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Abstract

Lung cancer is the leading cause of cancer mortality, and radiotherapy plays a key role in both curative and palliative
treatments for this disease. Recent advances include stereotactic ablative radiotherapy (SABR), which is now established
as a curative-intent treatment option for patients with peripheral early-stage NSCLC who are medically inoperable, or at
high risk for surgical complications. Improved delivery techniques have facilitated studies evaluating the role of SABR in
oligometastatic NSCLC, and encouraged the use of high-technology radiotherapy in some palliative settings. Although
outcomes in locally advanced NSCLC remain disappointing for many patients, future progress may come about from
an improved understanding of disease biology and the development of radiotherapy approaches that further reduce
normal tissue irradiation. At the moment, the benefits, if any, of radiotherapy technologies such as proton beam
therapy remain unproven. This paper provides a critical review of selected aspects of modern radiotherapy for lung
cancer, highlights the current limitations in our understanding and treatment approaches, and discuss future treatment
strategies for NSCLC.
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small cell lung cancer; OARs, Organs at risk; OS, Overall survival; PBT, Proton beam therapy; PFS, Progression-free
survival; PROs, Patient-reported outcomes; PSPT, Passively scattered proton therapy; PTV, Planning target volume;
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Background
Lung cancer is the most frequently diagnosed cancer
worldwide and the leading cause of cancer mortality,
accounting for over 1.6 million deaths annually [1]. The
role of curative-intent radiotherapy (RT) is well esta-
blished in locally advanced [2] and early stage [3] non-
small cell lung cancer (NSCLC). Nonetheless, the thorax

remains a challenging anatomical site for RT delivery, due
to the low electron density of lung, respiratory- and
cardiac-induced tumor motion, and proximity of critical
structures such as the esophagus and spinal cord. While
advanced RT technologies can address many of these
challenges [4–7], in most cases, the clinical benefit of such
technology still needs to be demonstrated, especially since
radiation oncology was the medical specialty generating
the greatest increase in Medicare expenditures between
2003 and 2009 [8]. However, the evaluation of new tech-
nologies remains challenging. This review will discuss the
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current state of modern RT for NSCLC, limitations, and
strategies to improve clinical outcomes in the future.

Early stage, localized disease: lung SABR
The impact of advanced RT technology is perhaps most
evident in the setting of early-stage NSCLC. Stereotactic
ablative radiotherapy (SABR) is now considered the stan-
dard of care for medically inoperable patients with periph-
eral early-stage NSCLC [3]. SABR utilizes small margins for
positional uncertainty, facilitated by 4-dimensional com-
puted tomography (4DCT), multiple conformal or intensity
modulated beams or arcs and volumetric image-guidance
[9]. While peripheral lung SABR can also be delivered
without these technologies, newer techniques can increase
treatment efficiency and user confidence. Treatment-related
toxicity with peripheral lung SABR is modest [10–12]. As
SABR is not universally available, it is reassuring that data
from the randomized SPACE study in patients with periph-
eral NSCLC suggest similar tumor outcomes with conven-
tionally fractionated 3-dimensional conformal radiotherapy
to 70 Gy [13].
There is an ongoing debate about the role of SABR in

patients who are fit to undergo surgery [9]. A pooled ana-
lysis of two randomized trials of operable patients which
closed prematurely due to slow accrual, showed a 16 %
higher 3-year survival with SABR compared to surgery
(p = 0.037). This was due to the higher rate of peri-
operative mortality in the surgical group [14]. A propen-
sity score matched analysis revealed that rates of treat-
ment associated mortality and severe toxicity were lower
with SABR for stage I-II NSCLC than with lobectomy per-
formed by minimally-invasive video-assisted thoraco-
scopic surgery (VATS) [15]. Data from both retrospective
[16, 17] and prospective phase II studies of SABR suggest
survival outcomes similar to surgery [12, 18]. Shared
decision-making tools may assist operable patients and
their clinicians to arrive at a management plan based on a
patient’s preferences and values [19, 20]. The role of SABR
in surgical patients continues to be examined in 3 studies
(NCT02468024, NCT02629458, NCT01753414), with a
fourth (VALOR study) due to open this year. Both the
SABRTooth and STABLE-MATES trials focus on high-
risk patients.
Further improvements in SABR outcomes may come

from strategies to reduce the rates of local-regional and
distant failure, and from technology improvements that
facilitate SABR in challenging scenarios such as central
tumors (Table 1).

