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Background: Respiration-correlated CT (4D CT) is the basis of radiotherapy treatment planning of thoracic and
abdominal tumors. Current clinical 4D CT images suffer, however, from artifacts due to unfulfilled assumptions
concerning breathing pattern regularity. We propose and evaluate modifications to existing low-pitch spiral 4D CT

reconstruction protocols to counteract respective artifacts.

Methods: The proposed advanced reconstruction (AR) approach consists of two steps that build on each other: (1)
statistical analysis of the breathing signal recorded during CT data acquisition and extraction of a patient-specific
reference breathing cycle for projection binning; (2) incorporation of an artifact measure into the reconstruction. 4D
CT data of 30 patients were reconstructed by standard phase- and local amplitude-based reconstruction (PB, LAB) and
compared with images obtained by AR. The number of artifacts was evaluated and artifact statistics correlated to

breathing curve characteristics.

Results: AR reduced the number of 4D CT artifacts by 31% and 27% compared to PB and LAB; the reduction was

most pronounced for irregular breathing curves.

Conclusions: We described a two-step optimization of low-pitch spiral 4D CT reconstruction to reduce artifacts in
the presence of breathing irregularity and illustrated that the modifications to existing reconstruction solutions are

effective in terms of artifact reduction.
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Background

In radiotherapy (RT) treatment planning for thoracic and
abdominal cancer patients, the term 4D CT refers to
respiration-correlated computed tomography, and a 4D
CT data set is understood as a series of 3D CT images of
the patient geometry at different breathing states. Since
the seminal works in this field [1-3], 4D CT has rapidly
found its way into clinical practice [4] and is currently
estimated to be routinely applied in approximately 70%
of the RT centers in the US [5]. 4D CT information
are, for instance, used to dimension the internal target
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volume and to perform 4D dose calculation in the con-
text of 4D RT quality assurance [6-9]. Very recently, 4D
CT imaging has even been reported to be applied for
CT ventilation image-guided RT treatment, exploiting a
registration-based local lung volume change analysis in
the 4D CT images and feeding this information back into
treatment plan optimization [5].

All 4D CT use cases have in common that their reliabil-
ity depends on 4D CT image quality and the absence of
motion artifacts [6, 7, 10, 11]. However, in agreement with
earlier publications [12], a retrospective analysis of our in-
house 4D CT database of more than 50 patients treated
between 2012 and 2014 revealed a fraction of 75% of the
images being subject to artifacts [13], and consequently
still motivates improving existing 4D CT reconstruction.

The principle of current commercial 4D CT proto-
cols is to acquire a respiratory signal recorded using,
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for instance, abdominal belts or camera-based track-
ing of markers positioned on the patient’s chest wall.
The recorded breathing signal is then correlated to the
simultaneously acquired projection or image data. These
‘tagged’ CT data are finally sorted and/or reconstructed
according to the assigned breathing state information,
resulting in the desired series of 4D CT images at different
breathing states. Although acquisition and reconstruction
details vary between the CT vendors, they all face the
problem that standard RT CT systems are not capable of
scanning the entire anatomical region of interest within
a single gantry rotation. As a consequence, data acqui-
sition spans multiple breathing cycles and the acquired
CT data has to be appropriately pieced together. Thus,
assumptions of 4D CT protocols are

Al. regular breathing patterns during scanning,

A2. a constant relationship between breathing signal and
internal anatomical motion, and

A3. the data sufficiency condition (DSC, i. e. existence of
sufficient CT data to reconstruct images at all desired
breathing states [14]).

Violations of above assumptions lead to often
seen motion artifacts like incomplete and double
structures [15].

Turning partly away from common 4D CT data acquisi-
tion, Thomas et al. described that it is in principle possible
to generate artifact-free 4D CT images by repeat fast spiral
scanning and subsequent registration- and model-based
reconstruction [16]. Although we consider the solution
promising, it will still take some time until related proto-
cols are ready for clinical use [11]. Thus, our question was
whether we have, at the moment and in clinical practice,
to work with the artifact-affected image data — or whether
there are ways to mitigate artifacts using current clinical
4D CT protocols and modifications thereof.

