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Abstract

Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to
explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares
images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic
Tmax Was proposed that summarizes the differences between the images into a single value and a permutation
procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective
studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface
dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions
that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows
direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

Introduction

When planning a radiotherapy treatment, a compromise
is made between coverage of the target and exposure of
Organs At Risk (OAR). While the dose to the designated
target is generally uniform and homogeneous between
patients, the dose to surrounding structures can be highly
variable, depending on patient geometries, tumor loca-
tions, and treatment techniques. Such heterogeneous inci-
dental dose distributions in patients might “accidentally”
lead to different treatment outcomes regarding tumor
control (e.g. if subclinical disease is important) or nor-
mal tissue toxicity. Therefore, applying data mining tech-
niques to incidental dose distributions gives the possibility
to explore dose patterns that are associated with clinical
outcomes.

The purpose of introducing data mining in radiotherapy
is to explore hypotheses for dose-response relationships.
In cancer radiotherapy treatment, variations in stem cells,
tumor microscopic disease and radiosensitivity distribu-
tions can be expected to affect dose-response relation-
ships. Unfortunately, many of them are unknown. Data
mining on incidental dose may yield suspicious anatom-
ical features from which —based on biological or clinical
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considerations— hypotheses for dose-response relation-
ships can be formulated. If validated, such dose-response
relationships would eventually provide evidence for better
treatment planning, such as refined knowledge of the clin-
ical target volume (CTV), optimal dose painting inside the
GTYV and more effective sparing of OARs.

Several studies have focused on exploring dose-
response relationships from a different perspective than
the conventional dose volume histogram (DVH) based
method [1-3]. These methods include either exploring
the characteristics of dose distributions (e.g. eccentric-
ity, homogeneity), or applying an advanced classifier (e.g.
neural network). However, these methods are not easily
applicable in the situation where the hypothesized region
is a priori not known. Directly comparing dose distribu-
tions is then a straightforward method of exploring dose-
response relationships. Since the dose at each voxel is
compared without prior anatomical or geometrical based
hypothesis, a voxel-by-voxel based testing is suitable for
hypothesis generation, i.e., to localize suspicious regions.
In a prostate study [4], the 3D dose prescribed to prostate
patients were registered to an anatomy grid and tested
voxel-by-voxel (t-test) for relations with failure. Results
indicate that a cluster of voxels outside the prostate yield
a p-value of less than 0.05. However, obtaining a p-value
at every voxel is not yet the complete result. Since a large
number of voxels were tested simultaneously, it is likely
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that the null hypothesis was incorrectly rejected at some
voxels (type I errors), and this is the so called multiple
comparisons problem.

The aim of this paper is to introduce a multiple com-
parisons permutation test to compare images between
patients in radiotherapy studies. We begin with describing
the methodology. Afterwards, we demonstrate the valid-
ity of this method with simulations. Finally, we give two
examples of applying permutation test in radiotherapy:
one study that relates dose to failure for prostate can-
cer patients [4] and another study that relates dose to
acute esophagus toxicity for non-small cell lung cancer
(NSCLC) patients.

Materials and methods

A permutation test involves five steps: 1) register images
from different patients, 2) form a null hypothesis, 3) define
a scalar test statistic, 4) generate random samples by per-
muting the true labels of the patients and extract the
test statistic from each random sample, 5) calculate the
adjusted p-value from the distribution of the test statistic.
Thus, instead of a p-value for every voxel, this test gives
a single p-value to describe the difference between two
imaging datasets.

Suppose we observe a sample of patients with two out-
comes: non-event (N) and event (E). These patients are
considered to be representative for the entire popula-
tion. To compare the dose distributions between the two
groups, the first step is to register the dose distributions
of all patients into the same grid, through an image regis-
tration method [5,6]. The null hypothesis then states that
there be no difference in dose distributions between the
N and E labeled groups. In the following part, we intro-
duce a test statistic Tiax, and describe the permutation
procedure to compute the adjusted p-value.

