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Abstract

Since the discovery of X-rays at the end of the 19th century, medical imageology has progressed for 100 years, and
medical imaging has become an important auxiliary tool for clinical diagnosis. With the launch of the human genome
project (HGP) and the development of various high-throughput detection techniques, disease exploration in
the post-genome era has extended beyond investigations of structural changes to in-depth analyses of molecular
abnormalities in tissues, organs and cells, on the basis of gene expression and epigenetics. These techniques have
given rise to genomics, proteomics, metabolomics and other systems biology subspecialties, including radiogenomics.
Radiogenomics is an important revolution in the traditional visually identifiable imaging technology and constitutes a
new branch, radiomics. Radiomics is aimed at extracting quantitative imaging features automatically and developing
models to predict lesion phenotypes in a non-invasive manner. Here, we summarize the advent and development of
radiomics, the basic process and challenges in clinical practice, with a focus on applications in pulmonary nodule
evaluations, including diagnostics, pathological and molecular classifications, treatment response assessments and
prognostic predictions, especially in radiotherapy.
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Introduction
The suffix “-omics” is now widely used in basic and clin-
ical medical fields to denote the concept of detecting a
large dataset and extracting valuable information. It is well
known that tumors arise from genetic abnormalities [1].
Treatment responses vary among patients, even those
with the same kind of tumor, because of the different pat-
terns of genetic alterations [2, 3]. In 2003, at the annual
conference of the European Society for Radiotherapy and
Oncology (ESTRO), Baumann et al. proposed the GENEPI
project, with the aim of conducting a quantitative study of
the relationship between tumor gene expression and ra-
diosensitivity [4]. This project was considered to give rise
to the original concept of radiogenomics. The initial defin-
ition of radiogenomics was confined to predicting the sen-
sitivity of radiotherapy on the basis of gene expression.
Inspired by this vision, many researchers began to analyze
the correlation between the gene expression profile and
the lesion image, thus expanding the meaning of radioge-
nomics [5, 6].

In 2012, the sequencing results of renal carcinoma were
reported. Researchers found that the tumor gene
sequences and their expression levels significantly differed
among diverse renal cancer patients and even within the
subregions of individual tumor samples. Moreover, phylo-
genetic reconstruction has revealed branched evolutionary
tumor growth, wherein nearly 70% of all somatic muta-
tions are undetectable across the tumor regions [7]. These
studies opened the door for explorations of the spatiotem-
poral heterogeneity of tumors, at both the microscopic
and macroscopic levels. Heterogeneity was then con-
firmed by a subsequent series of studies [8–10]. It has also
been observed that tumors with greater genomic hetero-
geneity are less sensitive to treatment and more likely to
metastasize [11–13]. Therefore, heterogeneity evaluations
are important for tumor management. However, the value
of the traditional small biopsy, even surgical biopsy, is lim-
ited, because despite complete resection of tumor tissues
with surgery, pathological examinations usually focus on a
fraction of the tumor, and the results might not compre-
hensively reflect the characteristics of the entire tumor.
However, spatiotemporal heterogeneity provides a great
opportunity for the development of medical imaging
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technology, which is non-invasive and can be used for
continuous and repeated examinations of the entire
lesion.

The advent and development of radiomics
Traditional imaging approaches, such as X-ray radiography,
computed tomography (CT), magnetic resonance imaging
(MRI) and positron emission tomography (PET), allow ex-
tractions of the two-dimensional anatomical and morpho-
logical features of tumors semi-quantitatively. However,
these methods are incapable of predicting tumor hetero-
geneity. Thus, there is a pressing need to develop more sys-
tematic and comprehensive image technologies. In fact, in
addition to displaying conventional morphological signs
distinctly, CT and MRI provide a variety of digital patho-
physiological details, such as genetic variations and cell
functions, thus facilitating individualized selection of ther-
apies. In 2012, a Dutch researcher, Lambin P, proposed the
concept of “Radiomics” for the first time and defined it as
follows: The extraction of a large number of image features
from radiation images with a high-throughput approach
[14]. Radiomics has attracted a large amount of attention,
and the definition was updated in 2014 to the high-
throughput automated (or semi-automated) extraction of
large amounts of quantifiable information (or image fea-
tures) from a region of interest (ROI) in radiographic im-
ages. Radiomics was designed to decode the intrinsic
heterogeneity, genetic characteristics and other phenotypes
of a lesion to improve management [15]. Clearly, radiomics
is a product of digital imaging combined with several types
of advanced techniques. Radiologists, medical experts,
mathematicians and computer scientists are all necessary in
this interdisciplinary framework.