Our study focusses on standard external breathing
signal-driven low-pitch spiral 4D CT [1], i.e. the CT
table feed per gantry rotation has to be sufficiently low
to ensure existence of an appropriate amount of pro-
jection data to allow for reconstruction of CT images
at the desired breathing states. We, however, aimed at
implementation and evaluation of generally applicable
and quickly to reimplement modifications to existing 4D
CT scanning and reconstruction protocols (including ciné
protocols) that were assumed to have a relevant impact
in terms of an artifact reduction. In detail, we propose
a two-step modification to counteract artifacts due to
violations of A1 and A2. It consists of an optimized breath-
ing state definition and projection binning to combine
advantages of well-known amplitude- and phase-based
sorting algorithms (first step), together with an image-
domain artifactness measure that is to be minimized
during the 4D CT image reconstruction (second step).
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The first step extends classical work on optimized breath-
ing state definition for 4D CT reconstruction [17, 18] by
incorporating a statistical analysis of the patient-specific
breathing record acquired during CT scanning and a sub-
sequent patient-specific reference curve-based breathing
state definition. The second step is intended to account
for remaining uncertainties due to, e.g., changes in the
relationship between the external breathing signal and the
internal anatomical motion (violations of A2). Starting
with an initial assignment of the aforementioned breath-
ing states to the acquired CT projection data, the idea is
to slightly vary the actual projection data used for recon-
struction of the transversal CT slices for the individual
breathing states and to search for a combination of slices
that minimizes the artifactness measure. The concept of
varying projection data intervals used for reconstruction
to reduce motion artifacts has, for instance, been success-
fully utilized by O’Brien et al. for improved 4D Cone Beam
(CB) CT reconstruction [19]. Their approach is, how-
ever, limited to the specific challenges of 4D CBCT and
especially the presence of streaking artifacts due to pro-
jection undersampling; the respective objective function
to be minimized can therefore not directly be transferred
to standard 4D CT reconstruction and artifacts. Similar
thoughts and promising results can, nevertheless, also be
found in the context of ciné 4D CT image sorting [20]; the
respective work forms the basis of our implementation.
Thus, with the design of the two steps of our approach for
reduction of breathing irregularity-related 4D CT motion
artifacts being motivated by recent developments in the
context of 4D CT imaging, we present a novel combina-
tion thereof and describe their adaptation to low-pitch
spiral 4D CT. The potential of our optimized projection
binning algorithm is evaluated by means of 30 clinical
4D CT data sets; a comparison to common phase- and
amplitude-based sorting and 4D CT reconstruction illus-
trates the proposed 4D CT reconstruction modifications
to significantly reduce motion artifacts.

Methods

Advanced reconstruction (AR) algorithm

As mentioned before, the advanced reconstruction con-
sists of two steps, which build on each other and are
detailed below.

AR step 1: Reference curve-based projection binning

Standard  clinically available projection binning
approaches are phase-based (PB) and amplitude-based
(AB) sorting; using a Siemens CT, the latter is imple-
mented as local amplitude-based (LAB) sorting [21]. PB
sorting means that each breathing cycle of the acquired
respiratory signal is split into #mp, points or bins (#pp:
number of breathing states to reconstruct 3D CT images
at; typical: npp A 10) that are equidistantly distributed in
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time. In the case of inter-cycle waveform variability, this
leads to the situation that the breathing states that corre-
spond per definition do not agree regarding the respective
actual physiological state. If these inappropriate states are
used to tag the projection data for image reconstruction,
the differences in the actual breathing states manifest as
artifacts, as illustrated in Fig. la. In LAB sorting, each
breathing cycle is equidistantly sampled with respect
to the breathing signal amplitude. Amplitude sorting
reconstruction is less prone to motion artifacts [17, 18];
variations in the depth of breathing, however, still affect
AB sorting. In addition, equidistant temporal sampling —
only provided by PB sorting — is often desired for RT
treatment planning (e.g. to compute mid-ventilation
or -position images [22]).

Aiming to combine the advantages of the two sort-
ing approaches, we implemented a reference curve-based
binning. First, the acquired breathing curve was ana-
lyzed with regard to the end-inspiration signal amplitudes;
CT projection data corresponding to breathing signal
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amplitudes higher than the mean end-inspiration signal
amplitude were discarded and not used for reconstruc-
tion purposes. Similar to respective work in the context
of global AB sorting [18], this counteracts artifacts due
to pronounced variations in the depth of breathing. To
finally derive a patient-specific representative breathing
cycle, the individual breathing cycles were temporally
aligned at the end-inspiration peak, Fig. 1b. After align-
ment and excluding ‘outlier’ breathing cycles (peak-to-
peak amplitude larger then twice the mean peak-to-peak
amplitude), a statistically representative breathing cycle
was computed by averaging temporally corresponding
signal amplitudes of the individual breathing cycles.

