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Abstract

Background: To find potential serum biomarkers of microwave ablation (MWA) for treatment of human lung
cancer by 1H nuclear magnetic resonance (NMR)-based metabolomics analysis.

Methods: Serum specimens collected from 43 healthy individuals, 39 patients with advanced non-small cell lung
cancer (NSCLC) and 38 NSCLC patients treated with MWA, were subjected to 1H NMR-based metabolomics analysis.
Partial least squares discriminant analysis was used to analyze the data.

Results: Compared with healthy controls, NSCLC patients showed significantly elevated serum levels of lactate,
alanine, glutamate, proline, glycoprotein, phenylalanine, tyrosine and tryptophan, and markedly decreased serum
levels of glucose, taurine, glutamine, glycine, phosphocreatine and threonine (p < 0.05). MWA treatment reversed
the metabolic profiles of NSCLC patients towards the control group.

Conclusions: 1H NMR-based metabolomics analysis enhanced the current understanding of the mechanisms
involved in NSCLC, and uncovered the therapeutic potential of MWA for treatment of NSCLC. The above disturbed
serum metabolites were proposed to be the potential biomarkers that may help to predict NSCLC and to evaluate
the efficacy of MWA in the treatment of NSCLC.
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Background
In China, lung cancer is the most common incident
cancer and the leading cause of cancer death for both
men and women in 2015 [1]. It was reported that
486,555 patients died from lung cancer and the 5 year
survival rate for patients was less than 20% in 2010 [2].
Surgery is the most preferred and effective method for
lung cancer patients. However, many patients are inoper-
able such as advanced non-small cell lung cancer
patients and lung metastases patients. At present, min-
imally invasive thermal therapy including radiofrequency
ablation (RFA) and microwave ablation (MWA) are
widely used in lung cancer patients in clinic [3], which
use heat generated by the biological effects of tumor
cells directly to cause irreversible damage or coagulation
necrosis in tumor tissues [4].

MWA has several advantages such better heating of
larger tumour volumes, which is consider to be more
suitable for lung tissues [5]. Therapeutic effect evalu-
ation of MWA is very important for doctors to easily
and timely adjust the treatment plan to maximize the ef-
ficacy of thermal ablation therapy. Efficacy evaluation of
thermal ablation is currently based on the anatomical
imaging, morphology or pathology examination. The
major disadvantages of these traditional indicators include
poor sensitivity and specificity, which cannot effectively
estimate the curative effects and predict prognosis of
NSCLC patients [6].
A number of NMR-based metabolomics studies have

reported biomarkers that effectively discriminate be-
tween NSCLC subjects and healthy controls [7–9]. Deja
and co-workers proposed that the the following metab-
olite biomarkers could potentially be useful in distin-
guishing lung cancer states: isoleucine, acetoacetate, and
creatine as well as the two NMR signals of N-acetylated
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glycoproteins and glycerol [10]. Rocha investigated the
metabolic profile variations of plasma from lung cancer
patients and healthy controls through NMR-based
metabolomics. Relatively lower high density lipoprotein
(HDL) and higher very low density lipoprotein (VLDL)
and low-density lipoprotein (LDL) in the patients’
plasma, together with increased lactate and pyruvate and
decreased levels of glucose, citrate, formate, acetate, sev-
eral amino acids and methanol, were detected [11]. In
another study of temporal characterization of serum
metabolite signatures in lung cancer patients undergoing
chemotherapy ± radiation treatment, the feasibility of
metabolites in the plasma of lung cancer patients as
temporal biomarkers of clinical outcomes were discussed
[12]. However, few studies take advantage of NMR spec-
troscopy’s ability to obtain a metabolic fingerprint of
NSCLC patients after MWA treatment.
To further investigate the overall metabolic profiling

of NSCLC patients and the efficacy of microwave ther-
mal ablation in the treatment of NSCLC, metabolomics
approach was introduced to give a holistic view of
endogenous metabolites of the patients, which could
deepen our knowledge about non-small cell lung cancer
and promote the thermal ablation treatment for lung
cancer, and these should be benefit for human health in
the future.

Methods
Ethics statement
The study was approved by the Institutional Ethics
Committee of the Jiangxi Provincial People’s Hospital. A
written informed consent was obtained from all partici-
pants involved in this study.

