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Abstract

Background: The most frequently used method to quantitatively describe the response to ionizing irradiation in
terms of clonogenic survival is the linear-quadratic (LQ) model. In the LQ model, the logarithm of the surviving
fraction is regressed linearly on the radiation dose by means of a second-degree polynomial. The ratio of the
estimated parameters for the linear and quadratic term, respectively, represents the dose at which both terms have
the same weight in the abrogation of clonogenic survival. This ratio is known as the α/β ratio. However, there are
plausible scenarios in which the α/β ratio fails to sufficiently reflect differences between dose-response curves, for
example when curves with similar α/β ratio but different overall steepness are being compared. In such situations,
the interpretation of the LQ model is severely limited.

Methods: Colony formation assays were performed in order to measure the clonogenic survival of nine human
pancreatic cancer cell lines and immortalized human pancreatic ductal epithelial cells upon irradiation at 0-10 Gy. The
resulting dataset was subjected to LQ regression and non-linear log-logistic regression. Dimensionality reduction of
the data was performed by cluster analysis and principal component analysis.

Results: Both the LQ model and the non-linear log-logistic regression model resulted in accurate approximations of
the observed dose-response relationships in the dataset of clonogenic survival. However, in contrast to the LQ model
the non-linear regression model allowed the discrimination of curves with different overall steepness but similar α/β

ratio and revealed an improved goodness-of-fit. Additionally, the estimated parameters in the non-linear model
exhibit a more direct interpretation than the α/β ratio. Dimensionality reduction of clonogenic survival data by means
of cluster analysis was shown to be a useful tool for classifying radioresistant and sensitive cell lines. More
quantitatively, principal component analysis allowed the extraction of scores of radioresistance, which displayed
significant correlations with the estimated parameters of the regression models.

Conclusions: Undoubtedly, LQ regression is a robust method for the analysis of clonogenic survival data.
Nevertheless, alternative approaches including non-linear regression and multivariate techniques such as cluster
analysis and principal component analysis represent versatile tools for the extraction of parameters and/or scores of
the cellular response towards ionizing irradiation with a more intuitive biological interpretation. The latter are highly
informative for correlation analyses with other types of data, including functional genomics data that are increasingly
being generated.

Keywords: Clonogenic survival, Colony formation assays, Hierarchical clustering, Linear-quadratic model, Non-linear
regression, Principal component analysis, Radiotherapy

*Correspondence: kirsten.lauber@med.uni-muenchen.de
2Clinic for Radiotherapy and Radiation Oncology, LMU Munich, Munich,
Germany
3Clinic Cooperation Group ‘Personalized Radiotherapy in Head and Neck
Cancer’, Helmholtz Center Munich, Munich, Germany
Full list of author information is available at the end of the article

© 2016 Unkel et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-016-0584-z-x&domain=pdf
mailto: kirsten.lauber@med.uni-muenchen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Unkel et al. Radiation Oncology  (2016) 11:11 Page 2 of 11

Background
Clonogenic survival is an important endpoint to mea-
sure the cellular response towards ionizing irradiation
in vitro. It is commonly assessed by 2D or 3D colony
formation assays, which are based on the capacity of sin-
gle cells to grow to colonies consisting of at least 50
cells [1–3]. Accordingly, cells retaining the capacity to
undergo at least 5–6 rounds of cell division in response
to irradiation are quantified. These clonogenic cells usu-
ally constitute a rather small subpopulation that is further
reduced upon irradiation. All other cells within the pop-
ulation are considered as reproductively dead or inactive.
Colony formation assays are frequently utilized to exam-
ine and characterize differences in sensitivity towards ion-
izing irradiation between tumor and normal cells and to
assess the impact of additional treatments and/ormanipu-
lations on the radiation response. Whereas the abrogation
of clonogenic survival is of utmost importance for tumor
control and for the prevention of recurrences, preserva-
tion of continued proliferation and clonogenic survival
are a crucial prerequisite for maintaining integrity and
function in normal tissue.
For the measurement of clonogenic survival, cells are

seeded in appropriate dilutions, subjected to ionizing irra-
diation at different doses, and 1–3 weeks later colonies
are fixed, stained, and counted. To calculate the surviv-
ing fraction at a given dose, the number of colonies is
divided by the number of seeded cells and normalized
to the plating efficiency of the not irradiated controls.
The log-transformed values of the surviving fractions are
plotted against the corresponding irradiation doses, and
traditionally linear-quadratic (LQ) regression analysis is
performed, which describes the function of the surviving
fraction by a second-degree polynomial with a linear and a
quadratic term (see Eq. (1)) [4]. The coefficients and their
α/β ratio reflect the weights of the linear and quadratic
term upon the reduction in clonogenic survival. When
α � β , the function of the surviving fraction reveals
a basically linear character (Fig. 1a). In contrast, when
β � α, the curvature dominates the function (Fig. 1b).
Hence, the α/β ratio is well suited to differentiate curves
with more linear or more quadratic shape, respectively
(Fig. 1c). Nevertheless, it fails to assess the overall steep-
ness of the curve, which is obviously related to radiosen-
sitivity and/or resistance (Fig. 1a and b). Additionally,
the α/β ratio lacks an intuitive biological interpretation.
For many applications, it would be very helpful to have
parametric information and/or quantitative scores, which
reflect the overall survival curve with greater explanatory
depth.
In principle, clonogenic dose response datasets reveal