The resulting representative cycle was sampled equidis-
tantly in time and the signal amplitudes of the sampling
points were used to label the CT projection data for image
reconstruction of the desired 3D CT volumes. Thus, effec-
tively, an amplitude sorting variant is implemented, with
the selected amplitude bins representing a temporally
equidistant sampling.

a) Explanation of artifacts arising during phase-based (PB) sorting
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Fig. 1 lllustration of addressed problem and sketch of proposed solution. a Typical 4D CT artifacts stem from inappropriate breathing state
definition and/or assignment to projection data (in low-pitch spiral 4D CT) or reconstructed image segments (ciné 4D CT). b To overcome
shortcomings of classical phase- or amplitude-based sorting approaches, we extracted a patient-specific reference breathing curve that was used
for phase- and breathing signal amplitude-assignment to the acquired projection data. ¢ In addition, an artifactness measure was introduced into
and to be minimized during image reconstruction. To retain the range of breathing dynamics represented in the acquired data, uncertainty intervals
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AR step 2: Integrating ‘artifactness’ into image reconstruction
While the reference cycle-based binning approach miti-
gates effects due to violations of the introductory assump-
tion Al, a potential variability of the correlation between
the external breathing signal and internal motion remains
challenging. Addressing violations of A2 in the context
of ciné 4D CT imaging, Castillo et al. suggested inte-
grating a dissimilarity measure between axial image seg-
ments acquired at spatially adjacent couch positions and
the minimization of the measure into 4D CT formation
[20]. Their presented workflow is, however, dependent on
principles of ciné 4D CT imaging, i. e. a consecutive acqui-
sition and reconstruction of a series of image segments
for fixed couch positions, breathing signal-based assign-
ment of respiratory states to already reconstructed image
segments, and the assembly of the image segments of a
similar breathing state but different couch positions.

However, the core idea of Castillo et al. appears to
be transferable to low-pitch spiral 4D CT. In a nutshell,
they allowed for more flexibility during the assembly of
image segments of different couch position: While the
standard approach during image segment assembly is to
select the single image segment for each couch position
that, in terms of the assigned breathing state, is closest to
the desired one, they considered three image segments of
similar breathing state labels per couch position. Finally,
taking into account all image segment combinations, seg-
ments were stacked together that — across the entire 3D
CT image at the desired breathing state — minimized the
mentioned inter-segment image dissimilarity.

Given its promising ciné 4D CT performance (reduction
of the dissimilarity measure by 24% compared to stan-
dard PB reconstruction), we transferred and adapted their
approach to low-pitch spiral 4D CT and combined it with
the described reference curve binning approach. In con-
trast to ciné 4D CT, low-pitch spiral 4D CT comprises
breathing state assignment to the acquired CT projection
data (rather than already reconstructed image segments);
the continuous patient transport during spiral raw data
acquisition and the associated need for synthesized pla-
nar projection data lead to additional challenges. At this,
aiming at adapting the presented workflow as directly as
possible and with as little interference with the actual
and vendor-specific CT image reconstruction process as
necessary, we decided to introduce time stamp wuncer-
tainty intervals with respect to the projection data breath-
ing state labels obtained by the reference curve-based
binning.

In detail, let the breathing state labels that sample the
patient-specific reference cycle range between 0% and
100%, with 0% (= 100%) denoting end-inspiration. Thus,
labels for a 10-state reconstruction are 0%, 10%, ..., 90%,
which correspond to patient-specific inspiration and expi-
ration breathing signal amplitude values; see Fig. 1b. To
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account for violations of A2 and related uncertainties of
the breathing state tags assigned to the projection data,
we introduced uncertainty intervals of £5% with respect
to the breathing state-specific signal amplitude values.
These intervals and respective couch-position specific
time periods, as shown in Fig. 1c for a 70% state, were then
equidistantly sampled and corresponding axial images
reconstructed. This means that for each couch position
and breathing phase a set of candidate image slices was
reconstructed (here: between five and seven slices), with
the breathing states represented by the candidate slices
being slightly varied.