Key technologies and challenges in radiomics
According to the Quantitative Imaging Network (QIN)
guidelines established by the National Cancer Institute
(NCI), the key technologies and implementation steps of
radiomics include the acquisition and reconstruction of
standardized images, lesion segmentation, feature extrac-
tion, and quantitative data analyses [16].

Acquisition and reconstruction of standardized images
Original images of radiomics can be derived from ana-
tomical or molecular imaging scans, including CT, MRI
and PET. To allow for comparisons and confirmation,
the parameters of the original images should be as uni-
form as possible. However, there are substantial practical
challenges.

CT
CT is the most common imaging modality for radiomics
analyses and is allows for easy comparisons across institu-
tions. The imaging performance of CT scanning depends

on the imaging technique, scanning parameters and the
breathing of the subject [17–19]. The generally accepted
evaluation criteria for CT phantoms have been summa-
rized by the American Association of Physicists in Medi-
cine (AAPM) task group reports and comprise four
components: slice thickness, Hounsfield unit (HU) varia-
tions with electron density, low/high contrast detectability
and a region of uniform medium to examine HU changes
[16, 20]. The slice thickness, photon statistics and tube
voltage are interdependent. Moreover, HUs vary with the
reconstruction algorithms and pitches. One lesion
scanned using two different reconstruction algorithms or
pitches will show significantly different textures [18].
Therefore, efforts must be made to match the original pa-
rameters and reconstruction protocols between scanners.
Fortunately, the algorithm variations among different ven-
dors allow for acceptable quantitative comparisons, thus
providing opportunities for further analyses.

MRI
In contrast to CT, which reflects the densities of tis-
sues, the signal intensities of MRI are produced by a
complex interplay of relaxation times and other acqui-
sition parameters. It is difficult to derive the physical
properties of tissues from MRI directly [21]. Certain
techniques, such as dynamic contrast-enhanced MRI
(DCE-MRI) and diffusion weighted imaging (DWI),
have been developed to facilitate the physiological
properties assessment. DCE-MRI provides novel in-
sights into the microvasculature, vessel permeability
and volume fractions and shows promise as a single
tool for tumor volume and contrast enhancement pat-
tern analyses. The results of DCE-MRI depend on the
administration method, pulse sequence, contrast agent
dose and analysis method. The different parameters
used by different investigators act as barriers to com-
parisons. DWI detects the random motion of water
molecules in the body. Unlike water molecules outside
the body in random Brownian motion, water molecules
in biological tissues engage in restricted movements
due to the cell membranes and macromolecular inter-
actions. DWI is primarily used to evaluate acute cere-
bral infarction, but it has also been used to evaluate
tumors. The techniques for DWI acquisitions vary con-
siderably without standardization, and this variability is
the greatest challenge to widespread adoption of DWI
for tumor assessments [22]. Recently, the Quantitative
Imaging Biomarker Alliance (QIBA), also known as the
Radiological Society of North America (RSNA), has ini-
tiated an effort to standardize the MRI protocol [16].