Test statistic

In order to compare the dose distribution for a sample i
(randomly drawn from the study population) that includes
two outcome groups N and E, the most straightforward
way is to compute their average dose difference at each
voxel, resulting in a dose difference map. To account for
multiple comparisons, we can choose the maximum value
of such a dose difference map as a single number test
statistic. However, the maximum will not be consistent
over all random samples (e.g. i = 1,...,1000), because
it is highly sensitive to the variation or standard devi-
ation (SD) of the dose difference at each voxel over all
random samples. For instance, if voxel 1 has an average
dose difference of 10 Gy in sample i but the SD of the
dose difference is 10 Gy over all samples, while voxel 2
has an average dose difference of 8 Gy in sample i and
the SD of the dose difference is 1 Gy over all samples, the
maximum dose difference for sample i would be 10 Gy as
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derived from voxel 1. In fact, it is more likely that in sam-
ple i, the large 10 Gy dose difference for voxel 1 is due to
chance, because it has a large variation over all samples.
To account for this effect, the average dose difference dj; x
for sample i, (i = 1,...,N}) between the E and N groups
at voxel k, (k = 1,...,Ny) should be normalized into T«
according to an estimate of its SD:

dik = IEik — KN,k (1)
dik

Tij = — (2)
Ok

where pug; and un;x are the average dose at voxel k for
group E and N in sample i, and oy is the standard devi-
ation of d;; over N}, samples. oy is computed over the
random samples generated from the permutation proce-
dure, as described in the following part. As a result, we
obtain a normalized dose difference map (or T;; map) for
sample i. The test statistic Thax,; is then selected as the
maximum value of the T;; map. Unlike a voxel-by-voxel
based test, Tax,; gives a single number that summarizes
the discrepancy of the dose distributions between the two
label groups, rather than the discrepancy of a particular
voxel. Therefore, Tihax accounts for multiple comparisons.
Clearly, Trmax is not the only option for extracting a single
value test statistic from the Tj map. Other test statis-
tics like the x percentile, are also eligible [7]. However,
Tmax is often chosen for its strong control over Type 1
errors [8].

Permutation test

We then introduce a permutation procedure that gen-
erates random samples under the null hypothesis, such
that the distribution of Ty, is determined. A permu-
tation test relies on the rearrangement of the outcome
labels. Under the null hypothesis that there is no signif-
icant dose difference between group E and N, labels E
and N are exchangeable. Thus randomly permuting the
labels of the observed sample gives a new randomized
sample. For example, in a sample of 5 patients with 3 N
and 2 E labels, there are 10 possible label sets, as shown
in Table 1. If the first case is the true labelling that we
observed, the other 9 labellings are assigned by permu-
tation. In practice, the numbers of both E and N labels
are large in the sample, leading to an extremely large and
unfeasible number of possible permutations. However, it
has been shown in [9] that when the number of patients in
the observed sample is large, 1000 permutations can effec-
tively approximate the distribution for the null hypothesis.
The permutation test contains the following steps: For
every permuted sample i, a d; i is computed for every voxel
k. After 1000 permutations, the standard deviation oy of
{dix,i =1,...,1000} at voxel k is computed and the nor-
malized dose difference maps 7} and Ty are generated
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Table 1 The 10 possible label combinations of 3 Ns and 2 Es

T.NNNEE 6.NEENN
2.NNENE 7Z.ENNNE
3.NNEEN 8.ENNEN
4 NENNE 9.ENENN
5.NENEN 10.EENNN

If the first case is the true labels that we observed, the other 9 labels are assigned
by permutation.

for every permuted sample i and the observed sample,
respectively. Subsequently, the maximum Tmay,; of Tj is
extracted for every permuted sample i and the maximum
Tmax of Tk is extracted from the observed sample. Thus,
after 1000 permutations, we obtain a distribution of T,y i
under the null hypothesis. Finally, the adjusted p-value
is computed as the proportion of the permutation sam-
ples that yield a higher Tyax value than the Tmax observed
with the true labels. If the adjusted p-value is smaller than
significance level « (e.g. 0.05), we reject the null hypoth-
esis. Furthermore, the (1 — «) percentile of the T
distribution gives a threshold value 7*. In the observed
normalized dose difference map T, voxels higher than T*
show significant dose difference between E and N groups.
The mathematical formulation of the permutation test is
presented in more detail in Appendix A.

