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Abstract

Background: Planning for Volumetric Modulated Arc Therapy (VMAT) may be time consuming and its use is
limited by available staff resources. Automated multicriterial treatment planning can eliminate this bottleneck.
We compared automatically created (auto) VMAT plans generated by Erasmus-iCycle to manually created VMAT

plans for treatment of spinal metastases.

Methods: Forty-two targets in 32 patients were analyzed. Lungs and kidneys were defined as organs at risk (OARs).
Twenty-two patients received radiotherapy on kidney levels, 17 on lung levels, and 3 on both levels.

Results: All Erasmus-iCycle plans were clinically acceptable. When compared to manual plans, planning target
volume (PTV) coverage of auto plans was significantly better. The Homogeneity Index did not differ significantly
between the groups. Mean dose to OARs was lower in auto plans concerning both kidneys and the left lung. One
hotspot (>110% of Dsg) occurred in the spinal cord of one auto plan (33.2 Gy, Dsg: 30 Gy). Treatment time was

7% longer in auto plans.

Conclusions: Erasmus-iCycle plans showed better target coverage and sparing of OARs at the expense of
minimally longer treatment times (for which no constraint was set).
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Background

Fractionated or single-dose radiotherapy to spinal metas-
tases of solid tumors is one of the most frequently per-
formed radiation treatments [1]. Highly conformal
radiation techniques such as Stereotactic Body Radiation
Therapy (SBRT), Intensity Modulated Radiation Therapy
(IMRT) or VMAT are increasingly being used as their
application becomes easier and dose distributions confer
theoretical advantages [2], albeit so far without proof of
superior clinical outcome. On the other hand, generation
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of an optimal IMRT or VMAT plan is often time con-
suming and it has been shown that staff limitations are
correlated with restricted use of new techniques such as
IMRT even in the developed world [3, 4]. Automated
planning of IMRT and VMAT may reduce the workload
which is associated with manual “trial-and-error” ap-
proaches by around 50% [5].

Erasmus-iCycle, developed at the Erasmus MC-Cancer
Institute, is an optimizer for multicriterial beam profile
optimization and beam angle selection for coplanar and
non-coplanar IMRT [5-10]. Other solutions for multi-
criterial beam angle optimization have been proposed by
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Schreibmann et al. [11], Craft and Monz presented a full
multibeam space Pareto navigation tool [12]. However,
both are a posteriori methods, i.e., the algorithm gener-
ates different sets of beam angles and intensity profiles
from which the user selects the plan afterward. The
Erasmus-iCycle solution is an a priori approach which
enables the user to define a site specific set of criteria
(wish-list) which may not be violated (constraints) or
have to be met as well as possible, or better (objectives).
Objectives have assigned priorities to steer the multicri-
terial planning towards favourable trade-offs between
the various treatment goals. If the priority of an object-
ive is higher, the probability that the corresponding ob-
jective is met increases. Hard constraints are always
respected in Erasmus-iCycle plans.

Beam directions are selected from candidate directions
which can be restricted, e.g., in case of coplanar treat-
ments [6, 7, 13]. For fully automated generation of plans
that are clinically delivered, Erasmus-iCycle auto plans
are automatically reconstructed and segmented in the
clinical treatment planning system (TPS) [13]. This
study intends to validate VMAT plans for treatment of
spinal metastases, generated with this approach, and to
compare the quality of automatically generated plans
with plans that were manually created by experienced
treatment planners. Different spine regions pose differ-
ent optimization problems as a consequence of different
OARs being relevant for the treatment. Therefore cer-
vical, thoracic, and lumbar targets were included in the
study design.

Methods

Manual plan generation

Forty-two clinical target volumes (CTVs) in the spinal
column of 32 patients were manually delineated for clin-
ical routine treatments. CTVs were anisotropically ex-
panded to PTVs that were the basis for all further
analyses. All PTVs were reviewed by expert radiation on-
cologists (FW, FL).