PET
PET is a functional imaging modality that uses a tracer
known as 18F–fluorodeoxyglucose (18F–FDG). Comparisons
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of PET images highly depend on the dose of the tracer, the
reconstruction of the volume of interest (VOI), and the ad-
herence of the patient to the strict protocol. All of these fac-
tors affect the results and are challenges in radiomics
analyses [23–25]. Before quantitative image collection, scan-
ner calibration and the scanning protocol need to be uniform
to gain comparable results in the standardized uptake value
(SUV) of 18-FDG. Additionally, patients are also required to
perform specific procedures, including fasting for 4 h to
maintain a proper blood glucose level, avoiding high-
intensity exercise, and complying with breathing instructions
during the examination process. The Society of Nuclear
Medicine and the European Association of Nuclear Medicine
are working on proposing strict protocols for quantitative
PET imaging.

Lesion segmentation
Lesion segmentation is crucial in radiomics. Although
manual segmentation by experienced experts is often
regarded as the “gold standard”, the weakness of this
labor-intensive step limits the wide use of lesion segmen-
tation in large datasets. In addition, the inevitably high
inter-operator variability further makes this technique less
feasible. An ideal segmentation method should have four
basic features: automation, accuracy, reproducibility and
consistency. Recently, a number of automatic or semi-
automatic segmentation methods, such as segmentation
based on volume CT and an active contour model (ACM),
have been developed. However, there is also considerable
variation in the results from the same method with differ-
ent initialization settings. Moreover, different imaging al-
gorithms (CT, MRI or PET) and different anatomical
regions (e.g., lung, brain, and liver) have specific require-
ments. In recent decades, the most commonly used seg-
mentation methods, namely, level set methods, graph cut
methods, region growing methods, active contour algo-
rithms and semi-automatic segmentations, have been de-
veloped, each with different merits and drawbacks [16].
However, there is no universal segmentation method suit-
able for all types of medical images. Even when the same
algorithm is performed repeatedly with different initializa-
tions, the results might be variable. Hence, it is important
to develop agreed-upon metrics to evaluate segmentation
algorithms. Here, we discuss some major challenges in
lung nodule segmentation.
To obtain sufficient information with high fidelity, the

slice thickness of the chest CT scan should be 1.5 mm
or less [26], and the slice number for each patient might
be over 300. Therefore, it is extremely necessary to have
an automatic or semi-automatic and reproducible seg-
mentation algorithm, as discussed above. With a strong
contrast agent, most of the early stage lung cancers
present with homogenously high intensities. The deep
contrast with the low-intensity background allows for

precise segmentation. However, in cases of ground glass
nodules (GGNs), especially the pure GGN without a
solid component, the blur differentiation between the le-
sions and adjacent normal lung tissues makes it difficult
to perform a reproducible automatic segmentation. An-
other common circumstance is the high-intensity tumor
is attached to the pleural wall or mediastinum, thus
causing automatic segmentations to often fail by over-
extending the lesion boundaries. Manual segmentation
by radiologists, often called the “gold standard” or
“ground truth”, is conventionally subject to overesti-
mation of the lesion volume to ensure covering the en-
tire lesion and exhibits poor reproducibility. Thus, the
“gold standard” is not truly accurate. Reproducibility and
consistency are usually given priority over accuracy. In
other words, a good algorithm should provide reprodu-
cible, operator-independent segmentation results auto-
matically. Investigations are continuously being performed
in this field [16]. Recently, a semi-automatic segmentation
method using three-dimensional lung CT slicers and the
GrowCut algorithm has been reported to be able to de-
crease inter-observer variability and delineation uncer-
tainty. GrowCut is an interactive region segmentation
strategy. Before automatic segmentation, a set of labeled
pixels for the algorithm should be noted by the user.
Then, the algorithm will automatically generate the ROI
for the convex hull of the user-labeled pixels and an add-
itional margin. The neighboring pixel weights with a simi-
larity score are used to perform pixel labeling. Pixels with
very different weights from those of the neighboring pixels
will not be labeled. The foreground and background re-
gions are segmented on the basis of the ROI. Finally, if
needed, the ROI for the nodule can be edited manually
during a finalization phase [27].

Feature extraction
Imaging features, including the lesion shape, intensity,
texture and wavelet, together with location, can be ex-
tracted after lesion segmentation. Feature extraction is
also needed for reproducibility, and the information
must be informative but not redundant.