Recurrences
Local failures following SABR include recurrences in the
treated lesion or involved lobe, which are in the order of
9–20 % at 5 years [12, 16]. True rates of local control can
be difficult to ascertain due to post treatment fibrosis, and

radiologic changes can continue to evolve many years
after treatment [21]. So-called ‘high-risk features’ on serial
computed tomography (CT) scans may allow post-SABR
fibrosis to be distinguished from local recurrence [22, 23]
and image texture analysis merits investigation for the
early identification of disease recurrence [24]. Radiological
follow-up in accordance with ESMO guidelines may enable
early identification of salvageable local/regional failures
[25–27].
Regional lymph node failures have been observed in be-

tween 13–15 % of SABR patients at 5 years [12, 16] which
appears comparable to lobectomy [15, 28, 29]. The role of
routine endoscopic mediastinal and hilar nodal staging in
patients without suspicious findings on positron emission
tomography (PET)-CT studies is currently the subject
of prospective studies [NCT01786590; NCT02719847].
When isolated hilar or mediastinal nodal failures occur,
salvage radiotherapy may be possible in more than 50 %
of patients, and appears well tolerated [30].
Approximately 20 % of patients develop distant disease

recurrence following SABR [31, 32], which is once again
similar to that observed after surgery. This suggests that
systemic therapies could be of benefit in selected pa-
tients, although the recruitment of medically inoperable,
elderly patients into studies exploring combined SABR
and cytotoxic chemotherapy has proven to be challen-
ging (NCT01300299).

Central early-stage NSCLC
The Advanced Radiation Technology Committee of the
International Association for the Study of Lung Cancer
(IASLC) has defined ‘central tumors’ as those located within
2 cm in all directions of any mediastinal critical structure,
including the bronchial tree, esophagus, heart, brachial
plexus, major vessels, spinal cord, phrenic nerve, and recur-
rent laryngeal nerve [33]. It is notable that severe toxicity
was reported following delivery of SABR in 3 fractions to
doses of 60–66 Gy to central tumors [34], but not when
‘risk-adapted’ dosing strategies were used [12]. Both a sys-
tematic review [35], and a recent update [36], suggest that
risk-adapted SABR delivered in 8 fractions is an effective
treatment for moderately central tumors. However, tumor
location may help to explain some of the differences
between reports. It is important to distinguish ‘moderately
central’ tumors from lesions immediately adjacent to
central airways, so-called ‘ultracentral lesions’ (Fig. 1). The
latter term has been used to describe a PTV that overlaps
the trachea or main bronchi [37], with increased toxicity
reported for this subgroup after both conventional and
hypo-fractionated radiotherapy schemes [37–39]. A retro-
spective study reported that likely or possibly treatment-
related deaths occurred in 7.5 % of patients with mode-
rately central tumors [36]. The recent Radiation Therapy
Oncology Group (RTOG) 0813 trial aimed to establish the
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safest dose that can be delivered in 5 fractions for central
lesions [40]. Preliminary data reported that patients treated
with the highest dose level (60 Gy in 5 fractions) had a
23 % rate of grade 3–5 toxicity. It should be acknowledged
that the true radiation tolerance for central organs at risk
(OARs) remains unknown, and uncertainty in tumor and
OAR positions during treatment adds to our inability to
determine true cumulative doses.
It has been suggested that proton beam therapy (PBT)

can allow for dose reduction to central structures [41],
although the benefits of PBT may be questionable given
its susceptibility to anatomic and positional variations
[42]. Although on-line matched cone beam CT scans
can be used to image OARs prior to irradiation [43], the
field has been advanced by the recent introduction of
magnetic resonance imaging (MRI) -guided RT delivery
(MRIdian System, Viewray Inc, Cleveland, OH). The
MRIdian platform facilitates online adaptive radiother-
apy, and allows for direct tumor visualization during
treatment delivery at 4 frames per seconds in the sagittal
plane [44]. During gated radiotherapy using breath-hold
mode, the system automatically shuts-off radiation deliv-
ery with a lag-time of 0.4 s (or less) when the target is out-
side pre-specified safety margins (Fig. 2). A number of
other linac-MR delivery platforms are in development
[45–47] and may contribute to advances in the practice of
central SABR.

Multiple primary lung cancers
The incidence of multiple synchronous primary lung can-
cers (MPLCs) can be as high as 4–8 % [48], and second
primary lung cancers occur at a rate of approximately 3 %
per year [27]. Several studies report excellent local control
and modest toxicity following SABR for MPLCs [49–51].
As larger volumes of some OAR’s are irradiated in this
situation, strategies designed to reduce tumor motion and
dose to OARs are warranted.