Manual plans were created by expert treatment plan-
ners and also reviewed by radiation oncologists. All
manually generated plans were calculated using the
Monaco® treatment planning system (Elekta Ltd, Crawly,
UK) version 3.2 or later which supports static IMRT, dy-
namic IMRT, and VMAT. Informed consent was ob-
tained from all patients for anonymized processing of
their clinical data. The study was approved by the ethics
committee of Heidelberg University, Medical Faculty
Mannheim (2016-806R-MA). For this study we assumed
lungs or kidneys to be (potentially pre-irradiated) OARs,
therefore we included only spinal regions which were at
the level of kidneys (n = 22), lungs (n =17), or both (n =
3), resulting in 90 (45*2) OARs and 42 PTVs in total.
Spinal reirradiation plans were not tested in this study;
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nevertheless, we contoured the spinal cord to identify
any hotspots in this area within the target volume. Most
plans were at the thoracic, thoracolumbar or lumbar
level. In 4 cases, soft tissue metastases or rib metastases
were included in the PTV. Prescribed doses ranged from
30 to 40 Gy in 10-20 fractions which are commonly ap-
plied treatment regimens in patients with sufficient life
expectancy and good general condition (Eastern Co-
operative Oncology Group, ECOG 0/1; Karnofsky Per-
formance Status, KPS > 80%). Generally, 40 Gy regimens
were applied to patients who received postoperative
radiotherapy. We did not include patients who had to be
treated with spinal cord sparing plans after prior full
dose irradiation of the spinal cord. While some patients
had in fact received prior radiotherapy, this previous
therapy did not require sparing of spinal cord to meet
dose constraints [14]. Details on irradiation sites are
summarized in Table 1. Further information such as pri-
mary tumor site of each patient is provided in Additional
file 1: Table S1.

Automated VMAT plan generation with Erasmus-iCycle
(auto)

Target volumes were identical to those used in the man-
ual planning approach. General principles of iCycle plan
generation are described above. Further details on auto-
planning with the Erasmus-iCycle/Monaco system have
been previously provided by Voet et al. [5]. A site-
specific wish-list for our patient cohort is shown in
Additional file 2: Table S2. Apart from objectives for the
PTV, the kidneys and the lungs, shells around the PTV
are used to steer on conformality. Two cases were in-
cluded which required beam restrictions, both because
patients were unable to lift their arms.

Plan quality and statistical analysis

Plan quality was estimated by calculating the dose to
98% (Doge) and to 2% (D,g) of the PTV. Both parame-
ters were used to compute the homogeneity index (HI,
[15]) which was defined as the ratio between the differ-
ence of Dyy and Dogy and the median dose (Dsgy), i.€.,:

HI = [(Dz% —D98%)/D50%]

In addition, we calculated the volume receiving 95% of
the prescribed dose (Vosy i.e., Vagsay Or Vsgay, depend-
ing if the prescribed dose was 30 Gy or 40 Gy), and
based on Vg, a conformity index (CI, reviewed in [15])
was calculated as follows:

CI = Vs /PTV

An optimal CI would be considered to be 1; however,
values can be above or below 1. To consider both over-
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Table 1 Characteristics of spinal irradiation plans (n =42)

Number of
sites
Irradiation site Cervical spine None
Cervical and thoracic spine 2
Thoracic spine® 15
Thoracic and lumbar spine 17

Thoracic and lumbar spine, Sacrum 3

Lumbar spine 4
Lumbar spine and Sacrum 1
Primary tumor site Breast Cancer 15
Prostate Cancer 1
Lung Cancer 5
Non-Small Cell Lung Cancer 3
Small Cell Lung Cancer 2
Gastric and Oesophageal Cancer 5
Multiple Myeloma 3
Head and Neck 1
Unknown Primary 1
Urothelial Cell Carcinoma 1
Organs at risk Kidneys 22
Lungs 17
Lungs and kidneys in one plan® 3
Median dose 40Gy 9
30Gy 33

Concerning PTV coverage, keeping the patients in both groups would have
weighted these 3 plans double, therefore all statistics were recalculated under
inclusion/exclusion of these patients. This did not change statistical
significance in any case (i.e., only numerical changes occurred)

fincluding 3 plans in which a rib metastasis was included into the irradiation
field. In one plan a rib metastasis and a soft tissue metastatic site were
included into the irradiation field

Bin 3 plans, lungs and kidneys were both considered OARs. For statistical
considerations, these plans were evaluated in both groups concerning
calculations for organs at risk

and underdosage for statistical comparison of CI, we cal-
culated the difference to 1 as follows:

Clay = |CI-1|

For OARs, we calculated the mean dose (Dpean),
and in case of the spinal cord, the maximum dose to
any hotspot (D). All parameters were compared
directly between manually generated plans and auto
plans. Differences between variables were computed
using the two-sample paired Wilcoxon test. Statistical
significance was defined as p<0.05 (two-sided test-
ing). Clinical acceptability of the plans was evaluated
by an expert radiation oncologist (FL).
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Results

All automatically created plans were clinically deliverable
and acceptable. Figures 1 and 2 show dose distributions,
and dose-volume histogram comparisons for a kidney-
level target, and a lung-level target, respectively.