sigmoidal character, thus rendering them suitable for
non-linear regression analysis [5]. In this study, a multi-
parameter equation with a log-logistic transformation

of the predictor, i.e. the irradiation dose, was employed
(Fig. 1d and Eq. (3)). The parameters φi exhibit a high
degree of biological transparency, including the asymp-
totic clonogenic survival at infinite irradiation dose, the
irradiation dose at the inflection point of the curve, and
a measure related to its steepness (Fig. 1d). To the best of
our knowledge, a comprehensive comparison of LQ and
non-linear log-logistic regression analysis has not been
performed with clonogenic survival data so far. This is the
aim of the present study.
Moreover, categorizing cells as sensitive or resistant

with respect to ionizing irradiation might be helpful for
multiple applications when studying the cellular responses
towards ionizing irradiation as well as their underly-
ing mechanisms. Quantitative scores of radioresistance
and/or sensitivity with the power to reflect clonogenic
survival over the whole dose range analyzed would bear
strong informative value for correlation analyses with
datasets of gene expression profiling and other “deep
information datasets” that are increasingly being col-
lected. Two methods of dimensionality reduction, which
allow these calculations, are hierarchical cluster analysis
and principal component analysis (PCA) [6, 7].
These considerations inspired us to perform the present

study. Clonogenic survival data of eight human pancre-
atic cancer cell lines and immortalized human pancreatic
ductal epithelial cells (HPDE) upon ionizing irradiation
were subjected to regression analyses with the LQ and
the non-linear log-logistic model as well as dimension-
ality reduction by hierarchical clustering and PCA. The
results were compared, and the strengths and weaknesses
of the respective algorithms are discussed. Finally, we pro-
pose a combination of all these methods as a workflow for
the identification and validation of targets for biologically
motivated improvements of cancer radiotherapy [8].

Methods
Cell lines
The human pancreatic cancer cell lines Capan-2, Dan-
G, and FamPac were obtained from Cell Lines Service
(Heidelberg, Germany). PaTu-8988T, Panc-1, MiaPaca-2,
L3.6pl (a metastastic subclone of Colo 357), Suit-2 007
(a metastastic subclone of Suit-2) and immortalized
human pancreatic ductal epithelial cells (HPDE) were
kindly provided by Maximilian Schnurr, Department of
Clinical Pharmacology, LMU Munich [9, 10]. Identity of
cell lines was confirmed by short tandem repeat (STR)
typing (service provided by the DSMZ, Braunschweig,
Germany). Tumor cell lines were cultured in DMEM
(Capan-2, PaTu-8988T, Panc-1, MiaPaca-2, L3.6pl, and
Suit-2 007) or RPMI-1640 medium (FamPac and Dan-G)
supplemented with 10 % heat-inactivated fetal calf serum
(FCS), 100 U/ml penicillin, and 0.1 mg/ml streptomycin
(all from Life Technologies, Karlsruhe, Germany) at 37 °C
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Fig. 1 The linear-quadratic model can differentiate clonogenic survival curves with varying contributions of the linear and the quadratic terms but
fails to reflect the overall steepness of the curves. Three-parameter log-logistic regression represents an interesting alternative. Hypothetical
clonogenic survival curves with different α/β ratio and overall steepness were constructed. Curves with identical α/β ratio but different steepness
are shown for α/β = 20 Gy (a) and α/β = 0.5 Gy (b). In (c), curves with different α/β ratio (3 or 20 Gy, respectively), but similar overall steepness are
depicted. d Three-parameter log-logistic model with parameters φ1, φ2 and φ3

and 7.5 % CO2, or 5 % CO2, respectively. HPDE cells were
maintained in a 1:1 mixture of keratinocyte serum-free
medium and RPMI-1640 medium supplemented with 250
ng/ml human epidermal growth factor (EGF), 25 μg/ml
bovine pituitary gland extract (BPE), 5 % FCS, 50 U/ml
penicillin, and 0.05 mg/ml streptomycin (all from Life
Technologies) at 37 °C and 5 % CO2.

Colony formation assays
Clonogenic survival was examined in colony formation
assays. Cells were seeded as single cell suspensions into 6-
well plates in a range of 100–100,000 cells per well in order
to yield approximately 50 colonies per well depending on
the different irradiation doses applied. Upon adherence
for 4 h, cells were irradiated, and colony formation was
allowed for 14 days. Subsequently, fixation and staining
was performed in 80 % ethanol containing 0.3 % (w/v)
methylene blue (both from Sigma-Aldrich, Taufkirchen,
Germany), and colonies with more than 50 cells were
counted. The number of colonies was divided by the
number of seeded cells and normalized on the plating
efficiency of the not irradiated controls. Data from 3–
4 independent experiments were used for the statistical
analyses.