Shape
Segmented lesions are reconstructed into three-
dimensional images for further geometric shape descrip-
tions. The maximal and minimal three-dimensional di-
ameters and the total volume are the most commonly
used parameters. Similarly to the ratio of the maximal
and minimal three-dimensional diameters, the surface-
to-volume ratio is also usually used to determine
whether the lesion is round or speculated, wherein a
round lesion has a much lower value than a speculated
lesion with the same volume. Lesion compactness is also
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calculated. However, the shape is not a specific
indicator.

Intensity
The intensity reflects the lesion voxel value for the se-
lected fractional volume, which is often displayed as the
intensity histogram. For CT images, the intensity repre-
sents HUs, whereas for PET scans, the intensity indicates
the SUVs of FDG. Distribution arguments, including
range, mean, median, minimal, maximal, skewness and
kurtosis, can be calculated from the intensity histogram
to predict the nature of the lesion. More details, such as
the percentiles over a set point, can also be determined
in medical pattern recognition tasks, but more evidence
is needed.

Texture
The intratumoral texture, introduced by Haralick in
1973, has been widely used to evaluate intertumoral het-
erogeneity and has potential for enabling differentiation
between cancerous and noncancerous lesions [28]. Tex-
ture describes the interrelationship between voxels and
similar (or dissimilar) contrast values [29]. There are nu-
merous approaches for texture extraction. The most
commonly used ones include second-order statistics and
co-occurrence matrix features, and the former is prefera-
ble. Hundreds of variables are generated, some of which
may be redundant. Therefore, it is necessary to evaluate
these data by using co-variance [16].

Wavelet
Wavelets are filter transforms that are determined from
a matrix of complex linear or radial “waves” multiplied
by the original images. Wavelet features are the trans-
formed domain results representing the intensity and
textural information. The most common way to obtain a
wavelet is the Coiflet wavelet transformation [30], which
is computed on different wavelet decompositions of the
original image. Wavelets can be used to extract increas-
ingly coarse texture patterns [31]. Wavelets expressed as
‘Grey Level Nonuniformity HLH’ have been used to de-
scribe the intratumoral heterogeneity of lung cancer
[32]. However, a standard approach is required for
consistency across organizations.

Quantitative data analyses
In the analyses above, large amounts of data are
accessed. It is necessary to establish a standardized data-
base and construct internet sharing platforms with the
Internet Cloud technology. This is the foundation for
standardized data processing, analyses, and sharing
within or across institutions [16, 33]. Furthermore, not
all extracted features are useful for a particular task, and
the auxiliary information will decrease the analytic

power. Therefore, selecting useful information purpose-
fully is crucial for a good radiomics performance. Princi-
pal component analyses, machine learning algorithms
and statistical approaches are frequently used methods
to obtain a new set of features from original information
before evaluation of their predictive ability. Then, highly
reproducible features with a cutoff value of 0.85 as a
concordance correlation coefficient are selected, and this
is followed by dynamic range analyses. Although low-
dynamic ranging features may be informative, the fea-
tures with high dynamic ranges are regarded as advanta-
geous. Finally, the remaining redundant features should
be removed if the correlation coefficients exceed 0.95.
All selected features, characterized as being reprodu-
cible, informative and non-redundant, are used to de-
velop classifier models based on machine learning
algorithms [16]. The identified models must be inextric-
ably link the imaging, molecular data and clinical data,
thus posing many challenges.