Target volumes

PTV coverage, defined as Vsggy or Vagsgy was higher in
auto plans when compared to manual plans when the
whole patient population was analyzed, with an average
difference of 1.47% (SD =3.17%, p =0.008, n =42), see
Fig. 3. When subgroups were analyzed, the difference
was only significant in lung-level plans (p =0.004, n =
20) but not at kidney levels (p = 0.110, n = 25). This pat-
tern occurred irrespective whether 3 patients with both
kidneys and lungs as OARs in one plan were added to
the lung or to the kidney group or to both. Dose param-
eters were as follows: Dogy, was numerically higher in
auto plans when compared to manual plans but this was
not statistically significant in the whole population (p =
0.479), nor in any subgroup (p >0.05 for both lung and
kidney levels). Dqo was significantly higher in manual
plans over the whole patient population (p <0.001),
however the difference was clinically irrelevant (mean:
33.4 Gy vs. 33.2 Gy; median 31.1 Gy vs. 31.0 Gy). Sub-
group analysis showed that Dy, was significantly lower
in auto plans at kidney level (p = 0.003), however the dif-
ference was marginal and not clinically relevant. In lung-
level plans, Dy, did not differ significantly between auto
and manual plans.

HI as defined above was not significantly different be-
tween auto and manual plans in the whole group or in
any subgroup (p > 0.05 for all comparisons). Considering
the whole population, CI was slightly but statistically sig-
nificant higher in auto plans than in manual plans:
1.014+0.12 (1 SD) vs. 1.044 +0.11. For targets at the
kidney level, the mean CIs for manual plans and auto
plans were 0.99 +0.071 and 1.022 £ 0.067, respectively,
and for lung-level targets 1.036 +0.157 and 1.065 +
0.144. The differences between auto and manual plans
can be explained by a slightly more pronounced under-
dosage in manual plans (minimum CI in manual plans:
0.88 [kidney level] and 0.81 [lung level]; minimum CI in
auto plans: 0.92, and 0.95, respectively). Cqi did not dif-
fer significantly between auto and manual plans.

Organs at risk

In the pooled analysis of all plans, mean dose to
OARs (kidneys and lungs pooled) was significantly
lower in auto plans when compared to manual plans
on both the right side (p =0.001, n =45, relative dif-
ference -10.9% [mean value auto vs. manual]) and on
the left side (p <0.001, n =45, -19.5%). Subgroup ana-
lyses in patients with kidneys as OARs, including 3
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Fig. 1 a Dose distribution of a treatment plan on thoracolumbar level (T12-L2). The patient had metastatic breast cancer; irradiation dose applied
with this plan was 30 Gy in 10 fractions. Manual plan shown on the left and auto plan on the right. b Dose-volume histogram at the same thora-
columbar level, continuous line represents manual plan, and dotted line represents auto plan

patients with lungs and kidneys, showed that auto
plans were associated with lower dose to both kidneys
(p<0.001, n=25, -18.6% right kidney, and p < 0.001,
n =25, -23.1%, left kidney), see Fig. 4a for details. In
lung-level plans, again including 3 plans in which
both lungs and kidneys were included as OARs, only
the left lung showed a significantly lower mean dose
when auto-planning was used (p = 0.004, n =20, -13.7%).
Mean dose to the right lung did not differ significantly be-
tween manual and auto plans (p =0.827, n =20, -1.3%),
see Fig. 4b for details. There was no significant difference
between the maximum doses (D,,,,) to the spinal cord be-
tween auto and manual groups in the whole population or
in any subgroup. However, one patient in the auto group
had a hotspot in the spinal cord (>110% of prescribed
dose: 33.2 Gy, Dsg: 30 Gy).

Estimated treatment time and required monitor units

Auto plans required slightly more (estimated) treatment
time in the whole population (p <0.001, relative differ-
ence 7%) and in the subgroups of kidney-level (p < 0.001,
relative difference 9.7%), and lung-level plans (p = 0.046,

relative difference 3.6%) as no hard constraint was
placed on treatment time. This was a consequence of
auto plans requiring more monitor units in the whole
population and in any subgroup (p-values and relative
differences as follows: whole population, p<0.001,
17.9%; kidney levels: p <0.001, 15.4%; lung levels: p =
0.001, 20.6%). All target volume information, monitor
units, OAR dose values, and treatment times for each
patient are also shown in Additional file 1: Table S1.