Computations
Computations for this study were carried out using the
R Software, version 3.2.1 [11]. All computer code used is
available upon request.

Linear regression framework
Recall the LQ model

yij = exp
(
αxij + βx2ij

)
exp

(
εij

)

⇔ ln
(
yij

) = αxij + βx2ij + εij , (1)

where xij denotes the radiation dose for cell line i (i =
1, . . . , n) and replicate j (j = 1, . . . , Ji), yij are the result-
ing survival fractions (SFs) of cells and εij are error terms
with εij ∼ N

(
0, σ 2). Clonogenic survival of all n cell lines

was measured over the same range of radiation doses x =
0, 1, 2, 4, 6, 8 and 10 Gy. The semi-log regression model
(1) is linear in the unknown parameters α and β that are
to be estimated from the data. The goodness-of-fit of the
model (1) can be evaluated by means of the coefficient of
determination, denoted R2.
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Non-linear regression framework
In addition to the LQ model, we fitted regression models
of the form

yij = f (xij;φ1, . . . ,φp) + εij , (2)

where the mean function f is non-linear in one or more
of the p parameters φ1, . . . ,φp. In particular, consider the
following log-logistic mean function for sigmoidal curves
(see e.g. [12]):

f (x) = φ1 + 1 − φ1

(1 + exp{φ3[ ln(x) − ln(φ2)] })φ4
, (3)

where φ1 is the horizontal asymptote as x → ∞, φ2 is
the inflection point of the curve at which the response is
midway between 1 and φ1, and the parameter φ3 is pro-
portional to the slope df (u)/du at u0 in the log-logistic
mean function f (u) with u = ln(x) and u0 = ln (φ2).
The function is not symmetric (on the log scale) for φ4
different from 1, hence φ4 may be called an asymmetry
parameter. We have chosen the log-logistic mean function
(3) to ensure that f (x) = 1 for x = 0 Gy. Instead, the logis-
tic mean function f (x) = φ1 + 1−φ1

(1+exp{φ3[x−φ2]})φ4 would be
different from 1 at a dose of 0 Gy. We performed model
selection comparing four nested models with mean func-
tion (3): the least restrictive four-parameter model with
parameters φ1, . . . ,φ4, a three-parameter model with φ4
fixed at one, a two-parameter model with φ4 fixed at one
and lower asymptote φ1 fixed at zero and a one-parameter
model with φ4 = 1, φ1 = 0 and φ3 = 1. For model
selection we used the Akaike information criterion (AIC),
which is defined as follows [13]:

AIC = 2(p + 1) − 2 ln(L) , (4)

where L denotes the maximized value of the likelihood
function for the model. The AIC rewards goodness of fit
as assessed by the likelihood function, but also includes
a penalty that is an increasing function of the number of
estimated parameters. Given a set of candidate models for
the data, the preferredmodel is the one with theminimum
AIC value. However, the final model choice was based on
both statistical and biological grounds. The chosen non-
linear model was compared to a more general analysis of
variance (ANOVA) model. The ANOVA model imposes
no restrictions on how the response changes from one
dose level to another, as there will be one parameter for
each dose level. That is, the non-linear model is a sub-
model of the ANOVA model and we used an F-test [5]
to test the null hypothesis that the ANOVA model can be
simplified to the non-linear regression model. Note that
the most common interpretation of R2 for linear regres-
sion does not hold true for non-linear regression. In the
non-linear case, the R2 value is not the amount of vari-
ability in the dependent variable explained by the inde-
pendent variable. In other words, in a non-linear regime

the total sum-of-squares is not equal to the regression
sum-of-squares plus the residual sum-of-squares (RSS).
Therefore, R2 should not be used as a goodness-of-fit
measure in non-linear regression [14]. Instead one can
use the residual variance σ̂ 2 = RSS

df , where the circum-
flex denotes the estimated value of σ 2 and df denotes the
degrees of freedom for the model. Alternatively, one can
use the residual standard error σ̂ = √

σ̂ 2 as a summary
measure for the model fit [15]. We also devoted our-
selves to model diagnostics checking whether substantive
departures from the model assumptions can be found.