SABR and stage IV disease
In a randomized trial, surgical resection of a single brain
metastasis combined with whole brain RT, more than dou-
bled median survival from 15 to 40 weeks, and lengthened
functional independence compared to RT alone [52]. More
than three-quarters of patients in the study by Patchell et
al. consisted of patients with NSCLC. In unselected oligo-
metastatic patients, however, rates of progression-free sur-
vival (PFS) are highly variable, suggesting that many have
more widely disseminated occult disease. In retrospective
studies, rates of 5-year survival may approach 50 % in
highly select patients, namely those with metachronous le-
sions, lower number of metastases and a good performance
status [53]. A recent multi-centre phase II trial randomized
NSCLC patients with ≤ 3 metastases who did not progress
after first line systemic treatment to either local consolida-
tive therapy (surgery, RT or chemo-RT to all metastases,

Table 1 Challenges and solutions for difficult SABR scenarios

Clinical scenario Challenges Potential solutions being explored

Pre Treatment Incorporating patient
preferences for treatment

Choice of SABR in operable NSCLC • Shared decision-making [19, 20]
• Comparative effectiveness research (including patient-reported
outcomes, QOL and cost-effectiveness analyses)
with “big data” strategies to facilitate data mining

• RCTs underway (NCT02629458, NCT01753414,
NCT02468024, VALOR study)

Obtaining a diagnosis Risks of treating benign disease
Risks of biopsy in frail patients

•Use validated models for cancer risk determination in a
given population [9]
• Explore blood biomarkers [123]

Treatment Central tumors
Multiple primary
lung cancers

Proximity to OARs
Uncertainty in OAR location
Uncertainly in OAR dose constraints

• “Big data” strategies to establish more reliable OAR dose
constraints

• MRI-guided adaptive RT [44]
• Protons [41]

Oligometastases Higher pneumonitis risk
Identify molecular and clinical
characteristics of patients likely
to benefit from ablative local therapies
Optimize sequencing of RT and
new systemic treatments

• Phase I-II trials, as well as randomized trials

Follow-up Detection of recurrences Distinguishing post-RT fibrosis
vs recurrent disease

• Radiomic approaches [24]

Survivorship issues Loco-regional recurrences and
second lung tumors
Smoking cessation

• Survivorship clinics [124]
• Patient-reported outcomes, including financial impact of
treatments

Abbreviations QOL quality of life, RT radiotherapy, SABR stereotactic ablative radiotherapy, NSCLC non-small cell lung cancer, OAR organ at risk, PTV planning
target volume
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with or without systemic therapy) or to systemic therapy
alone [54]. The study was closed early after only 49 patients
were enrolled when interim analysis found the median PFS
in the consolidative therapy arm to be 14.4 months com-
pared to 3.9 months in standard arm. Although these find-
ings are provocative, the limited patient numbers mean
that additional studies will be required. The interest in ex-
ploring ablative treatments for oligometastatic disease will
increase following the proposed revision in the 8th Edition
of the TNM lung cancer classification system, where the
current M1b category is subdivided into a new M1b,
comprising a single extra-thoracic metastasis in a single
organ, and M1c, encompassing multiple extra-thoracic
metastases [55].
Another area of investigation is the use of SABR in the

setting of oligo-progression, where disease that has initially
responded to systemic treatment, subsequently demon-
strates limited progression [56]. In patients with stage IV
disease who receive molecular targeted therapy for an
activating mutation of the EGFR receptor, or an ALK-

translocation, and who subsequently develop progression
at limited sites, the use of local ablative therapies is now
recommended in the European Society for Medical Oncol-
ogy (ESMO) guidelines [57].

Locally advanced NSCLC
Stage III NSCLC remains a challenging disease to treat. In ran-
domized trials, the addition of surgery has not been shown to
be of benefit to overall survival (OS), compared to definitive
concurrent chemoradiotherapy (CRT) (Table 2). In a phase III
trial of concurrent CRT, radiation dose escalation to 74Gy had
a detrimental effect on survival [58]. Rates of local and distant
failure after CRT have remained constant over time (approxi-
mately 30–40 and 40–50 %, respectively) however median OS
has improved modestly, by approximately 10 months
(Table 3). The reasons for this improvement in OS are
uncertain, but stage migration due to improved imaging
may be one contributory factor [59]. In addition, the inci-
dence of high-grade radiation pneumonitis and esopha-
gitis has decreased significantly in the past decade [60].