Patients and samples
Between 20 February 2014 and 30 May 2016 patients who
met the following criteria were retrospectively enrolled in
the study: (1) pathologically verified peripheral NSCLC,
(2) stage IIIB or IV, (3) chemotherapy-naive (except pa-
tients with recurrence treated with adjuvant chemother-
apy or adjuvant radiation), (4) an Eastern Cooperation
Oncology Group (ECOG) performance status of 0 to 2,
and (5) adequate pulmonary, cardiac, hepatic, renal and
hematological functions to allow anticancer treatment.
Selected characteristics of the NSCLC cases and

controls were summarized in Table 1. Blood samples
were collected prior to the morning meal, and serums
were obtained by centrifugation of the blood samples at
3500 rpm for 10 min at 4 °C. Aliquots of the serum
samples were stored at − 80 °C until NMR analysis.

Serum preparation and 1H NMR spectroscopy
About 1 mL serum samples were deproteinized by
methanol with the ratios of serum: methanol as 1: 2 (v/v).

The mixtures were vortexed and incubated at − 20 °C for
about 30 min, and then were centrifuged into pellet
proteins at 12000 g for 30 min. The supernatants were
transferred into fresh tubes and lyophilized. The dried
samples were dissolved in 600 μL 99.8% D2O phosphate
buffer (0.2 M, pH at 7.0) containing 0.05% sodium salt of
3-trimethylsilylpropionic acid (TSP, w/v), vortexed, centri-
fuged and decanted to 5 mm NMR tubes.
All 1H NMR spectra were recorded with a Bruker AV

500 MHz spectrometer. A transverse relaxation-edited
Carr-Purcell-Meiboom-Gill sequence [recycle delay-90-
(τ-180-τ)n-acquisition] with a total spin echo delay (2nτ)

Table 1 Clinicopathological characteristics of the enrolled
NSCLC patients, MWA treated patients and healthy controls

Characteristic NSCLC MWA Healthy

Number 38 39 43

Gender

Male 19 20 22

Female 19 19 21

Age (years)

≥ 60 21 20 21

< 60 17 19 22

Stage

IIIB 10 13 –

IV 28 26 –

Tumour location

Peripheral 38 39 –

Central 0 0 –

Tumour size (cm)

≥ 3.5 21 22 –

< 3.5 17 17 –

ECOG performance status

0 0 2 –

1 36 35 –

2 2 2 –

Pathology

Adenocarcinoma 19 20 –

Squamous carcinoma 13 10 –

Adenosquamous carcinoma 6 8 –

Large cell carcinoma 0 1 –

MWA time (min), mean (range) – 14.0 (4.0–42.0) –

MWA power

70 – 33 –

60 – 6 –

Number of antennas

One – 16 –

Two – 23 –
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of 40 ms was used to attenuate broad signals from
slowly tumbling molecules such as proteins, whereupon
the signals of the micro-molecule metabolites were
clearly observed. 1H NMR spectra were measured with
128 scans into 64 K data points with a recycle delay of
3 s over a spectral width of 20 ppm. The spectra were
Fourier-transformed after multiplication by an exponen-
tial window function corresponding to a line broadening
of 0.5 Hz. Resonances were assigned by querying the
database HMDB (http://www.hmdb.ca/), MMCD (http://
mmcd.nmrfam.wisc.edu/), and were aided by the Chenomx
NMR suite (version 8.0, Chenomx, Inc.).

Data processing and multivariate analysis
The 1H NMR spectra were manually phased and baseline-
corrected by MestReNova (version 8.0.1,Mestrelab Research
SL). Spectra were aligned to the TSP signal at zero ppm. A
linear interpolation method was used to align the spectra
using MestReNova. Regions containing residual water and
methanol signals were removed, and the spectra were binned
into integrated segments with equal widths of 0.01 ppm and
adjusted by probabilistic quotient normalization and pareto-
scaling prior to multivariate analysis.
First, an unsupervised principal component analysis

(PCA) was used for for the metabolomics data overview
and the spotting of outliers, and then for the detection
of any grouping. Clustering was failed for the dataset
(Additional file 1: Figure S1). Then a supervised partial
least squares discriminant analysis (PLS-DA) was used
to gain valuable insights on group-predictive spectral
features. The metabolic profiles could be visualized as
score plot, where each point represents a sample. The
corresponding loading plot and S-plot were generated to
provide information on the metabolites that influence
clustering of the samples. In addition, a correlation circle
plot produced by sparse PLS regression was applied to
illustrate the relationships between certain integral me-
tabolites and groupings.
To quantitatively assess the performance of the model,

a repeated two fold cross-validation and permutation
testing was carried out. Permutation distribution of the
test statistic was computed based on 10,000 times
repeated random permutation of the class labels and the
significance value was taken to be the fraction of
samples not exceeding the test statistic for the original
sample. The overall quality of the model was evaluated
by the cumulative R2, while the predictive ability was
assessed by the cumulative Q2. Integration areas of the
detected metabolites with marked differentiating ability
were first tested for distribution normality. The student
t-test or rank test was then employed to detect differ-
ences in metabolite levels between groups and p < 0.05
was considered to be statistically significant.