Cluster analysis
Cluster analysis of the clonogenic survival data was
employed in order to classify radioresistant and sensitive
cell lines [6]. Given the 9 × 6 data matrix X, which con-
sists of mean survival fractions (in %) of the 9 cell lines
measured at 6 radiation doses 1, 2, 4, 6, 8 and 10 Gy, a
9×9 distance matrixDwas calculated using the Euclidean
distance as a proximity measure. The matrix D was then
analyzed by means of agglomerative hierarchical cluster-
ing, which produces a series of partitions of the data: the
first consists of 9 single-member “clusters”; the last con-
sists of a single group containing all 9 cell lines. At each
stage, cell lines were fused that are closest according to
Ward’s method [16] in which the fusion of two clusters
is based on the size of an error sum-of-squares crite-
rion. We investigated the sensitivity of the results with
respect to the clustering method. The obtained classifica-
tions are represented by a dendrogram, which illustrates
the fusions made at each stage of the analysis. To provide
further guidance for determining the number of clusters
we present a silhouette plot, which is a means of assessing
the quality of a cluster solution enabling one to identify
“poorly” classified objects and so distinguishing clear-cut
clusters from weak ones. More details on the interpre-
tation of the silhouette plot are given in the “Results”
section.

Principal component analysis
Principal component analysis (PCA) allows the extraction
of scores of radioresistance for the cell lines under inves-
tigation [7]. Suppose without changing the notation that
the columns of X have been mean-centered and scaled to
unit variance. Then, the 6×6 sample correlation matrix is
computed as C = X�X/(n − 1) with X� being the trans-
posed matrix of X. The eigendecomposition of C can be
written as

C = V�V� , (5)

where � is a diagonal matrix with the eigenvalues of C
sorted in decreasing order, λ1 ≥ λ2 ≥ . . . ≥ λ6 ≥ 0,
on its main diagonal and V is an orthogonal matrix
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whose columns v1, . . . , v6 are the unit-norm eigenvectors
of λ1, . . . , λ6. The matrix V is composed of coefficients
or loadings and and the r-th sample principal compo-
nent (PC) with mean zero and variance λr is zr = Xvr
(r = 1, . . . , 6). Rescaled loadings are calculated as v∗

r =√
λrvr for which v∗

r
�v∗

r = λr , rather than unity. For stan-
dardized data, this rescaling leads to coefficients that are
the correlations between the components and the original
variables. Various criteria for choosing the optimal num-
ber R of uncorrelated principal components (PCs) to be
retained do exist [7]. For example, one proposal is to retain
the first R components which explain a large proportion,
(λ1 + . . .+λR)/(λ1 + . . .+λ6), of the total variation in the
data, say 70–80 %. Another is to retain only components
(for standardized data) that possess eigenvalues greater
than one, which is known as Kaiser’s rule [17].

Results
Clonogenic survival of eight human pancreatic cancer cell
lines and immortalized human pancreatic ductal epithe-
lial cells (HPDE) wasmeasured by colony formation assays
upon exposure to ionizing irradiation, and the resulting
dataset was subjected to different computational analy-
ses in order to obtain measures of radioresistance and/or
sensitivity.

LQmodel
First, the most common method, the LQ model, was
employed to fit the clonogenic survival data. Here, the
log-transformed surviving fraction (SF) at a given irradia-
tion dose is approximated by a second-degree polynomial
with a linear and a quadratic term. A Trellis plot of the
log-transformed survival fractions versus the irradiation
doses was constructed, and the fitted regression curves
were superimposed (Fig. 2a). For all cell lines, a very good
agreement between the observed data and the estimated

regression curves was obtained indicating that the LQ
model is capturing the systematic part in the data very
well. The goodness-of-fit of the LQ model, as evaluated
by means of R2, varied between 95.46 % for HPDE and
99.32 % for FamPac cells (average 98.52 %). The estimated
coefficients along with their α̂/β̂ ratios showed that the
weights of the linear and quadratic term differ substan-
tially across the cell lines (Fig. 2b). Whereas the linear
term did not reach statistical significance at the 5 % level
for Suit-2 007 cells, this applied to the quadratic term in
case of Dan-G and FamPac cells. Accordingly, in these
three cell lines, the residual term dominated the reduc-
tion in clonogenic survival upon irradiation (the quadratic
term in case of Suit-2 007, and the linear term in case of
Dan-G and FamPac, respectively). The α̂/β̂ ratios ranged
from 1.85 Gy (Suit-2 007) to 191.58 Gy (Dan-G), and
their graphical display disclosed three groups of cell lines
(Fig. 2c). Given that the α̂/β̂ ratio is traditionally consid-
ered as a measure of radiosensitivity [4], this classified
Suit-2 007 cells as particularly radioresistant and FamPac
as well as Dan-G cells as highly radiosensitive. The major-
ity of pancreatic cancer cell lines exhibited α̂/β̂ ratios
between 4 and 16 Gy, which were comparable to or even
higher than that of the non-malignant HPDE cells (α̂/β̂ =
4.69 Gy). Hence, our clonogenic survival data do not con-
firm the common opinion that pancreatic cancer cells
exhibit an extraordinarily high degree of radioresistance
as compared to normal cells – at least in vitro [18, 19].
As anticipated, LQ regression of the clonogenic survival
data and the resulting α̂/β̂ ratios revealed the major lim-
itation in the sense that assessing radioresistance via the
α̂/β̂ ratio cannot differentiate survival curves of similar
α̂/β̂ ratio but discrepant steepness. This was exemplified
in case of Capan-2 and L3.6pl cells. Whereas the α̂/β̂

ratio was rather similar (α̂/β̂ = 16.73 Gy for Capan-2,
and α̂/β̂ = 14.25 Gy for L3.6pl, respectively), the overall