Fig. 1 Definitions and examples of central and ultra-central lung tumors. a Diagram of the central airways of the lung. Reprinted with permission.
©2006. American Society of Clinical Oncology. All rights reserved. Timmerman, R et al.: J Clin Oncol 24(30), 2006: 4833–9. The black dashed line
defines the location of tumors that are central relative to the proximal bronchial tree. The term central has been widened to include the region
within 2 cm in all directions of any mediastinal critical structure, including the bronchial tree/trachea, esophagus, heart, brachial plexus, major
vessels, spinal cord, phrenic nerve, and recurrent laryngeal nerve. The region shaded red shows the trachea and main bronchi, and lesions with a
PTV which overlaps \this region are considered as ultracentral. b Example of an ultracentral tumor (planning target volume in red, and main
bronchi/trachea in yellow). c Example of a central tumor
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Survival improvements may also reflect the availability of
effective systemic therapies for the 50 % of patients who
relapse with systemic disease [61], although the use of such
therapies is not routinely captured in trials.
Currently, ESMO recommends conventionally frac-

tionated CRT to 60–66 Gy, with two to four concomi-
tant cycles of chemotherapy to treat locally advanced
NSCLC, with no evidence for induction or consolidation
chemotherapy [2]. In patients unfit for concurrent CRT,
accelerated RT delivery is suggested. In practice, signifi-
cant numbers of patients are not fit to undergo CRT;
20 % or more of patients with stage IIIA receive only
palliative treatment, with another 12 % receiving RT as a
single modality [62]. In patients eligible only for RT,
image-guided hypofractionated RT is a strategy that
merits investigation, although it should be acknowledged
that competing causes of mortality in such patients may
limit major improvements in OS.

Post-operative RT
The role of post-operative RT (PORT) in patients with com-
pletely resected N2 disease remains unclear [63]. An earlier
meta-analysis using older radiotherapy techniques failed to
show a survival benefit for this patient group [64]. More re-
cent population studies have suggested a survival benefit with
PORT for pN2 disease [65, 66]. However, pre-operative me-
diastinal lymph node staging has improved significantly in
the past decade, with the use of FDG-PET scans and endo-
scopic staging, resulting in N2 disease that is discovered only
at the time of surgery being a less common scenario.

Definitive conclusions of the role of PORT in N2 dis-
ease must await the results of an ongoing phase III
trial, in which both surgical procedures and RT techniques
are clearly specified (LungART, NCT00410683).

Have newer RT technologies improved survival in stage III
NSCLC?
A number of innovations in RT have been introduced in
the past two decades [67]. The replacement of conven-
tional treatment simulation with CT simulation has been
associated with a survival advantage in the SEER popula-
tion [6]. Guidelines now recommend 4DCT simulation,
and cone beam CT (CBCT) for image-guidance which
has reduced planning target volume (PTV) margins [68].
More accurate dose calculation algorithms are in clinical
use [4], and more conformal radiation delivery can be
achieved with intensity-modulated RT (IMRT) and PBT
[7, 69]. Improved OAR sparing with more conformal
dose distributions, and on-line image-guidance, may
have contributed to the approximately 10 % reduction in
acute esophagitis rates seen in recent years (Table 2).

Intensity-modulated RT
Planning studies have consistently demonstrated gains with
IMRT compared with 3- dimensional conformal RT
(3DCRT), for metrics including mean lung dose, lung V20,
spinal cord dose, and heart doses [7, 70]. However volumes
of low-dose irradiation may increase with some IMRT
delivery approaches [71] (Fig. 3). IMRT has been rapidly
adopted for lung cancer despite a paucity of evidence [72].

Fig. 2 Comparative treatment plans for MRI-guided radiotherapy using breath-hold versus a standard free-breathing internal target volume (ITV)-based
approach for a central tumor in a patient with interstitial lung disease. Panel a shows the ITV (7.8 cc) for a RapidArc (volumetric modulated arc therapy)
plan, to which a 5 mm margin was added to derive a planning target volume (PTV, 26 cc); panel b the corresponding dose color-wash for an 8 fraction
stereotactic ablative radiotherapy scheme to 60 Gy. Treatment was delivered using on-line MRI guided breath-hold on the MRIdian in which the target
was the gross tumor volume (6.9 cc, Panel c), to which a 3 mm setup PTV margin was added (PTV 13.6 cc). Panel d shows the MRIdian dose color-wash,
and Panel e the dose volume histograms for the adjacent aorta for both plans
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Table 2 Outcomes from randomized trials with a surgical arm in stage III non-small cell lung cancer