Clinical application of Radiomics in the precision
diagnosis and treatment of lung cancer
Because radiomics is a new technology, clinical applica-
tions are seldom available. Inspired by radiogenomics,
Lambin P has predicted that radiomics will be a power-
ful tool for indicating tumor genetic heterogeneity, mo-
lecular phenotype, pathological diagnosis and clinical
prognosis. These factors are highly informative for mak-
ing clinical decisions [14]. Lung cancer, representing the
highest incidence of malignant tumors worldwide, is of
perennial interest to researchers. In the subsequent sec-
tion, we will highlight some recent findings in lung can-
cer to demonstrate the potential role of radiomics. The
first comprehensive application of radiomics in lung
cancer was reported by Aerts H in 2014. In that study,
1019 cancer patients, 788 with non-small-cell lung can-
cers and the other 231 with head-and-neck cancers,
were enrolled and divided into seven cohorts for training
and validation. Four hundred forty radiomics features
quantifying tumor intensity, shape, texture and wavelets
were extracted. Along with clinical information and gene
expression data, a radiomics heat map was developed to
show the clusters of patients with similar radiomics ex-
pression patterns. The overall survival prognostic radio-
mics signature was built on the basis of the first cohort
with 422 lung cancers, and its desirable performance
was confirmed in the separate lung cancer and head-
and-neck cancer groups. Moreover, gene-set enrichment
analysis (GSEA) based on another 89 lung cancer cases
indicated a satisfactory correspondence between the
radiomics features and tumor gene expression data.
These data suggested that radiomics is capable of identi-
fying the general tumor prognostic phenotype in lung
and head-and-neck cancers from a single-timepoint CT
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scan. Thus, radiomics may provide an unparalleled op-
portunity for the wide use of CT imaging in cancer
fields, providing the advantages of non-invasiveness and
full view. However, the differential value of radiomics in
benign and malignant pulmonary nodules was not ana-
lyzed in that study [32].

Differentiating lung cancer from benign pulmonary
nodules
In another study, 583 radiomics features from 127 pre-
treatment pulmonary nodules were extracted to measure
the nodule shape, intensity, heterogeneity and other in-
formation in multiple frequencies. Patients were divided
into 10 subsets randomly with equal sized benign or ma-
lignant lesions. A diagnostic model was then executed
with the random forest method. Satisfactorily, the sensi-
tivity, specificity and accuracy of this radiomics classifier
toward distinguishing malignant primary lung nodules
from benign ones achieved 80.0%, 85.5% and 82.7%, re-
spectively; however, the sensitivity of the traditional ex-
perienced radiologists’ annotations was only 56.9% with
the same specificity [34]. Another study has described
quantitative analyses of low-dose CT lung cancer screen-
ing images from the well-known National Lung Screen-
ing Trial (NLST) at baseline to evaluate whether
radiomics could predict the subsequent emergence of
cancer. There were two cohorts: one comprised 104
cases and 92 patients with screening-detected lung can-
cers, and the other comprised a matched group of 208
cases and 196 patients with screening-detected benign
pulmonary nodules. Twenty-three stable radiomics fea-
tures selected by the random forest method predicted
nodules that would become cancerous in one or 2 years,
with accuracies of 80% (Area Under the Curve, AUC
0.83) and 79% (AUC 0.75), respectively; these results
were similar to the accuracy of the McWilliams risk as-
sessment model and exceeded the accuracies of the
Lung-RADS and tumor volume approaches [35]. With
the popularization of high-resolution CT scanning, sub-
solid pulmonary nodules are becoming increasingly
common. Nearly 34% of persistent subsolid nodules
found in the lung cancer screening baseline are diag-
nosed as malignant in the follow-up screen, a percentage
much higher than that for solid lesions (7%) [36]. There-
fore, it will be highly beneficial to predict whether the
new subsolid nodules are persistent or transient. In a
retrospective study of 46 patients with 47 persistent sub-
solid nodules, and 31 individuals with 39 transient le-
sions revealed that, beyond the significant differences in
age, sex, smoking history and eosinophil counts in the
two groups, the CT features of nodule diameter, solid
portion size and lesion multiplicity have been found to
vary greatly. In terms of radiomics characteristics, the
higher mean attenuation, the lower skewness and the

ratio of mean attenuation are more inclined to persistent
subsolid nodules. Radiomics texture analysis (mean at-
tenuation, skewness and 5 percentile CT number), com-
bined with clinical (eosinophilia) and CT features (lesion
size and multiplicity: solitary or multiple), is dramatically
more powerful in differentiating persistent pulmonary
subsolid nodules from transient ones than the clinical
and CT features alone [37]. Textural features with kur-
tosis analysis have also been found to successfully differ-
entiate pulmonary pre-invasive lesions from invasive
lung adenocarcinomas [38]. We believe that radiomics
analysis will improve the routine lung cancer diagnosis
and support the clinical decision at a low cost.