Pathway analysis
Differential metabolites were subjected to pathway
analysis by MetaboAnalyst [13], which combines results
from powerful pathway enrichment analysis with the
pathway topology analysis, to identify the most relevant
pathways involved in the NSCLC patients.
In order to excavate anything gene as potential bio-

markers, and to integrate gene and metabolomics infor-
mation to provide a better understanding of the efficacy
of MWA in the treatment of NSCLC, the identified
metabolites in metabolomics were then mapped to the
KEGG pathway for biological interpretation of higher-
level systemic functions. The metabolites and corre-
sponding pathways were visualized using KEGG Mapper
tool (http://www.genome.jp/kegg/mapper.html).

Results
1H NMR spectra
Representative 1H NMR spectra of serum samples were
shown in Fig. 1, with metabolites assigned. The varia-
tions in serum metabolites between groups were sum-
marized in Table 2. The means and standard deviation
values of metabolites for each group were provided in
the Additional file 1: Table S1. Compared with the con-
trol group, the NSCLC group showed elevated levels of
lactate, alanine, glutamate, proline, glycoprotein, phenyl-
alanine, tyrosine and tryptophan, and decreased levels of
glucose, taurine, glutamine, glycine, phosphocreatine
and threonine, which could be partially or completely re-
versed by MWA treatment.

Multivariate analysis
The validity of the PLS-DA model against over-fitting
was assessed by the parameters R2 (0.68), and the pre-
dictive ability was described by Q2 (0.45). Theoretically,
the closer the R2 and Q2 value to 1, the better the PLS-
DA model is. A permutation test (n = 1000) was then
performed to assure the predictive capacity of the PLS-
DA model. The observed statistic P values via permuta-
tion testing were 0.036 which was less than 0.05, thus
confirming the validity of the PLS-DA model. The PLS-
DA score plot (Fig. 2) revealed satisfactory discrimin-
ation between the three groups. MWA treatment could
reverse the disturbed metabolic profile towards the con-
trol group. The corresponding color-coded coefficient
loading plot on the first component (Fig. 3) and S-plot
(Fig. 4) visualized the contribution of each metabolite to
the separation between groups. Significantly altered
metabolites between groups were the pseudo peaks in
warm color in the loadings plot, and those points in the
upper right and lower left quadrants of the S-plot. Peaks
in the positive axis and points in the upper right quad-
rants means the metabolites increased in the NSCLC
group. The select metabolites were graphed as scatter
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plots in order to show the interindividual variation
(Additional file 1: Figure S2). A concentric correlation
circle concerning the correlations between the identified
m a status similar to healthy controls etabolites and the
three groups were plotted as scatter plot, provided
additional information on the endogenous metabolites
among groupings (Fig. 5).

Network visualization of metabolites and pathways
The evidently disturbed metabolites were subjected to
pathway analysis using a web-tool MetaboAnalyst [13].
Consequently, four metabolic pathways, including
taurine and hypotaurine metabolism; d-glutamine and d-
glutamate metabolism; glycine, serine and threonine
metabolism; alanine, aspartate and glutamate metabol-
ism, were filtered out as the most important pathways
related with the metabolic disturbances in NSCLC
patients (Fig. 6). The P values table generated by
MetaboAnalyst in association with Fig. 6 was provided
in the Additional file 1: Table S2. These metabolic alter-
ations and the associated pathways provided insights

into the mechanisms involved in the development and
progression of NSCLC.
The identified metabolites were mapped on the KEGG

reference pathway diagram concerning central carbon
metabolism in cancer (Fig. 7), where red and blue nodes
represented increased and decreased metabolites in
NSCLC patients, respectively. Some oncogene and
tumor suppressor gene were found, such as the tumor
suppressor gene of p53 [14] SIRT3 [15] and SIRT6 [16],
and oncogene of Ras [17] PI3K [18], AKT [19] and
c-Myc [20]. However, these genes were not found via
any genetic exploration in this study, but are instead
potentially linked to the measured downstream meta-
bolic changes, which might reflect the potential treat-
ment mechanism of MWA on NSCLC.