Trial Inclusion Staging PET
or PET/CT

Study question RTa Chemotherapy N (randomized) Answer Treatment related mortality 5-year
OS

EORTC 08941
[125]

Unresectable
IIIA (N2)

Not
mandatory

CT-S vs CT-RT 60–62.5 Gy to primary
and involved mediastinum;
40–46 Gy to uninvolved
mediastinum

Platinum-based
with at least one
other agent

332 No significant
difference

4 % within 30 days of surgery
1 patient died of RP, timing NR

16 %
14 %

INT 0139b

[126]
Potentially
resectable
IIIA (N2)

Not
mandatory

CRT-S vs CRT 45 Gy in CRT-S arm
61 Gy in CRT arm

Cisplatin-etoposide 429 (396
eligible)

No significant
difference

8 %
2 %
(No deaths during induction)

27 %
20 %

ESPATUEc

[127]
Resectable
IIIA (N2) and
selected IIIB

97 % CT-CRT-S vs
CT-CRT-CRTboost

Both arms:
induction 45 Gy delivered
as 1.5 Gy BID
In definitive CRT arm:
risk-adapted CRTboost to
65–71 Gy

Induction:
cisplatin-paclitaxel
Concurrent:
cisplatin-vinorelbine

161 No significant
difference, but
closed early and
was under- powered
with respect to the
primary end-point
of OS

6 % in surgical arm
3 % in definitive CRT arm
(2 additional patients died during
induction)

44 %
40 %

SAKK 16/00
[128]

Resectable
IIIA (N2)

Required
(rate NR)

CT-RT-S vs CT-S 44 Gy (in 22 fractions
over 3 weeks)

Cisplatin-docetaxel 232 No difference 0 % within 30 days of surgery
3 % within 30 days of surgery

40 %
34 %

Courtesy of Prof. Rafal Dziadziuszko. Discussant ESMO 2014 Madrid. Modified to update subsequent publication
CT induction chemotherapy, CRT concurrent chemoradiotherapy, RT radiotherapy; S surgery, CRTboost concurrent chemoradiotherapy boost, RP radiation pneumonitis, NR not reported, BID twice daily, OS
overall survival
aRT doses in standard fractionation unless otherwise indicated
bIncreased disease-free survival in surgery arm (12.8 vs 10.5 months; p = 0.017); unplanned analysis showed longer median OS in lobectomy subgroup vs matched CRT subgroup (33.6 vs 21.7 months; p = 0.002)
c246 enrolled (out of 500 planned). After induction treatment, patients with resectable tumors (n = 161, 65 %) randomized. In all 246 patients, 5 year OS 34 %
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Table 3 Outcomes with definitive chemoradiotherapy for stage III non-small cell lung cancer

Trial Inclusion Staging
PET-CT

Histology Treatment regimen in
standard CRT arma

RT technique N PTV (mean) Toxicity in standard
CRT arm

Outcomes

RTOG 0617
[58]

Unresectable III 91 % 42/47 %
squamous
in 60/74 Gy
arms

60 Gy
Concurrent
carboplatin-paclitaxel,
followed by 2 cycles
consolidation

46/47 % IMRT
in 60/74 Gy arms
(Remainder 3DCRT)

424 analyzable
for radiation
end-point

495/510 mL
in the 60/
74
Gy arm

In 60 Gy arm:
Grade ≥ 3 RP 7 %
Grade ≥ 3
esophagitis 7 %
Grade 5 toxicity 3 %

In 60 Gy arm:
Median OS
29 months
2-year OS 58 %
2-year LF 31 %
2-year DF 47 %

PROCLAIM
[78]

Nonsquamous III 82 % Non-squamous
only

60–66 Gy
Arm A:
pemetrexed-cisplatin,
pemetrexed consolidation
Arm B: etoposide-cisplatin,
non-pemetrexed
consolidation

25 % IMRT
(Remainder 3DCRT)

598 607/585 mL Grade ≥ 3 RP
1.8/2.6 %
Grade ≥ 3 esophagitis
15.5/20.6 %
Grade 5 toxicity
1.7/1 %

Median OS 27/25
months
Median PFS
11.4/9.8 months
IFF (site of 1st failure)
42 %
DF (site of 1st

failure) 48 %

KCSG-LU05-04
[79]