Simulation

To demonstrate the permutation test, we conducted simu-
lations on two groups of artificially generated dose images
(with 128 x 128 pixels). Each group had 50 images. As seen
in Figure 1(a) and 1(b), group E had a homogeneous aver-
age dose of 60 Gy, while for group N, a block (50 x 50) of
average 58 Gy was located inside the dose image. At each
pixel, we simulated the additive dose variation as a normal
distribution N ~ (0, o). Figure 1(c) illustrates the simu-
lated values for o. Large variations were simulated in the
upper part (0max = 10 Gy), while small variations were
in the lower part (omin = 1 Gy). After adding noise to
the average dose, a smooth Gaussian filter was applied to
each patient’s dose image. The purpose of generating spa-
tially correlated variation and applying Gaussian filter is to
mimic actual spatially correlated incidental dose in plan-
ning. We first illustrate how the the multiple comparison
permutation test works step-by-step. Afterwards, we con-
duct a sensitivity analysis to show how the result changes
according to the average dose difference and the sample
size, compared to the voxel-by-voxel based t-test.

First, a voxel-by-voxel based t-test was applied to these
two groups. Pixels obtaining a p < 0.05 are illustrated in
Figure 2(a), showing a big central region as well as many
isolated spots. These isolated spots obtained a low p-value
by chance. For the permutation test, Figures 2(b)-2(d)
show the average dose difference map for the observed
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sample, the SD of the average dose difference from 1000
permutation random samples, and the consequent nor-
malized average dose difference map for the observed
sample, respectively. The distribution of T,y ; from 1000
random samples is illustrated in Figure 2(e). The Tnax
from the observed sample is much larger than any of the
Tmax,i» thus the adjusted p-value is zero, i.e. there is a
highly significant dose difference between the two groups.
The 95% of the Tpax,; distribution gives a threshold T*, by
applying it to the Ty map, we obtained the second region
illustrated in Figure 2(a). This region is smaller than that
from a voxel-by-voxel based test. Additionally, the iso-
lated spots, which would probably falsely reject the null
hypothesis by the voxel-by-voxel based test, are excluded.
Therefore, compared to the voxel-by-voxel based test, per-
mutation test provides a statistically stronger result, in
terms of an adjusted p-value and a more accurate region
with dose differences.

Furthermore, Figure 3 shows the simulation results by
increasing the average dose difference, from 0.5 Gy, 2
Gy (example above) to 10 Gy, given the other parame-
ters fixed as the above example. The larger the average
dose difference is, the more regions were detected for
both multiple comparisons test and t-test, especially at
the top of the square region, where the dose variance is
higher (Figure 2(c)). Multiple comparison test becomes
more conservative than the t-test, when the average dose
difference is small. However, t-test always ends up with
more isolated false positive spots (type-I error).

Similarly, Figure 4 shows the simulation results by
increasing the number of patients, from n = 5, n =
50 to n = 100. Results show that multiple comparison
test becomes more conservative than the t-test, especially
when the sample size is small. However, in any cases, t-
test ends up with more isolated false positive spots (type-I
error).