Discussion
Lung cancer is a major contributor to cancer-related
mortality and burden of disease. MWA can be used to
provide potentially curative tumour ablation in patients
who are not candidates for surgical resection [21]. The

Fig. 1 Representative 1H NMR spectra of serum samples with metabolites labeled. 1 Isoleucine; 2 Leucine; 3 Valine; 4 Isobutyrate; 5 Ethanol; 6 3-
Hydroxybutyrate; 7 Lactate; 8 Alanine; 9 Lysine; 10 Acetate; 11 Proline; 12 Glycoprotein; 13 Glutamate; 14 Glutamine; 15 Methionine; 16 Acetoacetate;
17 Pyruvate; 18 Succinate; 19 Aspartate; 20 Asparagine; 21 Phosphocreatine; 22 Choline; 23 O-Acetylcholine; 24 O-Phosphocholine; 25 TMAO; 26
Taurine; 27 Glucose; 28 Glycine; 29 Threonine; 30 Glycerol; 31 dCTP; 32 Tyrosine; 33 Phenylalanine; 34 Tryptophan; 35 Histidine; 36 Tyramine; 37 Formate
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metabolic signature of serum from MWA treated
NSCLC patients and underlying mechanisms has not
been evaluated holistically. In this study, metabolic pro-
file analysis was employed to extravagate the underlying

mechanisms of MWA as a treatment of NSCLC. In
serum of NSCLC patients, levels of lactate, alanine,
glutamate, proline, glycoprotein, phenylalanine, tyrosine
and tryptophan were increased, while levels of glucose,

Table 2 Potential serum biomarkers identified by 1H NMR and their variations among NSCLC patients, MWA treated patients and
healthy controls