Unresectable III 92 % 32 %
squamous

66 Gy
Concurrent
docetaxel-cisplatin
Arm A: CRT-observation
Arm B: CRT-docetaxel-
cisplatin consolidation

NR 437 eligible NR Grade ≥ 3 RP 1.2 %
Grade ≥ 3
esophagitis
9.5 %
Grade 5 toxicity 3.6 %
during CRT, 2.9 %
during consolidation

Median OS 20.6/
21.8
months
Median PFS 8.1/9.1
months
After median
follow-up time of
51
months:
DF 25 %
LRR 25 %
DF and LF 3 %

RTOG 9410
[129]

Inoperable
stage II-III

0 % 38 %
squamous

63 Gy
Cisplatin-Vinblastine

2DRT 610 N/A For CRT with early
RT arm:
Grade ≥ 3 esophagitis
22 %
Grade ≥ 3 acute RP 4 %
Grade 5 toxicity 2 %
(as worst overall toxicity)

For CRT with early
RT arm:
5-year OS 16 %
Median OS 17
months
IFF only 25 %
Out of field only
37 %
Both IFF and out
of field 10 %

Meta-analysis of 6
trials comparing
CRT vs sequential
CT/RT [130]

Unresected
stage III

0 % 46 % 60 Gy (2 trials), 66 Gy,
(1 trial), 66 Gy in 24 fractions
(1 trial), 56 Gy split course
(1 trial), 48.5 Gy (split course
of 36 Gy in 12 fractions, 7
days rest, 12.5 Gy in 5 fractions)
Single agent low-dose cisplatin
(2 trials), cisplatin-based doublet
(3 trials), carboplatin (1 trials)

3DCRT in 1 trial
Remainder 2DRT

603/602 in
concurrent/
sequential
groups

N/A Grade ≥ 3 esophagitis
18 % (concurrent CRT)
Rates of acute RP and
Grade 5 toxicity NR

For concurrent
CRT patients:
3-year OS 24 %
5-year OS 15 %
3-year LRF 28 %
5-year LRF 29 %
3-year DF 40 %
5-year DF 41 %

Abbreviations CRT chemoradiotherapy, CT chemotherapy, RT radiotherapy, IMRT intensity modulated radiotherapy, PTV planning target volume, mL milliliters, N/A not applicable, RP radiation pneumonitis, OS overall survival,
DFS disease free survival, IFF in-field failure, LF local failure, DF distant failure, LRR locoregional recurrence, NR not reported, 3DCRT three- dimensional conformal radiotherapy, 2DRT two-dimensional radiotherapy
aAll RT standard fractionation
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A SEER analysis suggested that the main predictors of IMRT
utilization were geographical location, and freestanding ver-
sus hospital-based center, rather than disease factors such as
tumor size or stage [73]. Most comparisons of IMRT and
3DCRT for locally advanced NSCLC come from retrospect-
ive single-institution and registry-based analyses, all with
well-recognized limitations. A National Cancer Data Base
(NCDB) analysis found that the use of 3DCRT or IMRT im-
proved survival in stage III patients, versus those treated with
CRT using 2-dimensional RT(2DRT) [74]. However, when
3DCRT and IMRT were evaluated separately, there was no
added survival with IMRT. Other analyses have also reported
no survival or toxicity improvement with IMRT [73, 75, 76],
although these studies were conducted across heteroge-
neous patient groups. It is possible that the gains from
IMRT are limited to specific patient groups, and another
NCDB analysis suggested improved median and 5-year sur-
vival with IMRT for T3 and T4 tumors [77]. Unfortunately,
many databases lack the comprehensive clinical and dosi-
metric data necessary to study the nature of the relationship
between technology and outcomes.
It is notable that in recent trials in which half or more of

patients were treated with 3DCRT, the rates of grade ≥ 3

pneumonitis following doses of up to 66 Gy, were only in
the range of 1.2–7 % [58, 78, 79]. Data from the recent
RTOG 0617 dose escalation study merit closer inspection
[58]. Approximately equal numbers of patients were treated
with 3DCRT or IMRT contemporaneously, avoiding the
confounding time factor present in retrospective analyses.
Despite the IMRT group having a mean PTV about 15 %
larger and more stage IIIB tumors, rates of grade ≥ 3 pneu-
monitis were reduced from 7.9 to 3.5 %. Furthermore, the
IMRTcohort was more likely to receive full-dose consolida-
tive chemotherapy [7], and reported less decline in quality
of life at 12 months [80]. However, patients treated at
higher accruing centers experienced a striking 10 % survival
advantage at 2 years [81]. These centers had higher rates of
IMRT utilization, which was not independently predictive
of survival, raising the question of whether the benefits
attributed to IMRT in earlier analyses were in fact due to
other, unrecognized factors associated with treatment at
high accruing centers. Although the heart V5 and V30 were
reported as predictive of survival in RTOG 0617, the lung
dose, a well-recognized predictor of severe toxicity, was not
included in the multivariate analysis. A subsequent analysis
in an independent cohort found mean lung dose, but not

