleus from DAPI images (Eq. 3).

Average area of tumor nucleus¼Total area of segmented nuclei
Number of segmented nuclei

ð3Þ

Statistics
Statistical analyses were performed using SPSS (Armonk,
NY: IBM Corp) and confirmed by GraphPad Prism soft-
ware (La Jolla, CA, USA). The normality of the measured
variables was tested using the Shapiro-Wilk test and the p
< 0.05 was used as the significance threshold. For normally
distributed variables, between-groups analysis of variance
(ANOVA) followed by Tukey post-hoc test was conducted
to determine whether the response was statistically signifi-
cant (p < 0.05). Nonparametric Kruskal-Wallis analysis
followed by Mann-Whitney U test was used for variables
that were not normally distributed.

Results
γ-H2AX radiation dose-response
In the acute radiation dose-response study, mice re-
ceived half brain radiation of 8, 16 and 24 Gy (minimum
N = 3 per dose) and were sacrificed approximately
30 min after treatment. Tissue sections were stained for
γ-H2AX to quantify the initial damage induced in both
normal mouse brain and tumors. Figure 1b displays a
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mouse whole brain coronal section, which received half
brain radiation of 16 Gy.
Figure 4a shows the tissue sections of tumors and nor-

mal mouse brain stained with DAPI and γ-H2AX at the
acute time point. Figure 4b shows our quantification of
γ-H2AX based on fluorescence intensity density in the
nuclei of normal brain and tumor tissues evaluated at
the acute time point. In normal brain, the amount of
γ-H2AX intensity density increased linearly (R2 = 0.78,
p < 0.001) with increasing radiation dose. However, in
tumors, this trend stopped at 16 Gy; the level of γ-H2AX
intensity density dropped at the dose of 24 Gy compared
to 16 Gy. The γ-H2AX intensity density in both tumors
and normal brain of the irradiated side were significantly
increased (p < 0.0001) compared to the respective un-
irradiated side (8 versus 0*(8), 16 versus 0*(16) and 24 ver-
sus 0*(24) Gy).
To investigate how much of the initial damage is retained

in both tumors and normal brain tissues, γ-H2AX intensity
density was measured for the longitudinal group 11 days
after hemi brain radiation (Figs. 4c, d). We observed
that γ-H2AX intensity density in irradiated normal
brain nuclei returned to background levels when
compared to un-irradiated side of the brain 11 days
after radiotherapy. However, irradiated tumors had
higher levels of γ-H2AX intensity density compared to tu-
mors in the contralateral un-irradiated sides (0*(16) and
0*(24) Gy). There was no significant difference in the
amount of residual γ-H2AX between irradiated tumors
(16 Gy vs. 24 Gy).

In-vivo dose-response
To assess the changes in the volume of tumors in re-
sponse to radiation doses in-vivo, MR images were taken
before and 11 days after half brain radiation therapy.
Representative images of brain metastases at two dif-
ferent time-points for doses of 16 and 24 Gy are
shown (Fig. 5a). The mean fractional growth of the
tumors was calculated for each group (Fig. 5b). There
was a statistically significant difference (Mann-Whit-
ney U p ≤ 0.05) between the growth of un-irradiated
and irradiated brain metastases for both doses of 16
and 24 Gy. A second observer segmented tumors on
MRI on two animals treated at 24 Gy and confirmed
this finding. The fractional reduction in tumor vol-
ume growth as assessed by MRI was not statistically
different between 16 and 24 Gy in the longitudinal
setting. Tumor Cell Density.
We observed on H&E samples from the longitudinal

cohort that irradiated tumors are less compacted with
cells, and surrounded by a more substantial amount of
edema compared to tumors on the un-irradiated side
(Fig. 6a). We quantified this by calculating tumor cell
density based on DAPI staining for tumors in both the
acute and longitudinal settings. The acute setting was
employed to provide a baseline verification. As expected,
no significant difference was detected in the density be-
tween treated and un-treated tumors and for different
radiation doses 30 min after radiation.
On the other hand, there was a significant difference

in tumor cell density between treated and un-treated

Fig. 3 Flow chart of the processes involved in the quantification of γ-H2AX intensity, tumor nucleus size and tumor cell density. DAPI and γ-H2AX
images were overlaid and nuclei were segmented based on DAPI. The intensity of γ-H2AX from segmented nuclei was acquired. From the seg-
mented DAPI images, number and total area of segmented nuclei were quantified. For tumor cell density analysis, tumor clusters were seg-
mented based on DAPI and the area of the cluster was computed
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tumors in the longitudinal experiment (Fig. 6b). Further-
more, there was a significantly lower density in those
treated with 24 Gy compared to 16 Gy.