No. Metabolites Chemical shifts (ppm) NSCLC/CTRL MWA/NSCLC MWA/CTRL

fold p fold p fold p

1 Isoleucine 0.94 (t), 1.00 (d) 1.09 1.18 1.29 *

2 Leucine 0.96 (d), 0.97 (d) 1.09 0.93 1.00

3 Valine 0.99 (d), 1.05 (d) 1.11 1.17 1.30 **

4 Isobutyrate 1.07 (d) 1.06 1.09 1.16

5 Ethanol 1.19 (d), 3.65 (q) 1.01 1.11 1.12

6 3-Hydroxybutyrate 1.20 (d), 2.30, 2.41 (m) 1.15 1.09 1.25 ***

7 Lactate 1.33 (d), 4.12 (q) 2.13 *** 0.90 * 1.92 ***

8 Alanine 1.48 (d), 3.78 (q) 1.76 *** 0.87 * 1.52 ***

9 Lysine 1.73 (m), 1.91 (m), 3.30 (t) 1.12 1.10 1.24 ***

10 Acetate 1.92 (s) 1.18 1.08 1.27 **

11 Proline 2.01 (m) 1.45 ** 0.86 1.25 **

12 Glycoprotein 2.09 (s) 1.18 * 0.89 1.05

13 Glutamate 2.05 (m), 2.12 (m), 2.36 (m) 1.14 ** 0.85 *** 0.96

14 Glutamine 2.14 (m), 2.45 (m) 0.80 *** 1.11 0.89 *

15 Methionine 2.14 (s), 2.65 (t) 1.10 1.11 1.22 *

16 Acetoacetate 2.28 (s) 1.15 1.19 1.37 **

17 Pyruvate 2.38 (s) 1.19 0.85 1.01

18 Succinate 2.41 (s) 1.21 0.81 0.98

19 Aspartate 2.68, 2.81 (m) 0.86 1.17 1.01

20 Asparagine 2.87, 2.95 (m) 0.88 1.16 1.02

21 Phosphocreatine 3.04 (s), 3.93 (s) 0.81 *** 1.13 0.91

22 Choline 3.20 (s) 0.89 1.07 0.95

23 O-Acetylcholine 3.21 (s) 0.89 0.89 0.79 **

24 O-Phosphocholine 3.23 (s) 0.89 0.86 0.76 ***

25 TMAO 3.27 (s) 1.07 0.89 0.95

26 Taurine 3.27 (t), 3.42 (t) 0.76 *** 1.38 *** 1.05

27 Glucose 3.4–3.92 (m) 0.92 * 1.08 * 0.99

28 Glycine 3.56 (s) 0.89 * 1.12 * 1.00

29 Threonine 3.59 (d), 4.25 (m) 0.82 * 1.20 ** 0.98

30 Glycerol 3.58, 3.65 (m) 1.24 0.82 1.01

31 dCTP 6.07 (d), 6.08 (t), 7.83 (d) 0.86 0.86 0.74 ***

32 Tyrosine 6.91 (d), 7.20 (d) 1.16 ** 0.97 1.12 **

33 Phenylalanine 7.33 (d), 7.38 (t), 7.43 (t) 1.17 * 0.83 0.97

34 Tryptophan 7.55 (d), 7.74 (d) 1.30 *** 0.89 1.15 **

35 Histidine 7.08 (s), 7.84 (s) 0.88 1.14 1.00

36 Tyramine 7.24 (d) 0.88 0.96 0.85 **

37 Formate 8.46 (s) 0.87 1.12 0.98
1H–NMR 1H–nuclear magnetic resonance, NSCLC non-small-cell lung cancer, MWA microwave ablation, TMAO trimethylamine N-oxide. Asterisk P < 0.05, double as-
terisk P < 0.01 and triple asterisk P < 0.001. Multiplicity: s singlet, d doublet, t triplet, m multiplets
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Fig. 2 Scores plot, cross validation and a permutation test of PLS-DA model for CTRL, NSCLC and MWA groups. CTRL, healthy controls (n = 43).
NSCLC, nonsmall-cell lung cancer patients (n = 38). MWA, microwave ablation treated patients (n = 38). The values of R2 (0.68) and Q2 (0.45)
revealed satisfactory goodness of fit and goodness of prediction, respectively. The nominal P value (0.036) of the permutation test was less than
0.05, confirming the validity of the PLS-DA model at a 95% confidence level

Fig. 3 Loadings plot of PLS-DA model color-coded with the absolute value of correlation coefficients. Positive peaks corresponding to metabolites that
increased in NSCLC group, and negative regions corresponding to metabolites that decreased in NSCLC group
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taurine, glutamine, glycine, phosphocreatine and threo-
nine were decreased, concerning several possible mecha-
nisms of hyperthermic cell killing such as rupture of
plasma membrane, dysfunction of mitochondrial, DNA
damage, and energy-based cell death.

Destroy of membrane
Hyperthermia induced by MWA have been shown to
change cell membrane integrity and fluidity, which
were first considered to be the main cause of cell
death [5, 22, 23]. Phosphocholine and choline, components
of the plasma membranes, are often regarded as markers
of the integrity of membranes. In our experiment, the
slightly lowered levels of choline and O-phosphocholine in
NSCLC group indicated an accelerated use of them for
cancer cell proliferation. Compared with NSCLC, their
levels in MWA group have no significant change. Ablation
change the fluidity and permeability of cell membrane,
thereby leading to concretion and cytolysis, subsequently
causing intracellular metabolites shifts.

Dysfunction of mitochondrial
Mitochondrial dysfunction has been well correlated with
heat-induced injury [24]. Some ultrastructural changes
was observed previously, such as dilatation of the mito-
chondria with rupture or loss of the cristae [24]. The
level of taurine in NSCLC patients was decreased, which
was in accordance with previous reports [11, 25–28]. As
an antioxidant, taurine may be utilized as an antioxidant
defense system against the oxidative stress involved in
cancer process [29]. Ablation disrupted the mitochon-
drial membrane potential, resulting in the change in the
redox status of cells [30], inducing cancer cell killing,
thus leading to the reduced consumption of taurine.

DNA injury
Glycine was found to be decreased, which was in ac-
cordance with the previous study [31]. As a simple,

Fig. 4 S-plot from PLS-DA analysis to visualize the variable influences
and to filter potential metabolites. Warm color (red) denotes a large
contribution to grouping and cold color (blue) denotes less contribution
to grouping. The significantly increased metabolites in NSCLC group
were located in the upper-right quadrant and the decreased me-
tabolites were located in the lower-left quadrant

Fig. 5 Concentric correlation circle plot concerning the correlations
between the identified metabolites and the three groups, provided
additional information on the endogenous metabolites among groups