Fig. 3 A comparison of two radiotherapy techniques delivering 66 Gy in 33 fractions to a locally-advanced lung tumor. Panels a-c show axial, coronal,
and sagittal views of a hybrid-intensity-modulated radiotherapy (IMRT) plan; panels d-f show the corresponding views of a volumetric modulated arc
therapy (VMAT) plan for the same tumor. Panel g shows the dose-volume histogram of the hybrid IMRT plan (triangles) and VMAT plan (squares); the red
and blue lines to the right represent the planning target volume (PTV) and internal target volume (ITV) respectively; the remaining pair of blue lines
represent the lung volume (lung tissue outside the PTV). PTV and ITV coverage is comparable for both techniques (g). The VMAT plan has a more
conformal 95 % isodose (green line) around the PTV (d-f compared with a-c), however the maximum dose in the PTV is higher (g). The amount of lung
receiving ≤20 Gy is very similar with both techniques (g), but the VMAT plan has a lower mean lung dose (19.5 Gy vs 22 Gy with hybrid-IMRT) and the
hybrid-IMRT plan has more contralateral lung sparing, as seen by the position of low-dose isodose lines (orange [1320 cGy] and light blue [660 cGy])
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heart doses, to be predictive of survival; there was a strong
correlation between mean heart dose and heart V5 with the
mean lung dose [82].
A number of groups are investigating if the IMRT deli-

very of higher doses to tumor regions that show high or
persistent 18F-flurodeoxyglucose (FDG)-PET uptake, will
lead to improved survival [NCT01024829; NCT02788461;
NCT01507428; NCT02790190]. A common underlying
hypothesis for these trials is that local relapses may be
more frequent in the high FDG uptake regions of primary
tumors. Outcomes of the ongoing trials are awaited.

Proton beam therapy
Facilities for PBT have grown rapidly in recent years, even
though limited data exists for its cost-effectiveness in
NSCLC [83, 84]. Highly conformal high dose distributions
can theoretically be achieved, allowing for further reduc-
tion in doses to normal structures compared to IMRT
[69, 85]. PBT is currently delivered either in passively scat-
tered proton therapy (PSPT) mode, or pencil-beam scan-
ning (PBS), which can deliver intensity-modulated proton
therapy (IMPT). Planning studies have suggested that PBS
can allow greater sparing of critical structures than PSPT
[86, 87], but it may be more sensitive to changes in pos-
ition or anatomy [41, 88].
A single-institution retrospective comparison of three

treatment techniques (3DCRT, IMRT and PSPT) in locally
advanced NSCLC, reported that proton delivery resulted in
lower rates of grade 3 or higher pneumonitis and

esophagitis (2 and 5 %, respectively; 3DCRT, 30 and 18 %;
IMRT, 9 and 44 %; p < 0.01 for all) [89]. However, the rates
of esophagitis are inconsistent with findings observed in re-
cent phase III studies. A prospective randomized trial led
by the MD Anderson Cancer Center compared photon
IMRT versus PSPT, and reported no differences in treat-
ment failures, which were defined as either grade ≥3 pneu-
monitis or local failure at 1 year [90, 91]. A second phase
III trial with a target accrual of 560 stage II-IIIB NSCLC
patients is now underway (RTOG 1308). Both PSPT and
PBS are still permitted in this study. While the improved
OAR sparing with PBT makes it a seemingly attractive
option for treating large tumors, a large volume has con-
sistently been associated with poorer survival [92–94],
which suggests that survival gains may be modest, at best.
There is, therefore, currently no high-level evidence to
support the routine use of proton therapy in locally ad-
vanced NSCLC, and evidence supporting IMRT is based
on population-based analysis of patient sub-groups. 3DCRT
therefore remains an important treatment option, especially
as access to radiotherapy is limited in many countries,
and escalating costs are of concern [95, 96].