Tumor cell nuclear size
DAPI is used as a counterstain for the nucleus of the cell
and we used this stain to investigate the size of tumor
nuclei for both acute and longitudinal studies. We ob-
served that the nuclei of treated tumors were signifi-
cantly larger than the un-treated nuclei 11 days after
radiotherapy. Figure 6c shows the different morpho-
logical appearances of irradiated versus un-irradiated
tumor nuclei stained with DAPI. The size of tumor nuclei
was quantified for both acute and longitudinal studies.
The acute setting quantification was employed to establish
a baseline and no significant differences was found in the
average size of tumor nuclei 30 min after treatment. A

second observer repeated this DAPI nuclei segmentation
on tumors that were treated at 24 Gy and their contralat-
eral control and confirmed the manual segmentation re-
sults. However, in the longitudinal cohort, there was a
significant difference in the size of the nuclei between
treated and un-treated sides of the same mice. Radiation
dose at 24 Gy resulted in a significantly larger nuclei size
than 16 Gy in the longitudinal setting (Fig. 6d).

Discussion
In this study, we used both in-vivo and ex-vivo methods
to evaluate the response of MDA-MB-231-BR brain me-
tastases and normal brain to different radiation doses at
two time-points after treatment. In the longitudinal
study, the normal brain’s response contrasted with the
tumors’ after delivering 16 or 24 Gy half brain irradi-
ation: γ-H2AX levels returned to normal in brain nuclei

Fig. 4 a Acute DNA damage response 30 min post-irradiation. Histology sections of fluorescent γ-H2AX and corresponding DAPI (nuclei) stained
for tumor (MDA-MB-231-BR) and normal brain are shown. Images were taken with a fluorescence microscope (100X objective). Scale bar = 50 μm.
b Quantification of the intensity of γ-H2AX staining versus radiation dose 30 min after radiotherapy. Tumors are plotted in green and normal brain
tissue are plotted in blue. In irradiated normal brain tissue, the γ-H2AX intensity had a linear trend (R2 = 0.78, p < 0.001). In tumors, γ-H2AX did not
continue to increase at the dose of 24 Gy even though the γ-H2AX intensity is significantly different between irradiated and un-irradiated sides
(p < 0.0001). Error bar indicates standard error of the mean. c Residual DNA damage response 11 days post-irradiation. Scale bar = 50 μm. (d) Quantification
of the intensity of γ-H2AX staining for the various radiation dose 11 days after radiotherapy. In normal brain, γ-H2AX intensities returned to the background
level. In irradiated tumors, γ-H2AX intensity was higher than both the background level and tumors in the irradiated side. ** = p≤ 0.01, *** = p≤ 0.001, and
error bar indicates standard error of the mean
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11 days after radiation, while tumors retained signifi-
cantly higher density of phosphorylated γ-H2AX com-
pared to un-irradiated tumors. This higher amount of
phosphorylated γ-H2AX is independent of the increase
in the size of the tumor nuclei that we also observed be-
cause we have quantified γ-H2AX intensity per unit nu-
clei area. It has been shown that tumors that retain the
induced γ-H2AX in the first 24 h after radiotherapy are
more likely to die [33]. This is supported by our imaging
finding that tumors in the half brain treated with radio-
therapy had significantly slower growth than tumors in
the untreated side. Higher cryptogenic level of γ-H2AX
in tumor cells [14] is attributed to dysfunctional telo-
meres that drives genomic instability [34]. Sustained ele-
vation of γ-H2AX here could be predictive of an
unstable genome, and may allow the acquisition of more
aggressive characteristics [35] if the higher level of re-
sidual DSBs do not keep these cells from going through
mitosis. Smart et al. [3] have successfully retrieved the
surviving tumor cells after radiotherapy using the same
animal model, and showed that they are more radiosen-
sitive than before. Our results are consistent with this
finding as we showed that remaining tumor cells after
radiation has a higher sustained level of DNA damage
with an elevated γ-H2AX.
We found that the tumor nuclear size increased at 16

and 24 Gy compared to contralateral controls (Fig. 6 c, d).
This suggests that while DNA replication had continued,
cells failed to undergo cytokinesis. When cell division is
not possible, this leads to aneuploidy, polyploidy [36], or

multinucleated cells [37, 38]. Cancer cells are known to
exhibit aneuploidy, and here, we showed radiation further
exacerbate this problem in cells that survived radiation in
a dose-dependent manner.
Finally, we evaluated the response of treated and