Fig. 2 Linear-quadratic regression analysis of clonogenic survival data obtained from eight human pancreatic cancer cell lines and immortalized
human pancreatic ductal epithelial cells. Cells were subjected to colony formation assays upon irradiation at 0-10 Gy. After irradiation, cells were
incubated for 14 days, the numbers of colonies with more than 50 cells were counted, and the surviving fractions were calculated. Results of 3–4
independent experiments are depicted in a Trellis plot of the log-transformed survival fraction versus radiation dose with fitted regression curves
superimposed (a). Estimated coefficients along with the α̂/β̂ ratios for the LQ model (b, c)
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steepness of the curves was obviously different charac-
terizing Capan-2 cells as clearly more radiosensitive than
L3.6pl cells. In the following, different approaches were
used in order to overcome this shortcoming and to extract
parameters and/or scores of the radiation response, which
are superior to the α̂/β̂ ratio in terms of reflecting
radiosensitivity and which have amore direct and intuitive
biological interpretation.

Non-linear regression
Next, the clonogenic survival data were analyzed by
means of non-linear log-logistic regression, which utilizes
a multi-parameter equation for sigmoidal curves (Fig. 1d).
Table 1 displays the log-likelihood, the number of esti-
mated parameters (p + 1), and the Akaike information
criterion (AIC) for each of the four nested non-linear
log-logistic regression models. Naturally, the least restric-
tive model with four parameters gave the best fit to the
data (in terms of the likelihood). However, for the clono-
genic survival dataset, this model contained too many
parameters, and particularly the asymmetry parameter φ4
appeared redundant. Indeed, in terms of the AIC, mod-
els that fix φ4 at 1 were superior (Table 1). On the other
hand, reducing the model to the standard one-parameter
log-logistic model proved not appropriate for the given
dataset. The remaining alternatives of a two- or three-
parameter model gave virtually equal results. The AIC
for the two-parameter model with the lower asymptote
φ1 (reflecting the surviving fraction at infinite irradiation
dose) fixed at 0 was slightly lower than that of the three-
parameter model. However, we consider the latter to be
the most suited one for our dataset, because in general
the lower asymptote should be allowed to be either posi-
tive or zero for very high irradiation doses. The estimated
regression curves obtained by fitting the chosen three-
parameter model superimposed to the measured clono-
genic survival data are shown in the Trellis plot (Fig. 3a).
For comparison, the fitted regression curves of the two-
parameter model are also depicted. Visually, there was
a good fit between the observed data and the estimated
regression curves. The overall residual standard errors
of the fitted three-parameter and two-parameter models
were σ̂ = 0.0756 and σ̂ = 0.0746, respectively, confirm-
ing that the sigmoidal curves are capturing the variation

Table 1 Log-likelihood, number of estimated parameters and
AIC for four nested non-linear logistic regression models fitted to
the Pancreas data

Model ln(L) p + 1 AIC

Mean function (3) 258.24 37 −442.48

φ4 = 1 249.59 28 −443.18

φ4 = 1, φ1 = 0, 247.06 19 −456.11

φ4 = 1, φ1 = 0, φ3 = 1 80.17 10 −140.34

in the data very well. Notably, the residual standard error
of the LQ model was σ̂ = 0.4336. The estimated parame-
ters φ̂1, φ̂2 and φ̂3 along with their p-values are shown in
Fig. 3b; φ̂1 was never significantly different from zero indi-
cating that clonogenic survival upon irradiation at infinite
does converges to 0. For all cell lines, the scale factor φ̂3
was greater than 1 implying that the curves were steeper
than the standard log-logistic curve. The irradiation dose,
which resulted in 50 % survival and which is commonly
referred to as median effective dose ED50 [12], is repre-
sented by φ̂2. It varied between 1.08 Gy (FamPac) and 2.75
Gy (Suit-2 007) with amean of 2.17 Gy. Plotting the results
of the different cell lines in the pace of φ̂2 and φ̂3 suggested
this time that the cell lines split into 2 groups. Hence,
the distribution was somewhat different from the distri-
bution according to the α̂/β̂ ratios as obtained by the LQ
model. FamPac, Dan-G, and Capan-2 cells formed a group
of radiosensitive cell lines with low φ̂2 values (ED50), and
low to intermediate φ̂3 values that are related to the steep-
ness of the curve. On the other hand, high φ̂2 values and
intermediate to high φ̂3 values were estimated for the
radioresistant group comprising L3.6pl, Suit-2 007, HPDE,
PaTu-8988T,MiaPaca-2, and Panc-1 cells. With φ2 (ED50),
the three-parameter log-logistic model provides a param-
eter that is more intuitive and has a more direct biological
interpretation than the rather abstract α/β ratio of the LQ
model. Additionally, log-logistic regression enabled the
discrimination of more sensitive Capan-2 and more resis-
tant L3.6pl cells. Thus, the three-parameter log-logistic
model appears to be superior to the LQ model in terms of
deriving parameters of radiosensitivity with more direct
biological interpretation and more quantitative depth – at
least in the given dataset.
In order to compare the performance of the three-