Now, similar to Castillo et al., a 3D image volume at a
specific breathing state was assembled by combining slices
of the candidate slice sets of the different couch positions
in such a way that a dissimilarity or ‘artifactness’ mea-
sure between adjacent image slices was minimized. The
exploited artifactness measure is illustrated in Fig. 1c and
was adopted from a work on automated artifact detection
in ciné 4D CT data [23]. Formally speaking, let I : Q C
73 — 7 denote a 3D CT data set and I (x,,z) the CT
value at voxel position (x,y,z). Further, I; = I|q, repre-
sents the restriction of the 3D image I to Q23 = {(x,5,2) €
Q | z = z}, i.e. I; defines the axial slice of I at couch
position z. Then, the artifactness of I; was computed as

1
Clr]= 2 (CCC[IQ—L L]+ C (L1, 12+2]> —CC I, Ly |
with

(I %) — L) (Iy (%) — Iy)
o[I:]o[z]

cce I, Iy | = !

U 12 |€2z] W)ZE%
measuring the normalized cross-correlation (CC) of two
slices I; and Iy of I. Here, I; is the mean CT value of
slice I; and o [IZ] the corresponding standard deviation.
Thus, CC€ ranges between -1 and +1, with +1 indicating
perfect positive correlation between the HU values of the
two compared slices; consequently, the closer the value
is to +1, the higher is the similarity between the slices.
However, direct application of CC¢ does not allow for
reliable identification of artifacts because of potential co-
localized differences between the anatomical structures
represented in the two slices that also influence C¢C. To
address this issue and to be able to assign an artifactness
to each single image slice, the cross correlation of the con-
sidered slice and its direct successor slice is evaluated with
respect to corresponding values in a small neighborhood
of the considered slice. This is expressed by the definition
of C[I;] and finally means that high positive peaks of C
indicate that the respective slices are very likely to be sub-
ject to image artifacts. Further details on the artifactness
measure can be found in the underlying publication [23].
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Study design: Image data and experiments

Our study was based on 4D CT data sets of 30 patients
with lung and liver lesions. All images were acquired
with a Siemens Definition AS+ system (Siemens Health-
care, Germany) in spiral mode and with a retrospective
respiratory protocol. Imaging parameters were the same
for all patients: 0.5s gantry rotation time, 0.09 pitch
factor, breathing signal acquisition using the Real-Time
Position Management system (Varian Medical Systems,
USA). The acquired projection data were reconstructed
into 10-state 4D CT images applying the PB and the
LAB options clinically available for our scanner. The LAB
option is routinely applied in our clinic; respective images
of the considered patients were used for treatment plan-
ning. In addition, 4D CT images were computed using
the advanced reconstruction (AR) approach proposed in
this paper.

As a first analysis part, the 4D CT data sets were
divided into two groups. Group 0 were the 4D CT
data sets with — according to a rapid visual assess-
ment of the LAB data — only small artifacts; group 1
contained the remaining artifact-affected data sets. In
addition, the breathing signals acquired during 4D CT
data acquisition were analyzed and parameters extracted
that were assumed to characterize the breathing curves
and their irregularity: mean and standard deviation of
the peak-to-peak breathing cycle amplitude; mean, min-
imum, maximum and standard deviation of the breath-
ing cycle lengths; standard deviation of the cycle-specific
minimum and maximum signal values; and the slope
of a fitted linear signal baseline drift. Nominal logistic
regression was applied to analyze the relation between
these entities and group membership (membership as
binary dependent variable) and to identify parameters
that significantly contribute to the explanation of group
membership.

For quantitative comparison of the performance of the
reconstruction approaches, all reconstructed images were
then subject to a thorough visual inspection: The total
number of artifacts in the images was counted in coronal
and sagittal views of the images. To further evaluate the
importance of the individual AR steps, we then selected
the ten patients with largest difference in the number
of artifacts after LAB and AR; for these patients, addi-
tional data sets were reconstructed using only AR step 1
(i.e. no minimization of the artifactness measure has been
applied). To avoid evaluation inaccuracies due to inter-
observer variability, all data sets were evaluated by a single
experienced observer; however, differences between two
raters were also evaluated by means of the artifact num-
bers in the AR images. Statistical significance of differ-
ences between two reconstruction approaches was tested
by paired t-tests; multiple testing was accounted for by
Bonferroni correction.
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After evaluation of the number of motion artifacts, the
respective differences between the reconstruction meth-
ods were correlated to the entities that, according to the
aforementioned logistic regression analysis, were signifi-
cantly related to group 1 membership (partial correlation,
accounting for the total number of artifacts per patient as
potentially confounding covariate). The goal was to verify
the hypothesis that AR predominantly counteracts forma-
tion of artifacts in the presence of breathing irregularity
and to identify respective breathing signal parameters.

The last part of our study aimed at identification of fields
of future work: For the ten patients with the largest num-
ber of remaining motion artifacts after AR, the residual
artifacts were analyzed and categorized.