Discussion

Though highly conformal radiotherapy is not
mandatory in the treatment of painful bone metasta-
ses [16], intensity modulation with static beams or
VMAT allows to deliver a highly focused dose distri-
bution in every clinical situation and may be benefi-
cial for patients with oligometastatic disease [17] who
require dose escalation or patients who had received
prior courses of radiotherapy limiting doses to OARs
in case of reirradiation [18, 19]. Highly conformal
radiotherapy is, however, not always applied when ap-
propriate [3] for its perceived resource intensity, both
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Fig. 2 a Dose distribution of a treatment plan on thoracic level
(T7-T9). The patient had metastatic prostate cancer; irradiation dose
applied with this plan was 30 Gy in 10 fractions. Manual plan shown
on the left and auto plan on the right. b Dose-volume histogram at
the same thoracic level, continuous line represents manual plan, and
dotted line represents auto plan

in personnel and planning time. Unexpectedly, the
reason for not performing advanced radiotherapy
techniques despite a clear indication seems to be a
shortage of sufficiently trained personnel rather than
machine shortage [3, 4, 20]. AlDuhaiby et al. de-
scribed in a Canadian survey in 2012 that limitations
in CT simulator or linear accelerator configuration
impaired IMRT implementation in only 10% of cases
[20]. The most relevant factors hindering IMRT im-
plementation was the need to train existent treatment
planners (50%) as well as the need to hire more plan-
ners (30%) [20]. Personal shortage is even more
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relevant in VMAT settings as these are more time
consuming as compared to fixed field IMRT [21]; “in-
creased planning time required for generating the
VMAT plans” has been described by Rao et al. as the
main disadvantage of VMAT [22]. Therefore, there is
a need for tools that reduce planning time and ease
the process of developing a radiotherapy plan without
compromising plan quality.

Various auto-planning strategies are currently being
developed [8], these include approaches for beam
angle selection (e.g., [23]), and integrated beam
weight optimization algorithms. The latter can be
based on global optimization [24], or on sequential
beam selection [25]. As discussed above, multicriterial
optimization systems have been proposed [11, 12],
that enable the user to select the plan out of different
sets of beam angles and intensity profiles after
optimization (a posteriori setting). Template based
auto-planning solutions are already commercially
available and have been applied to various target par-
adigms such as head and neck [26], breast [27] and
esophageal targets [28].

Erasmus-iCycle plans, which provide a template-free
approach have been successfully applied to head and
neck [29], prostate [5], and cervical cancer [13] target
volumes to create clinically deliverable plans.

Our results show that fully automated VMAT
treatment planning with the Erasmus-iCycle/Monaco
system for spinal metastases was non-inferior to
conventional treatment planning by expert dosime-
trists or medical physicists. Automatically generated
plans with this system outperformed manual plans in
terms of sparing of OARs in 3 of 4 predefined or-
gans and also PTV coverage was favorable when
compared to manual plans. We observed one hot-
spot in an iCycle plan in the spinal cord (33.2 Gy,
Dso%: 30 Gy). This problem can be addressed by
modifying the wish list to include a maximum dose
cost function on the spinal cord. In our analysis,
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Fig. 4 Comparison of mean dose to OARs. Each marker represents the mean dose in the manual plan vs. the auto plan to the kidneys (a) and to
the lung (b). For data points right of the unity line, auto-planning yielded better sparing of OARs

however, we applied a quadratic overdose cost func-
tion which lead to maximum doses that were com-
parable to maximum doses observed in manual plans
in all but this patient and allowed for more degrees
of freedom regarding dose reduction to other OAR.
If the maximum dose has to be strictly controlled,
e.g., in case of reirradiation, a maximum dose cost
function should be applied. Otherwise, the situation
would be evaluated during the manual approval
process which might prompt occasional replanning
with a maximum dose cost function. Monitor units
and estimated treatment time were higher in auto
plans; however, this difference was not considered
clinically relevant in the treated patient population
and resulted in a negligible prolongation of treatment
times. The difference in treatment times was expected
as the aim of this study was to generate high-quality
plans with clinically acceptable delivery times. Moni-
tor units and delivery times could be reduced in the
auto-plans if required. In contrast to a study in a
more complex setting such as head and neck cancer
[29], the observed dosimetric advantages of Erasmus-
iCycle for treatment of spinal metastases were on
average of low clinical relevance although advantages
across the population were also observed.

External audits have shown that experienced treat-
ment centers may yield superior IMRT plans [30].
Therefore, as postulated most recently by Fogliata et
al. [28], quality improvements of automated planning
vs. manual plan generation may even be more pro-
nounced in target paradigms that are not frequently
treated in a particular center.

Conclusion

Our data add to the growing evidence [5, 13, 29] that
automated treatment planning might be an alternative to
manual planning, reducing the workload of medical
phyicists and dosimetrists while maintaining or improv-

ing plan quality.

Additional files

Additional file 1: Detailed comparison of auto- and manual planning
results. (PDF 274 kb)

Additional file 2: Wish list for automatic plan generation. (DOCX 26 kb)
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