Applications

Study I: prostate

We applied the permutation test on data used by [4]. The
aim of this study was to relate dose distributions with fail-
ure in prostate cancer patients. We selected a group of 67
patients with a relatively higher risk for extraprostatic dis-
ease, estimated according to T-stage, iPSA and Gleason
score or differentiation grade [10]. These patients were
treated in Erasmus Medical Center, The Netherlands, and
they were included in the Dutch Phase III trial (CKVO
96-10) with dose randomized between 68 Gy and 78 Gy
[11]. The Ethical Committee of each institution approved
the protocol. Patients mainly had tumors of stage T3b and
were treated to the delineated prostate and the seminal
vesicles. The extra boost of 10 Gy had a 5 mm margin to
the CTV (except towards the rectum, where a 0 mm mar-
gin was applied). For the 68 Gy PTV, a 10 mm margin
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Figure 1 Simulated dose images (128 x 128 pixels) in two groups (E and N). (a) and (b) are the average dose map for E and N groups.
(c) is the simulated SD of variations. Each group was simulated with 50 images. (d-e) and (f-g) are two examples of the dose map for group E and N,

was applied. In this study, the failure was biochemical
(PSA nadir plus 2) [12] or clinical (locoregional or distant
progression or start of salvage hormone therapy), deter-
mined at a fixed 4 year endpoint. As a result, 37 failure
patients and 30 non-failure patients were eligible for anal-
ysis. Delineations from the planning CT and the planned
dose distributions were collected for each patient. Firstly,
dose distributions of all patients were registered into
a dose grid as described in [4]. In short, voxels correspond
if their direction with respect to the center of mass (CM) is
the same, and their distance to the surface in this direction
is the same. For voxels inside the prostate, corresponding

voxels have the same fractional distance between the
CM and the surface. The registration identifies anatomi-
cal points at locations relative to the delineated prostate
surface. The choice for this registration procedure is an
important part of the dose-effect hypothesis, and was
based on the suspicion that extracapsular extension might
have affected outcome. The resulting grid has a dimension
of 31 x 35 x 34, resulting in N, = 36890 dose voxels. The
null hypothesis is that there is no dose distribution differ-
ence between the failure and the non-failure patients. The
multiple comparison permutation test was applied to the
registered dose maps.
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Figure 2 Permutation test procedure with simulations. (a) The identified region with p < 0.05, through a voxel-by-voxel based t-test (gray
contour) and the permutation test (black contour). (b) The average dose difference map di (k = 1,...,128 x 128) for the o~bserved sample. (c) The
SD oy of the dose difference, computed from 1000 permutated random samples. (d) The normalized dose difference map Ty for the observed

,,,,, 1000 permutation samples, where Tmax is the maximum value in

Study II: esophagus

We applied the permutation test on a esophagus toxicity
study. The aim of this study is to relate dose distributions
on the esophagus surface with acute esophagus toxic-
ity (AET) in NSCLC patients. We selected 185 NSCLC
patients treated in Netherlands Cancer Institute (NKI)
from 2008 to 2010 with concurrent chemotherapy com-
bined with IMRT. The RT dose was 66 Gy in 24 fractions.
The concurrent chemotherapy included a daily low dose
cisplatin [13]. AET was scored according to the Common

Toxicity Criteria 3.0. Toxicity was scored weekly from
baseline until 3 weeks after RT. Afterwards, patients were
checked every 2 months or more frequently if necessary.
Of the 185 patients, 76 had no or grade 1 AET; 67 patients
developed grade 2 and 42 patients had grade 3; Grade 4
or 5 AET did not occur. The delineated esophagus from
the planning CT and the planned dose distributions were
retrospectively collected for each patient, allowing a 2D
esophagus surface dose map (ESDM) to be computed. For
each patient, dose was sampled on every slice of the CT

]

(a) (b)

(©)