parameter log-logistic model to a more general ANOVA
model, an F-test was performed. The lack-of-fit test was
overwhelmingly non-significant (p-value 0.9824) further
strengthening the suitability of the non-linear regression
model. We also investigated other sigmoidal relationships
between the surviving fraction and the irradiation dose to
assess themean structure in non-linear models. For exam-
ple, the maximized log-likelihood of the three-parameter
Weibull model was 237.77 compared to 249.59 of our cho-
sen model (Table 1) indicating that this model did not fit
the data better than the log-logistic model presented here.
In conclusion, our results identify the three-parameter
log-logistic model as highly appropriate for the analysis of
clonogenic survival data.

Hierarchical clustering
By plotting the α̂/β̂ ratios of the fitted LQ model or the
values for φ̂2 and φ̂3 of the fitted three-parameter log-
logistic model, we already attempted to define groups of
cell lines with different radiosensitivity (Figs. 2c and 3c).
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Fig. 3 Non-linear log-logistic regression of clonogenic survival data provides parameters with intuitive biological interpretation. A three- and a
two-parameter log-logistic regression model were fitted to the clonogenic survival data. Trellis plot of the survival fraction versus radiation dose
with fitted regression curves superimposed (a, red for the three-parameter, green for the two-parameter model). Estimated regression parameters
and p-values for the log-logistic regression model (b); φ̂1 represents the survival fraction for which the dose approaches infinity, φ̂3 is a slope factor
that refers to the steepness of the curve, and φ̂2 represents the irradiation dose that indicates a surviving fraction of 0.5 (ED50). c Plot of the cell lines
in the space of φ̂2 and φ̂3

However, the grouping decisions were made merely by
visual inspection, and thus were rather subjective. A more
objective approach for classification is hierarchical clus-
tering, which was applied to our dataset in the following.
At first, hierarchical clustering was performed with the

original clonogenic survival fractions. The obtained den-
drogram illustrating the process of the agglomerative hier-
archical clustering, and the partitions produced at each
stage are displayed in Fig. 4a. The nodes in this diagram
represent clusters, and the heights represent the distances
at which each fusion is made. Large changes in fusion
levels are considered to indicate the best cut of the tree,
and thus suggest the number of clusters. The dendrogram
of the clonogenic survival data revealed a clear structure
that displayed two main groups with different radiosen-
sitivity. Whereas cluster 1 comprised the more sensitive
cell lines FamPac, Dan-G, and Capan-2, all other cell lines
were located in cluster 2. A two-cluster solution was also
observed when employing the non-hierarchical partition-
ing around medoids (PAM) cluster algorithm [20] (results
omitted). As a means of evaluating the clustering process,
silhouette plots are commonly employed [6]. The silhou-
ette plot of the two-cluster solution obtained by the best
cut of the hierarchical algorithm and PAM displays for
each object (cell line) an index si ∈ [−1, 1], called a sil-
houette (Fig. 4b). When si has a value close to 1, object i
is taken “well classified”. When si is close to -1, object i is
taken to be “misclassified”. When the index is near zero it
is not clear whether the object should have been assigned
to its current cluster or a neighboring one. In Fig. 4b the
si are displayed as horizontal bars, ranked in decreasing
order for each cluster. The average silhouette width of
all nine cell lines was 0.54, which can be considered a
reasonable classification [20].
Notably, the obtained clusters were highly similar to

the groups derived from the three-parameter log-logistic

model (Fig. 3c). Moreover, in contrast to the α̂/β̂ ratio
of the LQ model, cluster analysis in fact was able to dif-
ferentiate more sensitive Capan-2 from more resistant
L3.6pl cells.We also performed cluster analysis on the log-
transformed clonogenic survival data. The corresponding
results were similar to the ones obtained by clustering the
original survival fractions with the difference that Dan-G
cells were allocated to the cluster with the radioresistant
cell lines (Fig. 4c,d). Clonogenic survival at 2 Gy (SF2) is
widely used as a measure of radiosensitivity. Therefore, we
also performed cluster analysis with the SF2 values only.
The results were virtually identical to the ones obtained
by categorizing the full range of SF values (Fig. 4e,f). Inter-
estingly, the two clusters were more clearly separated as
compared to the clusters generated from the full range of
SF data. This result is due to the fact that the SF2 clus-
tering takes into account the survival at a single dose only
and cannot reflect the observation that some cell lines
appear sensitive in the higher dose range and resistant in
the lower dose range and vice versa. Overall, we consider
hierarchical clustering of clonogenic survival data as a ver-
satile tool to categorize radiosensitive and radioresistant
cell lines for further analyses. This might be of relevance
for the selection of radioresistant and sensitive cell lines
for studies aiming to delineate molecular mechanisms of
the cellular response towards ionizing irradiation, and
particularly for identifying and characterizing signaling
pathways of resistance and/or hypersensitivity.

