Skip to main content
Fig. 5 | Radiation Oncology

Fig. 5

From: Targeting human epidermal growth factor receptor 2 enhances radiosensitivity and reduces the metastatic potential of Lewis lung carcinoma cells

Fig. 5

Afatinib delays ectopic tumor growth, reduces MMP-9, HER2 expressions, and radiation-enhanced lung metastases in mice. The mice were randomized into sham, radiotherapy (RT) with five 10-Gy treatments on days 8–12, afatinib, and afatinib+RT groups. a Primary tumor viability of one representative mouse from each treatment group was determined on day 7 (pre-RT) and day 14 (post-RT) by PET/CT. Representative images are shown. Crosshairs indicate the viable right thigh tumors. The maximum standard uptake value and the viable tumor volume are shown at the left and right corners of the image, respectively. b The tumor growth curves in the different treatment groups were plotted. The data points are the mean tumor volume from each group measured on the indicated days. P < 0.05 was considered statistically significant for the cross comparison of RT, RT + afatinib and RT + erlotinib groups on day 14. Microscopic images (200X) are shown of immunohistochemically stained tumor tissue sections with c MMP-9 and d HER2 from the different treatment groups with white arrows indicating the positively stained cells. The percentage of MMP-9- and HER2-positive cells was calculated by dividing the number of positive cells by the total number of cells in the representative fields. * indicates p < 0.05. e Representative sets of lungs with surface metastases (arrow) from each treatment group. f The numbers of surface metastases to the lungs were counted. * indicates p < 0.05, RT vs RT + erlotinib group, RT vs RT + afatinib group, RT + erlotinib vs RT + afatinib group

Back to article page