Figure 3 The identified region with p < 0.05, through a voxel-by-voxel based t-test (gray contour) and the permutation test (black
contour), given the average dose difference of (a) 0.5 Gy, (b) 2 Gy and (c) 10 Gy.
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(a) (b)
Figure 4 The identified region with p < 0.05, through a voxel-by-voxel based t-test (gray contour) and the permutation test (black
contour), given the number of patients of (a) n =5, (b) n =50 and (c) n = 100.
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scan (3 mm thickness) at 36 fixed orientations along the
delineated esophagus contour to the center, from 0 to 360
degrees with 10 degrees increment. The 0 degree angle
was always chosen in the Right-Left direction. (In our
experience the esophagus is always star shaped, i.e. the full
contour can always be seen from a single centreline.) The
same sampling procedure was then done through all the m
slices where the esophagus was delineated. As a result, the
ESDM contains m x 36 pixels for every patient (m varies
from patient to patient). ESDMs of all patients were reg-
istered such that the pixel with the highest dose is in the
center of the 2D dose map, alowing translations along and
rotations around the length of the esophagus. The choice
for this mapping was based on the assumption that the
length and the circumference of the high dose region on
the esophagus surface is associated with AET, irrespective
of its anatomical location. Permutation tests were applied
to find differences between grade 0—1 and grade 2-3, and
between grade 0—2 and grade 3 AET.

Results

Results of study |

The distribution of Tpax; (i = 1,...,1000) from the
1000 random permutations under the null hypothesis is
shown in Figure 5. The proportion of Tmax,; that are
larger than the observed value (Tmax = 3.81) gives
an adjusted p-value of 0.02, i.e., there is a significant
dose difference between the non-failure and the fail-
ure patients for this patient group at « = 0.05 sig-
nificance level. Furthermore, the 95 percentile of the
Tmax,i distribution gives the threshold T* = 3.56. In
Figure 6, voxels above this threshold in the observed Ty
map are marked, overlaid on the CT scan of the stan-
dard anatomy grid. This region is situated in the obtu-
rator region and suggests nodal involvement, but does
not correspond to the presumed extracapsular exten-
sion. The significant region is much smaller than that
obtained through a voxel-by-voxel based t test [4]. The
adjusted value p = 0.02 was significant for the test

statistic Tmax. Compared to the previous voxel-by-voxel
based testing method, the permutation test gives a statisti-
cally stronger conclusion that there is indeed a difference
in the dose distribution outside the prostate between
failure and non-failure patients.

Results of study Il

An example of generating an ESDM is illustrated in
Figure 7. The average dose maps of the registered ESDMs
for all 185 patients as well as each toxicity grade subgroup
are illustrated in Figure 8. The differences in the isodose
lines for patients with grade 0—1 until grade 3 AET imply
that for patients of increasing AET grade, their average
esophagus surface that received high dose increases: All
isodose lines expand along the length of the esophagus for
patients with more complications. Specifically, the 50 Gy
and 60 Gy isodose lines are expanding through both the
length and the circumference.

0.28 ,
— I
0.25} o -
T : Tl'l'lit\'
- I
0.2} |
I
I
I
0.15} |
I
I
0.1} I
I
I
I
0.05} I
I
|
— i J
1 15 2 25 3 35 4 4547

Figure 5 The histogram of T'max,; obtained from the 1000
random permutations. The adjusted p-value (P = 0.02) is computed
as the black area larger than the observed Trmax (solid line). The 95
percentile T* (dashed line) determines the region with significant
dose difference as shown in Figure 6.
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(c) sagittal view.

(b)
Figure 6 The region (marked in red) with significant dose difference (adjusted p-value < 0.05) from the permutation test in the prostate
study, together with the region (marked in yellow) with p-value < 0.05 in a voxel-by-voxel based t test. (a) coronal view; (b) axial view;

(©)

The Tmax distribution, adjusted p-value and T thresh-
old were computed in the same way as in study 1.
The adjusted p-value for the dose distribution between
patients with AET grade 0—1 and grade 2-3 is p < 0.001,
showing a significant dose difference at « = 0.05 signif-
icance level. The region with significant dose difference
is illustrated in Figure 9(a). Note that the region refers to
a certain shape of dose distribution (as the highest doses
were mapped to the same point), rather than a specific
anatomical area on the esophagus. Considering the esoph-
agus as a tube, this region includes a full band covering the
high dose area (35 to 65 Gy) and a sub-band covering the
moderate dose region (10 to 30 Gy). Similarly, the adjusted
p-value for the dose distribution of patients between AET
grade 0-2 and grade 3 is p = 0.002. The region with
significant dose difference is illustrated in Figure 9(b), it
appears to be part of the significant region in Figure 9(a),

showing a high dose (50 to 60 Gy) area with extra length
and circumference coverage.