Principal component analysis
Hierarchical clustering of clonogenic survival data can
serve as a method for categorizing radioresistant and sen-
sitive cell lines. Yet, it does not provide a quantitative
measure of radioresistance and/or sensitivity. Principal
component analysis (PCA) is a method that offers this
possibility. It utilizes orthogonal transformations in order
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Fig. 4 Cluster analysis of the clonogenic survival data discloses groups of radioresistant and sensitive cells. Euclidean distances of the nine cell lines
were analyzed by means of agglomerative hierarchical clustering of original SF data (a, b), log-transformed SF data (b, c), and SF2 values only (d, e).
Dendrograms (a, c, e): a two-cluster solution with a group of radioresistant and a group of sensitive cell lines can be identified. The silhouette plots
(b, d, f) display a good quality of the obtained two-cluster solution

to convert a set of correlated variables into a derived set
of linearly uncorrelated variables, called principal compo-
nents (PCs).
The sample correlation matrix of the clonogenic sur-

vival data was

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.00 0.83 0.66 0.76 0.58 0.58
0.83 1.00 0.82 0.84 0.66 0.33
0.66 0.82 1.00 0.91 0.86 0.54
0.76 0.84 0.91 1.00 0.88 0.68
0.58 0.66 0.86 0.88 1.00 0.81
0.58 0.33 0.54 0.68 0.81 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠
. (6)

The correlation matrix (6) demonstrated moderately to
strongly positive, linear correlations between all survival
fractions. Hence, PCA appeared to be an adequate tool
for dimensionality reduction of these data. The extracted

first PC alone accounted for 76.9 % of the total variabil-
ity in the data and was the only PC whose eigenvalue
was greater than one (Fig. 5a). Thus, according to Kaiser’s
rule [17], it was sufficient to retain only the first PC. The
rescaled loadings v∗

1 indicated a high degree of correla-
tion with the extracted PC for all six surviving fractions
(SF1-SF10) implying that the first PC represents a well-
balanced measure of clonogenic survival over the whole
dose range that was analyzed (Fig. 5a). The corresponding
scores of the first PC for all cell lines are shown in Fig. 5b.
They ranged between 2.94 in case of radioresistant PaTu-
8988T cells, and −3.74 for radiosensitive FamPac cells.
Indeed, the scores of the first PC can be interpreted as a
weighted index of radioresistance within the dose range
measured. A plot of the data projected into the subspace
of the first two PCs (for better visualization) with the two-
cluster classification solution superimposed is depicted
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Fig. 5 Principal component analysis of the clonogenic survival data enables the extraction of scores of radioresistance. Standardized clonogenic
survival data were subjected to principal component analysis (PCA). In (a), the proportions of variance for the six PCs and the scaled loadings of the
variables on the first PC that accounts for 76.9 % of the total variability in the data are shown. The first PC exhibits well-balanced loadings for the
measured variables. The scores of the nine cell lines on the first two PCs are presented in (b). The resulting two-cluster solution is displayed in the
space of the first two PCs that reflect 90.04 % of the total variability in the data (c). Pearson correlation analyses of the first PC were conducted with
the estimated parameters extracted from the fitted regression models (d, e, f)

in Fig. 5c. It clearly confirms the two-cluster solution of
radiosensitive and resistant cell lines that was obtained by
hierarchical cluster analysis and shows the scores of the
first PC as a quantitative measure of radioresistance.
In order to compare the PCA results to the results
obtained by LQ and log-logistic regression, correlation
analyses between the extracted parameters and the first
PCwere performed. A significant negative correlation was
observed between the α̂/β̂ value and the first PC sup-
porting the common use of the α/β ratio as a(n) (inverse)
measure of radioresistance. Intriguingly, an even better,
yet positive correlation was obtained between φ̂2 and the
first PC, again strengthening its versatility as an indicator
of radioresistance. In terms of completeness, the correla-
tion between φ̂3 and the first PC was calculated resulting
in the absence of statistical significance (Fig. 5d–f).