Precise pathological and molecular classification in lung
cancer
Accurate pathological classification is crucial to planning
treatments after a nodule is defined as malignant. Aerts
H et al. have observed that 53 radiomics features are sig-
nificantly associated with lung cancer histology. More-
over, radiomics-based multivariate classifiers, namely,
Wavelet_HLL_rlgl_low Gray Level Run Emphasis,
Wavelet_HHL_stats_median, Wavelet_HLL_stats_skew-
ness, and Wavelet_HLH_glcm_clus Shade, have been in-
dependently validated for the prediction of histological
subtypes, even though they achieve a slightly lower pre-
dictive accuracy than naive Bayes classifier [39]. With
the development of targeted therapies, gene detection
and histopathological classification of lung cancer has
been recommended as a standard approach by several
international authoritative guidelines [40]. However, it is
difficult to obtain biopsy tissues in some circumstances
because of the inaccessible location of the tumor or the
invasive nature of the procedures,. In an Asian cohort of
298 surgically resected peripheral lung adenocarcinomas,
59 of 219 extracted quantitative three-dimensional fea-
tures have been found to be independent of the epider-
mal growth factor receptor (EGFR) mutation status.
Finally, five radiomics features classified into three broad
groups have been identified as powerful predictors of
the EGFR mutation: CT attenuation energy, tumor main
direction, and texture, as defined according to wavelets
and Laws [41]. Another quantitative CT-based texture
analysis has been applied to 48 early-stage non-small-
cell lung cancer (NSCLC) patients, and the results have
revealed that positive skewness and lower kurtosis are
significantly associated with the presence of a K-ras mu-
tation. A recursive decision tree with five nodes has been
found to improve the differentiation of the K-ras mutant
from the pan-wild-type NSCLC tumors, with an accur-
acy of 89.6% [42]. Regarding the relatively rare events of
the ALK (anaplastic lymphoma kinase), ROS1 (c-ros
oncogene 1) and RET (rearranged during transfection)
fusions in lung adenocarcinomas, lower values for

Chen et al. Radiation Oncology  (2017) 12:154 Page 5 of 8



kurtosis and inverse variance on three-voxel distance on
CT or PET imaging, combined with clinicoradiologic
features, such as age, tumor mass and stage, have en-
abled good discrimination between fusion-positive and
fusion-negative tumors, even though the radiomics fea-
tures of the ALK fusion-positive tumors are significantly
different from those of the ROS1/RET fusion-containing
tumors [43].

Treatment response and prognostic indication in lung
cancer, especially in radiotherapy
Another challenge in lung cancer is the difficulty in predict-
ing the treatment response or prognosis. Gratifyingly, in
addition to the reports by Aerts H discussed above, several
studies have successfully developed radiomics prognostic
classifiers for lung cancer patients treated with surgery,
radiotherapy or targeted therapies. Eleven stable radiomics
feature clusters extracted from the pretreatment CT images
with lung cancer have been found to indicate a strong asso-
ciation with prognosis [44]. Local recurrence and distant
metastasis are important prognostic factors in cancer pa-
tients. Therefore, developing efficient biomarkers to predict
patients at high risk of local recurrence or distant metasta-
sis may help to avoid intensive systemic therapy in these
subgroups. Coraller TP et al. have constructed a radiomics
model with 635 features. Thirty-five have been found to be
predictive of metastasis, and 12 have been found to be pre-
dictive of survival. The predictive power of the radiomics
signature, especially with clinical characteristics, is much
higher than the predictive power of the conventional tumor
volume [45]. Further neoadjuvant chemoradiation response
analysis in 127 locally advanced NSCLC patients has shown
that seven radiomics features are predictive of pathologic
gross residual disease, and one feature is predictive of a
pathologic complete response. Tumors with rounder
shapes and heterogeneous textures are more likely to have
a poor response to neoadjuvant chemoradiation. However,
no conventional imaging features have been found to be
predictive [46].
Stereotactic ablative radiotherapy (SABR) is widely ap-