un-treated breast cancer brain metastases with MRI.
In the bSSFP sequence, MDA-MB-231-BR brain me-
tastases appear as hyperintense regions compared to
normal mouse brain due to tumor-associated edema
[1, 39, 40]. We found that treated tumors grew sig-
nificantly less over 11 days compared to control, but
not in a dose dependent manner. In contrast, hist-
ology sections of these tumors showed tumor cell
density decreased with increasing radiation dose. It
is expected that higher doses will lead to increased
cell kill, but edema must set in to achieve a lower
tumor cell density. One interpretation is that there
exists a dose-response relationship of radiation in-
duced edema, particularly in this cell line, and such
edema masked the tumor volume response as
assessed by bSSFP MRI. Diffusion MRI has the abil-
ity to detect such changes in tumor cell density and
should be employed for future studies.
This study was limited by the exponential tumor

growth in the MDA-MB-231-BR model which left a
short interval (maximum of about 11 days) between
MRI-visible metastasis and the need to sacrifice. This
left us with a limited opportunity to observe longer
term changes in gross tumor volume beyond what we
have reported. Moreover, while half brain irradiation

Fig. 5 a MR images (bSSFP) of the mouse brain at two-time points. Metastases appear as hyper-intense (bright) regions compared to brain parenchyma.
Pre-treatment images are on day 26 and images on day 37 are for the same mouse 11 days after radiation therapy. Right half of the brain was irradiated.
One mouse per radiation group is shown. Red arrows indicate the brain metastases in the irradiated side while green arrows show brain metastases in the
un-irradiated side. b Mean fractional growth of brain metastases measured on MR images for the radiation doses normalized to that of the un-irradiated
halves. Tumors irradiated with 16 and 24 Gy grew with significantly different growth rates than their respective un-irradiated sides (Kruskal-Wallis followed
by Mann-Whitney U test). No difference was observed between irradiated tumors of 16 and 24 Gy. *** = p≤ 0.001, error bar indicates standard error of
the mean
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allowed us to reduce inter-animal and inter-slide stain-
ing variability, this technique can potentially introduce
radiation-induced bystander effect [41]. We assumed in
this work that the bystander effect is small in this brain
metastasis model due to the use of nude mice that
lacked adapative immune T-cells.

Conclusions
Brain metastasis is a growing problem in breast cancer
patients and new treatment strategies for brain metasta-
sis are necessary. Radiotherapy is an established treat-
ment that is currently used to treat the majority of brain
metastasis patients. Understanding the properties of can-
cer cells surviving radiotherapy can provide evidence for
further improvements (e.g. molecularly targeted adjuvant
therapies) and optimization in the clinics. As a first step
toward this goal, we evaluated the radiation dose-
response of MDA-MB-231-BR breast cancer brain me-
tastases in the present study. We found in the acute set-
ting that γ-H2AX in tumors, unlike normal tissues,

become saturated at the higher dose levels. In the longi-
tudinal setting 11 days after treatment, we showed that
the response of irradiated tumors (at both 16 and 24 Gy)
differed from un-irradiated counterparts in γ-H2AX
fluorescence intensity, MRI-assessed tumor growth,
tumor cell density, tumor cell nuclear size, and the frac-
tion of tumor cell proliferation. Decreased tumor cell
density and increased nuclear size were seen when we
increased the dose from 16 to 24 Gy, but not in γ-
H2AX intensities or MRI tumor volume. We con-
clude that surviving MDA-MB-231-BR cells in the ir-
radiated tumors must have continued DNA
replication but failed cyctokinesis in a dose-dependent
manner, leading to increased nuclear size. Further-
more, lower tumor cell density implied the presence
of radiation induced edema for this cell line. Add-
itional pre-clinical research is warranted to further
understand these responses, their generalizability, and
ultimately to capitalize on such information to im-
prove brain metastasis radiotherapy.

Fig. 6 a H&E stained sections of shielded and irradiated tumors from the same section of a mouse brain 11 days after radiotherapy at 16 and
24 Gy (10X magnification). Scale bar = 1 mm. b Quantification of tumor cell density 11 days after radiotherapy. The densities of tumor cells
treated with 16 and 24 Gy were significantly lower than their corresponding un-treated side. There was also a significant difference between
treated tumors at 16 and 24 Gy. c DAPI staining of shielded and irradiated tumor nuclei from the same section of a mouse brain 11 days after
radiotherapy at 16 and 24 Gy. Scale bar = 50 μm. d Average size of tumor nuclei 11 days after radiotherapy normalized by that of the respective
un-irradiated halves. There was a significant difference between the sizes of tumor nuclei treated with 16 and 24 Gy compared to the contralateral
side. The size of tumor nuclei was also significantly different between 16 and 24 Gy. ** = p≤ 0.01, *** = p≤ 0.001, **** = p≤ 0.0001, error bar indicates
standard error of mean
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