Discussion

In this paper, we introduced multiple comparison per-
mutation testing for voxel based data mining in radio-
therapy and we demonstrated the test in two studies.
For both studies we were able to locate regions where
dose significantly associates with the outcome. In the
prostate study, we were able to provide strong sta-
tistical evidence for a dose difference between non-
failure and failure patients, confirming a difference
located in the obturator region that could be suspi-
cious for subclinical disease. In the esophagus study,
both regions to predict grade > 2 and grade 3
are consistent with the V50 dose volume histogram
(DVH) parameter as derived in study [13]. Grade 2

Dose

Planning CT

S
36 orientations _
L

=

I ‘

R PL AR

original
ESDM

registered
ESDM

Figure 7 An example of generating an esophagus surface dose map (ESDM). The pixel with the highest dose (in white) is registered to the
center location in the registered ESDM through translation and rotation of the original ESDM.
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Figure 8 The average dose map of the locally registered ESDMs. (a) all patients; (b) patients with AET Grade 0-1; (c) patients with AET Grade 2;
(d) patients with AET Grade 3. The iso-dose lines of 60 Gy, 50 Gy, 30 Gy and 10 Gy are marked in black, white, red and yellow.

seems to be caused by high dose (> 50 Gy) and the
length/circumference coverage of low dose, while the
length/circumference coverage of high dose (around 50
Gy) plays a role in severe AET of grade 3. This result sug-
gests that using the length and circumference parameters
may be a more sensitive method to predict AET compared
to DSHs.

A broadly recognized method to address the problem
of multiple comparisons is the Bonferroni correction [14]:
if n independent hypotheses are tested, each individual
hypothesis is tested at the 1/n times of the original statisti-
cal significance level when tested for only one hypothesis.
However, this correction is not straightforwardly applica-
ble to voxel maps, since there can be millions of voxels
that are highly correlated in space. Hypothesis testing on
images was first conducted through parametric random
field methods [15]: t-tests are conducted at every voxel
and the distributional results for continuous random fields
are used to identify regions that are significant. Contrary
to these parametric methods, non-parametric permuta-
tion tests on voxel maps were introduced by [8,16]. Two
test statistics are often used: a single maxima threshold
and the supra-threshold cluster. A single maxima thresh-
old is the Thax as we used in our study. In [16], Tmax
was applied in a permutation test to localize the region
of visual cortex sensitive to motion on 3D PET imaging
[17] and to analyze the order effects in working memory
using fMRI [18]. Contrarily, a supra-threshold cluster test
assesses the size of the connected supra-threshold regions
for significance. As a result, the power to localize regions
was reduced. Since the goal of data mining in radiotherapy
was to localize suspicious regions, we recommend using
Tmax as test statistic.

The incidental dose essentially comes from the varia-
tions of dose planning for some un-targeted organs, and
it’s a good thing to explore. Whether or not we are able
to detect a significant dose difference depends on two
aspects: 1) the average incidental dose between 2 groups

(a) (b)