plied in lung cancer treatment. However, a benign fi-
brotic change per imaging has a similar appearance to
that of a tumor recurrence, thus representing a challenge
for a response assessment after SABR. In a cohort of 45
early-stage lung cancer patients treated with SABR, two
regions of interest on the follow-up CT images, a conso-
lidative region and surrounding peri-consolidative re-
gion, have been generated semi-automatically and
analyzed to predict local recurrence or benign injury
within 6 months post-SABR. A radiomics signature con-
sisting of five CT image-appearance features has demon-
strated an AUC for local recurrence prediction of 0.85,
with an error of 23.7%, false positive rate of 24.0%, and
false negative rate of 23.1%. Simultaneously, the prediction

efficiency of radiation oncologists or radiologists was
found to be much lower, with an error of more than 31%
and false negative rate of nearly 99%. These findings sug-
gest that radiomics has the potential to be used as a
computer-aided decision tool based on routinely acquired
CT imaging. Although this was the first radiomics study
to perform recurrence assessments after SABR, further
prospective validations using a larger dataset are needed
[47]. In subsequent studies, quantitative and CT texture
analysis have been applied to quantify radiation-induced
lung injury. A higher baseline lung density has been found
to be prognostic for radiation-induced lung damage sus-
ceptibility [48]. Moreover, compared with the differences
in mean density on the CT scan, the combination of mean
density changes with the standard deviation dramatically
improves the radiation-induced lung damage assessment
and has enabled the development of a more accurate pre-
dictive mode [49]. A recent study has even shown that the
gray-level co-occurrence matrix (GLCM) texture features
outperforms the first-order features in distinguishing the
lung radiation injury severity levels. A classifier including
eight radiomic features has demonstrated a fine dose–re-
sponse relationship at 3, 6, and 9 months after SBRT [50].
Regarding the overall survival (OS) and recurrence-free
survival (RFS) rates for NSCLC patients with SBRT, 24 se-
mantic image features, 219 radiomic features in the base-
line planning CT scans and the patient clinical
characteristics have been extracted in 92 cases. The East-
ern Cooperative Oncology Group (ECOG) performance
status, pleural retraction, F2 (short axis × longest diam-
eter) and F186 (Hist-Energy-L1) were included in the
model for the two-year OS prediction, and vessel attach-
ment and F2 were included for the RFS prediction. This
study has indicated that radiomic features might be help-
ful in patient stratification and that the features might be
powerful in predicting the prognosis of NSCLC patients
with SBRT [51]. A similar result has also been reported in
another 112 patients. A full analysis of variance has shown
that the predictive accuracy depends on feature selection
and analysis techniques, thus suggesting that standard
methods are required for further investigation [52].

Conclusions and prospects
The great advantages of radiomics, in the fields of diag-
nostics and treatment of lung cancer, have been
highlighted by numerous studies. Thus, radiomics is ex-
pected to be central to precision medicine. The essence
of precision medicine is to make personalized decisions
for disease prevention, diagnosis and treatment, on the
basis of individual patient data gathered through high-
precision measurements and efficient information min-
ing and integration. Radiomics can capture detailed
information of tumor phenotypes. Full utilization of
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these cancer-specific characteristics may provide a non-
invasive tool for quantifying and monitoring tumors in
clinical practice.
Nonetheless, researchers must be aware that in the

early stage of development, there are many problems
that must be solved in radiomics, from original image
extraction to data analysis. Simultaneously, the strong
heterogeneity of the tumor presents great challenges to
radiomics. Extensive multidisciplinary cooperation is ur-
gently needed to promote the progress of radiomics and
produce a revolution in the precision diagnosis and
treatment of lung cancer.
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