Results

The results section is divided into two subsection: The
comparison results of the performance of the reconstruc-
tion approaches are subsequently described. Afterwards
and as outlined in the study design, detailed informa-
tion on the correlation of artifact reduction and breathing
characteristics are presented.

Quantitative evaluation of AR-related artifact reduction
Table 1 summarizes the number of artifacts in the
image data reconstructed by the different approaches and
respective differences. While PB and LAB images con-
tained, averaged over all breathing states and patients,
a mean number of 4.8 and 4.6 artifacts, the AR images
had on average 3.3 artifacts; this corresponds to a signifi-
cant reduction of 31.1% and 27.4% (p<0.001). The detailed
analysis of the ten patient data sets with the largest dif-
ference in the number of artifacts after LAB and AR
further revealed that AR step 1 accounts for approximately
two-thirds of the AR-related artifact reduction.

In contrast to the comparison of AR to PB and LAB
reconstruction, the 5.1% difference between LAB and PB
was not significant (p=0.13), and neither were differences
of the number of artifacts counted in the AR images by the
two observers significant (inter-rater differences = 4.9%;
p=0.44).

As the number of artifacts does not necessarily reflect
the visual impression of a potential reduction of resid-
ual artifacts, example coronal and sagittal CT slices are
shown in Fig. 2. Corresponding movies that represent all
reconstructed breathing states are provided as Additional
files 1, 2, 3 and 4 to this paper.

Correlation of artifact reduction and breathing
characteristics

The breathing state-specific information in Table 1 shows
that the number of artifacts (especially for PB and LAB)
as well as the artifact reduction by AR are largest close to
end-inspiration. It is further known that end-inspiration is
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Table 1 Results of the evaluation and comparison of the number of artifacts in the reconstructed images (El = end inspiration; EE =

end-expiration)

Breathing state-specific evaluation (max. inspiration to max. inspiration)

El <«— Expiration states—> EE <«—Inspiration states—>

Reconstruction Mean 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Number of motion artifacts (mean =+ standard deviation over patients)

Phase-based (PB) 48+22 58+29 52428 52+24 41+25 37+26 37+23 43+26 54+24 56+24 54429

Amplitude-based (LAB) 46+£21 58£26 52+£24 49+£26 46+£26 37+£24 36+£21 40+£25 45+£23 45+£23 50+£28

Advanced recon. (AR) 33+£17 364£25 33+£21 36£21 32£19 30£19 26£19 34+£20 33£20 33£19 41+£23
Average reduction of artifacts by first mentioned approach compared to second approach

LABvs. PB 5.1% —0.6% 0.0% 5.8% —122% 0.0% 2.7% 6.2% 16.7%* 20.2%* 7.7%

AR vs. LAB 27.4%* 38.5%* 36.3%* 27.2%* 29.7%* 20.5%* 27.1%* 16.5% 27 4%* 26.9%* 18.1%

AR vs. PB 31.1%* 38.2%* 36.3%* 31.4%* 21.19%* 20.5% 29.1%* 21.7%* 39.5%* 41.7%* 24.4%*

*Differences are significant on 5% significance level

not as reproducible as the end-expiration state [24]; thus,
the numbers in the table can already be interpreted as an
evidence that AR indeed counteracts artifacts arising due
to breathing irregularity.

In line, the logistic regression analysis reveals that
group 1 membership (presence of many and/or very

pronounced artifacts; 14/30 data sets) was significantly
related to — and only to — larger standard deviations of
the breathing amplitude and the end-inspiration peak val-
ues of the acquired breathing signals, in conjunction with
a prolonged mean breathing period (p<0.05 for the model
comparison with and without these entities; McFadden’s

PB recon. LAB recon.

AR recon.

Patient 01
70% state

Patient 02
90% state

Patient 03
10% state

Patient 04
El) state

0% (

Fig. 2 Comparison of the considered reconstruction approaches. Artifacts were reduced by the advanced reconstruction approach AR for a wide
range of breathing irregularity (compare breathing curves on the right hand side). The effect is, however, most pronounced in the case of relatively
irregular breathing patterns and usually most visible in images at breathing states close to the end-inspiration state
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pseudo-R? of 0.52 for the entire model further indicates
an overall good fit of group membership).