Radiation and immunity
RT can have an immune stimulatory effect by generating
tumor antigens, promoting a T-cell mediated anti-tumor
response, and potentially causing immune-mediated absco-
pal effects where distant non-target lesions can regress [97]
(Fig. 4). However, abscopal effects are very uncommon [98].

Fig. 4 Reprinted with permission. Theresa L. Whiteside et al. Clin Cancer Res 2016;22:1845–1855. Schematic representation of immune-mediated
abscopal effects. The systemic proinflamatory effects of irradiating a tumor mass results in it being ‘hot’, and acting as an ‘in situ tumor vaccine’
against distant non-irradiated tumors. Such a local response could be enhanced by administering immunostimulatory antibodies in order to attain
an enhanced systemic effect, thereby exploiting the immune effects of radiotherapy. CTL, cytotoxic T cell; RT, radiotherapy
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Radio-immunotherapy is a field of active research, and
much remains unknown regarding the optimal sequencing
of treatments, as well as optimal RT dose/fractionation
schedules [99, 100]. Some data suggests that large doses per
fraction used in SABR may be more effective, but the
potential for unexpected toxicity exists, suggesting a need
for careful treatment planning and delivery. More safety
data will be forthcoming from ongoing clinical trials in
this field [101].

Challenges in evaluating new RT technologies
While classic RCTs remain the gold standard for genera-
ting evidence, their applicability for evaluating RT tech-
nology has been challenged [102, 103]. The high costs
involved, the potential for a learning curve with new tech-
nology [104], and ethical concerns with a perceived lack of
equipoise between older and new technologies, are all
potential impediments. The extended duration of follow-
up required to assess long-term toxicities precludes study
completion in a timely manner, and by the time trial
results are published, they may be considered invalid due
to the interval evolution of technology.
In certain situations, comparative effectiveness research

may be a more practical and financially feasible approach
for evaluating treatments [105, 106]. Prospective multi-
center registries provide access to large patient numbers
and extensive data, which may be integrated and analyzed
using a ‘big data’ approach [107]. Some authors have sug-
gested that dosimetric/complication probability models
may help identify patients most likely to benefit from
advanced technologies [108], but there remains much uncer-
tainty associated with such models [109]. Similarly, patient-
reported outcomes (PROs) are being increasingly considered
as important clinical endpoints, but PROs can be difficult to
select and interpret as they may be influenced by diverse
patient factors [110, 111]. The potential of PROs for evalua-
ting radiotherapy research may be significant, as suggested
by a mobile app interface for reporting patient-reported
clinical symptoms in advanced NSCLC, that was shown to
improve quality of life and survival [112].
By focusing on incremental improvements in technol-

ogy, radiation oncologists may risk ignoring the fact that
clinicians’ overall knowledge base and the patient’s health
are often a more important determinant of patient outcome
[113]. For example, a poor forced expiratory volume in one
second (FEV1), and large gross tumor volumes, have been
associated with a 3-fold increase in early mortality following
CRT [114]. Interstitial lung abnormalities, as well as severe
chronic obstructive pulmonary disease (COPD), are asso-
ciated with high all-cause mortality [115, 116], and a higher
risk of toxicity after CRT [117, 118]. Other patient factors,
including weight loss during the first three weeks of CRT
may also profoundly affect survival [119]. An improved un-
derstanding of what drives poor outcomes in patients with

factors like large tumors and co-morbid illness is needed. If
RT delivery is considered in isolation, measures such as the
optimization of fractionation schedules for a given patient,
or spatiotemporal optimization of radiation dose, are un-
likely to result in large improvements in outcomes [120].
Furthermore, more accurate distinction between toxicity

related to treatment versus symptoms related to comorbi-
dities is needed. Common COPD symptoms which may be
present in patients at baseline can easily be mislabeled as a
grade 3 pulmonary toxicity. Simply correlating observed
toxicities with OAR dose-volume parameters is insufficient,
due to uncertainty in delivered dose [121, 122], and lack of
anatomical and functional information. This means that
more robust and comprehensive dosimetry reporting is
needed in the future.

Conclusion
Although innovations in treatment planning and delivery
have led to more precise and accurate RT delivery, for the
majority of NSCLC patients, further improvements in treat-
ment outcomes are likely to come about from an integra-
tion of novel biological treatment strategies based on an
understanding of cancer and radiotherapy at the molecular
level. Understanding which patients may benefit most from
a given RT technology, as well as identifying those who are
at high risk of treatment toxicity, may help tailor the appli-
cation of advanced technologies to those most likely to
benefit and promote a personalized approach to lung can-
cer radiotherapy.
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