Figure 9 The region (in white contour) with significant dose
difference (a) between AET Grade 0-1 and 2-3, and (b) between
AET Grade 0-2 and 3, overlaid on the average dose map of the
total 185 patients.
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and 2) the variance of the incidental dose. Statistically,
a higher average incidental dose difference and a lower
variance of each group facilitates yielding a true pos-
itive result. On the other hand, registration error is a
bad thing. Inaccuracies in the registration, or an inappro-
priate choice for the registration method, could prevent
the method to identify an existing dose effect relation,
thus reducing the power of the statistical test. While it
seems less likely that some particular registration pro-
cedure or inaccuracy therein generates a false positive
result from dose variations which only consist of noise,
any dose effect relation which is subsequently derived
should be verified on an independent data set. Depend-
ing on the specific anatomical properties and the expected
dose-effect parameters, the requirements for the accuracy
of the registration vary. For instance, if the data mining
is conducted in regions with small structures (e.g. head
and neck), a sophisticated registration procedure may be
required to find significant results. Contrarily, if we want
to explore a large volume of low gradient dose distribu-
tions (e.g. lung), a loose registration may suffice. If we aim
to explore dose distributions surrounding one structure,
the registration accuracy is then focused on regions close
to this structure. Therefore, a registration strategy should
be chosen in advance based on the type of hypothesis
that we want to explore. Afterwards, significant regions
can be anatomically identified, and subjected to biological
and clinical interpretation. Such consideration can then
guide further efforts to derive dose-response relationships
through conventional modeling methods.

Permutation testing is a useful tool to explore dose
patterns from incidental dose distributions. Instead of
analyzing dose-response effect, we intend to use permu-
tation testing as a preliminary step to identify suspicious
regions for hypothesis generation. Permutation testing
takes into account multiple comparisons by yielding an
adjusted p-value and gives visually straightforward suspi-
cious regions. Another advantage of such method is that
it is non-parametric. Thus, this test does not depend on
the assumption of Normal distribution, which is often not
true in the case of incidental dose in the planning. Permu-
tation testing is practically useful and important in radio-
therapy, especially in the era where adaptive radiotherapy
is on the agenda, but we still have only limited knowledge
about tumor stem cells, microscopic disease, radiosen-
sitivity, etc. Permutation testing helps us to maximally
explore dose-response relationships from the incidental
dose in the clinical data.

Conclusions

We introduced a permutation test that deals with hypoth-
esis testing on images and illustrated this method in a
synthetic dataset, and in clinical datasets from a prostate
and an esophagus study. Compared to a voxel-by-voxel
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based test, the permutation method reduces the rate of
false positives. Permutation testing is a useful tool to iden-
tify hypotheses for dose-response relationships and tackle
the multiple comparisons problem.

Consent

Written informed consent was obtained from the patient
for the publication of this report and any accompanying
images.

Appendix A: the multiple comparisons
permutation test

Suppose we observed a sample of patients with two out-
comes: non-event (N) and event (E). Every patient has
a dose distribution of N, voxels and they are all regis-
tered to an identical grid. To compare the dose distri-
bution between the two groups, the permutation test is
conducted as follows:

(i) Compute the average dose difference Jk between
E and N groups in the observed sample:

dk = laE,k - IELNJO k= 1,... ;Nv ’ (A~1)
where fipx and fin are the average dose value at
voxel k for group E and N, respectively.

(ii) Permute the labelling of the observed sample and
compute the average dose difference. Repeat this
process for N, times:

dik = MEik—MUNijo k=1,...,Ny, i=1,... »Np ,
(A.2)

where g and Nk are the average dose value
at voxel k for group E and N in the i permuted
random sample.

(ili) Compute the standard deviation for every voxel k
over all N random samples:

Np

N,
1 - e
Np 1 ;(di,k — dk); where dk = ﬁ ;di,k .

o =
(A.3)

(iv) Compute the locally normalized dose difference
for every voxel in every random sample as well as
the observed sample:

d,
Tix = =, (A4)
Ok
- d
Th=%k=1,...,Ny. (A.5)

Ok
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(v) Compute the test statistic Tinax for every
resampling as well as the true labeling sample:

Tmax,i = max(Tjx) , (A.6)

Tmax = max(Ty),k=1,...,Ny. (A7)

(vi) Compute the adjusted p-value:

p= PV[Tmax,i > Tmax] . (A.8)

(vii) Compare the adjusted p-value with the
significance level . If p < «, reject the null
hypothesis, otherwise the null hypothesis can not
be rejected.

(viii) Compute the T* as (1 — «) percentile of
Tmax i = 1,...,Np. Regions in Tk that are above
T* show significant difference between E and N
groups.
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