Fig. 6 Pathway topology analysis in association with NSCLC. Bubble
area donating to the impact of each pathway, with color
representing the significance from highest in red to lowest in white
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nonessential amino acid, glycine was involved in the pro-
duction of DNA, phospholipids and collagen as well as
the release of energy. Given that cancer cells reprogram
their metabolisms comprehensively, the decreased level of
glycine in NSCLC patients may be related with the accel-
erated DNA synthesis. The level of glycine was increased
after hyperthermic ablation, indicating that hyperthermia
treatment caused nucleotide damage. Previous research
offers some support for this view, which indicated that
hyperthermia could cause damage to DNA [30] and lead
to inhibition of nucleolar RNA synthesis [24, 32, 33]. One
possible mechanism of heat-induced DNA injury was the
denaturation of some key replication enzymes, such as
DNA polymerase α and β, which is responsible for DNA
replication and repair synthesis, respectively [34]. Another
potential mechanism could be attributed to the formation
of endogenous reactive oxygen species (ROS) as a
consequence of hyperthermic ablation [5], which subse-
quently results in DNA damage because DNA is particu-
larly vulnerable to ROS-induced damage. As a result,
imbalance of glycine related to DNA damage and repairs
was found [35].

Energy-based cell death
The level of lactate was increased in NSCLC patients,
which was in accordance with the previous studies [11, 31,
36–38]. As previously reported, cancer cell metabolism in-
volves primarily the conversion of glucose ultimately to lac-
tate by an enzyme-catalyzed anaerobic fermentation rather
than the oxidation of glucose ultimately to carbon dioxide
and water as occurs with normal cells, known as the War-
burg effect [39]. Recent study has proposed that lactate is
also a tricarboxylic acid (TCA) cycle carbon source for
NSCLC and sustain tumor metabolism in vivo [40].There-
fore, the elevated levels of lactate found in the serum of
NSCLC patients could be attributed to the enormous do-
mestic for cell proliferation. Hyperthermia caused extensive
damage of the ultrastructural of mitochondria, ruptured
glycolysis and energy metabolism of cancerous cells, which
blocking the generation of lactate as a fuel of TCA cycle.
Levels of serum alanine was elevated in NSCLC group,

which was consistent with previous report [36]. Alanine
is a glycogenic (glycogen-producing) amino acid that can
be converted to pyruvate and tricarboxylic acid cycle
intermediates, and then to glucose by gluconeogenesis,

Fig. 7 The metabolites and corresponding affected metabolic pathways generated by KEGG mapper. Nodes in red and blue denoting metabolites
with increased and decreased concentrations in NSCLC group. Genetic alternations including oncogenes such as Ras, PI3K, Akt and c-Myc, and tumor
suppressor genes such as SIRT3, SIRT6 and p53 were observed

Hu and Sun Radiation Oncology  (2018) 13:40 Page 8 of 10



functioning as an energy source to meet the huge
demand of energy consumed in various metabolic activ-
ities in tumor cells. Elevated levels of serum alanine may
facilitate energy synthesis in the cells and provide
enough energy for cell growth. Tumor cells also utilized
glutamine as another energy supply [41], which was
called glutaminolysis. The decreased level of glutamine
has been reported previously [42, 43], which was pos-
sibly due to its consumption for energy supply. After
MWA treatment, the elevated level of alanine and de-
creased level of glutamine were recovered to the status
of normal control group. Destroy of mitochondria and
coagulative necrosis of cancer cells caused by hyperther-
mia might be responsible for the reversion of the above
metabolites which are related with energy metabolism.
However, the roles of the significant pathways

mentioned above in relation to MWA treatment were
only hypothesis, without any complementary techniques
as a backing. The model without vigorous explaination
and prediction ability limits us to draw any definitive
conclusions, which may be attributed to the small sam-
ple size and the heterogeneity of patients. Future studies
with a larger sample size are planned to more clearly
characterize metabolic profiles of NSCLC patients.

Conclusions
1H NMR-based metabolomics approach could effectively
distinguish the metabolic profile of NSCLC patients with or
without MWA treatment from that of healthy controls.
The observed potential biomarkers may facilitate to diag-
nose NSCLC non-invasively. MWA method could partially
reverse the disturbed metabolic profile towards the control
group. In the future, more patients from different ethnici-
ties should be enrolled to verify the precision and specificity
of the potential biomarkers in the diagnosis of NSCLC and
the efficacy evaluation of MWA in curing NSCLC in clinic.
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MWA group. (DOCX 554 kb)
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