Obviously, only breathing amplitude and end-inspiration
peak value standard deviations are directly related to
breathing irregularity; and indeed these two factors were
strongly correlated to the amount of artifact reduction
obtained by AR compared to PB (Spearman correlation
coefficients p of 0.68 for the breathing cycle amplitude
value standard deviation and 0.65 for the standard devi-
ation of the end-inspiration signal values; p=0.003 and
p=0.006) and LAB (p=0.56 and p=0.48; p=0.03 and
p=0.09). In turn, prolongation of the mean breathing
period was related to the existence of artifacts but not
significantly correlated to the achieved artifact reduction.
This points to a methodical issue of the applied low-pitch
spiral 4D CT protocol: The combination of a pitch fac-
tor of 0.09 and a gantry rotation time of 0.5s requires
in the current case breathing periods <5s to fulfill the
DSC. Artifacts due to DSC violations were, however, not
addressed here.

Artifacts remaining after AR artifact reduction

Remaining artifacts after AR were classified into arti-
facts due to the aforementioned violation of the DSC
and incomplete or double structure artifacts. The latter
type was further differentiated according to its location:
either affecting the heart shape (i.e. artifacts that are
likely due to different cardiac phases of the projection
data used for reconstruction of adjacent axial slices) or
artifacts located elsewhere. In total, artifacts due to the
violation of the DSC accounted for 26 £ 20% and car-
diac incomplete/double structure artifacts for 32 £ 14%;
both types of artifacts are at least challenging to minimize
using currently available commercial 4D CT scanning and
reconstruction protocols. The remaining 42 + 13% were
still incomplete/double structure artifacts not located in
the proximity of the heart; these can be assumed to be due
to violations of Al and A2 not resolved by the proposed
AR approach.

Discussion

Considering the still alarmingly high number of arti-
facts in routinely acquired 4D CT data, the current study
addressed quickly to re-implement modifications of cur-
rent low-pitch spiral 4D CT protocols: A patient-specific
reference curve-based binning of projection data is com-
bined with an integration of an artifactness measure to
be minimized during the image reconstruction process.
The results highlight the potential of the presented mod-
ifications to significantly reduce artifacts compared to
standard PB and LAB reconstruction. As hypothesized,
we further showed that the advanced reconstruction is
especially helpful in the presence of breathing irregularity
to reduce image artifacts — and so counteracts violations
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of common assumptions on breathing regularity (here: Al
and A2 of the introduction) underlying standard 4D CT
protocols.

From a methodical perspective, the present study in
parts builds on respective work in the field of ciné 4D CT
[20], but represents the first attempt to transfer and adapt
related concepts to low-pitch spiral 4D CT - and further
contains the first comprehensive evaluation thereof.

Besides the achieved artifact reduction rates, Table 1
still indicates existence of residual artifacts after AR. As
explained in the results section, this points in parts to
methodical issues inherent to standard low-pitch spiral
(and similarly ciné) 4D CT:

(1) Violations of the DSC, i.e. artifacts due to violations
of A3, result in missing projection data for
reconstruction of desired phase images; this issue
cannot be addressed by the proposed reconstruction
approach.

(2) Incomplete/double structure artifacts in the cardiac
area are most likely due to different cardiac phases of
adjacent slices and not (solely) caused by violation of
Al and A2. The second AR step implicitly reduces
such artifacts, but as the projection data are binned
according to respiratory states, such artifacts can
finally not be sufficiently accounted for.

Respective residual artifacts motivate further develop-
ment of alternative 4D CT concepts such as [16]. However,
even alternative 4D CT concepts often rely on exter-
nally acquired breathing signals for definition of breath-
ing states. At this, it should be noted that we observed
almost half of the remaining artifacts after AR still to be
common incomplete/double structure artifacts. Explana-
tions and exact error sources (e.g. a lack of correlation
between external signal and internal motion) remain to be
scrutinized.

Conclusions

The current study illustrates that motion artifacts in low-
pitch spiral 4D CT that are due to irregularities of the
patient motion patterns during 4D CT data acquisition
can be significantly reduced by minor modifications of
existing reconstruction protocols (i. e. by improving pro-
jection binning).

Additional files

Additional file 1: Movie (animated gif; to be opened and viewed with,
e.g. a standard web browser) that corresponds to the first data set shown in
Fig. 2, but represents all ten reconstructed breathing phases. (GIF 13824 kb)

Additional file 2: Similar to the additional file 1, but representing the
second data set shown in Fig. 2. (GIF 17101 kb)
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Additional file 3: Similar to the additional file 1, but representing the
third data set shown in Fig. 2. (GIF 12088 kb)

Additional file 4: Similar to the additional file 1, but representing the
fourth data set shown in Fig. 2. (GIF 15360 kb)
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