Skip to main content

Table 1 Comparison of dataset, methodology (label and network), and the similarity scores (DSC and HD) reported by other studies and our study

From: Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT

Author Number of datasets (patients) Label Network Evaluation metrics ROI Commercial application
Training Validation Test Prostate Seminal vesicle Rectum Bladder
Macomber et al. [9] 94   99 Multiple Deep decision forests DSC [median (IQR)] 0.75 (0.67–0.82) 0.49 (0.31–0.79) 0.71 (0.63–0.87) 0.94 (0.92–0.98)  
HD [mm]  
Balagopal et al. [10] 136 (including tests)    Multiple ResNeXt (3D-Unet) DSC (mean ± SD) 0.90 ± 0.20 0.84 ± 0.37 0.95 ± 0.15  
HD [mm]  
Liu et al. [11] 771 193 140 Single Deep neural network DSC (mean ± SD, range) 0.85 ± 0.06 (0.65–0.93)  
HD [mm] (mean ± SD) 7.0 ± 3.5  
Zhang et al. [12] 90 10 20 Multiple ARPM-Net DSC (mean ± SD) 0.88 ± 0.11 0.86 ± 0.12 0.97 ± 0.07  
Average HD [mm] (mean ± SD) 1.58 ± 1.77 3.14 ± 2.39 1.91 ± 1.29  
Wang et al. [13] 268   45 Multiple U-net DSC (mean ± SD) 0.89 ± 0.03 0.89 ± 0.04 0.94 ± 0.03  
HD [mm]  
Kijunen et al. [14] 876   30 Multiple 3D U-net DSC (mean) 0.82 0.72 0.84 0.93  
HD [mm] (mean) 6.1 7.1 11.4 3.3  
Czeizler et al. [19] 87   5 Multiple BibNet DSC (mean ± SD) 0.75 ± 0.11 0.90 ± 0.06  
HD [mm]  
Schreier et al. [20] 300   50 Multiple BibNet DSC (mean) 0.84 0.70 0.87 0.93  
HD [mm]  
Wong et al. [24] 328   50 Multiple U-net DSC (minimum) 0.79 0.64 0.78 0.97 Limbus Contour
95%HD [mm] 6.72 5.95 12.09 3.24  
Our study 270 90 90 Multiple FusionNet DSC [median (IQR)] 0.87 (0.85–0.89) 0.77 (0.69–0.82) 0.91 (0.87–0.92) 0.96 (0.94–0.97)  
HD [mm]  
20 Multiple FusionNet DSC [median (IQR)] 0.82 (0.79–0.84) 0.71 (0.67–0.77) 0.89 (0.86–0.91) 0.95 (0.94–0.96)  
95%HD [mm] [median (IQR)] 3.23 (2.99–3.42) 3.82 (3.49–4.29) 2.65 (2.39–2.92) 4.18 (3.52–4.77)  
  1. DSC dice similarity coefficient, HD Hausdorff distance, 95%HD 95th-percentile Hausdorff distance, IQR interquartile range, ROI region of interest