Discussion
Polynomial models, such as the LQ model, are linear in
the parameters. Fitting polynomial models can lead to
an accurate approximation to the true regression func-
tion, their application for the analysis of clonogenic sur-
vival data being no exception. However, these models are
empirical in the sense that they are only based on the
observed relationship between the response and the pre-
dictors and do not include mechanistic considerations

a priori [21]. For the LQ model, molecular theories of
the underlying biological mechanisms were originally pro-
vided in the 1970s and have been refined later on [22–25].
Based on the assumption that clonogenic cell death
upon ionizing irradiation derives from lethal DNA dam-
age, which is predominantly represented by DNA dou-
ble strand breaks (DSBs), the linear term in this model
was attributed to DSBs resulting from single irradiation
events, whereas the quadratic term was interpreted as
DSBs resulting from two independent irradiation events.
Yet, the parameters derived from LQ regression (α, β ,
and the α/β ratio) lack biological transparency, and in
the present study they were shown to be inferior to the
parameters derived from log-logistic regression in terms
of explanatory power. We are well aware that from the
LQ model one can easily compute ED50 and other val-
ues with direct biological interpretability. However, in the
radiobiological routine this is simply not done. Instead,
α/β ratios are commonly used as measures of the cellular
response towards ionizing irradiation. And these clearly
lack biological interpretability.
Unlike linear polynomial models, non-linear regression

models are often based on a theory for the mechanism
accounting for the response. In consequence, the model
parameters in a non-linear model have a more plas-
tic interpretation [21]. In case of the three-parameter
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log-logistic regression model used here, the curve of the
surviving fraction takes on a sigmoidal shape between 1
and the lower asymptote φ1 that corresponds to the sur-
viving fraction for positively infinite dose; φ3 is related
to the steepness of the curve, and φ2 corresponds to the
irradiation dose at which the survival fraction reaches
0.5 (ED50). Other effective doses, such as ED10 or ED90,
may be easily obtained from the fitted regression curve as
well. Moreover, constraints can be built into a non-linear
model easily and are harder to enforce for linear mod-
els. If, for instance, the response attains an asymptotic
value as the dose grows, the non-linear models have such
a built-in behavior automatically. We decided in favor
of log-logistic regression instead of logistic regression to
ensure that the response is equal to 1 for 0 Gy. A three-
parameter model was selected in order to preserve the
possibility of SF > 0 for infinite irradiation doses, which
may be observed for cellular subpopulations with absolute
radioresistance.
The iterative nature of the fitting algorithm, which

requires a set of user-supplied starting values, could
be considered as a disadvantage of non-linear models.
However, many software programs have built-in self-
starter functions, which substitute for manually searching
the starting values [15]. Non-linear regression models
have successfully been used for describing dose-response
dependencies for a long time [26]. They perform with
a high degree of accuracy and provide intuitive biolog-
ical interpretations. The present study shows that they
also have their merits in describing the cellular response
towards ionizing irradiation in colony formation assays.
For the given dataset, the goodness-of-fit, as evaluated
by means of the residual standard error, was even supe-
rior to the LQ model. It should be noted that fitting a
model to the original survival data (as is the case for non-
linear regression) emphasizes the low dose range with
high survival fractions. In contrast, fitting a model to log-
transformed survival data (as is the case for the LQmodel)
focuses on the higher dose range with low survival frac-
tions. Given that the applicability of the LQ model in the
higher dose range is being controversially discussed [27],
and the clinically relevant dose range is 1–4 Gy, we do
not consider this bias towards the lower dose range as a
shortcoming but rather as an advantage of the non-linear
regression model.
We have also employed dimensionality reduction tech-

niques, namely cluster analysis to classify radioresistant
and sensitive cell lines, and PCA that allows the extrac-
tion of scores of radioresistance. Note that these two
techniques should not be considered as substitutes of
regression models. Regression models and dimensionality
reduction techniques have different purposes and provide
complementary information. Whereas linear and non-
linear regression models aim at quantitatively describing

the relationship between a response and one or more
predictors using a statistical model, dimensionality reduc-
tion techniques aim at summarizing the observed data in
a lower-dimensional space. Nevertheless, often there is a
benefit in analyzing the data from more than one angle,
as a single technique is seldom able to reveal all impor-
tant features in a given set of data. In this regard, our
study suggests that a combination of hierarchical clus-
tering, PCA, and regression of clonogenic survival data
represents a promising approach for target identification
in the context of biologically motivated improvements
of cancer radiotherapy. Very recently, we have success-
fully used the aforementioned methods and identified
HSP90 as a candidate molecule for targeted radiosen-
sitization of resistant soft tissue sarcoma [28]. Cluster
analysis was employed to classify radioresistant and sen-
sitive cell lines from a panel of human soft tissue sarcoma
cell lines. PCA-derived scores of radioresistance were
applied to correlation analyses with transcriptomic data
of the DNA damage response resulting in the identifi-
cation of HSP90 and its client proteins ATM, ATR, and
NBS1 as candidate mediators of radioresistance. Their
functional involvement was addressed by pharmacologi-
cal HSP90 inhibition, and the impact on clonogenic sur-
vival was finally examined and quantified by regression
analyses.

Conclusions
The present study was performed in order to exemplify
the versatility of non-linear regression and dimension-
ality reduction via hierarchical clustering and PCA as
statistical alternatives to the LQ model for the analy-
sis of clonogenic survival data. A combination of these
techniques represents a powerful toolkit for the character-
ization of clonogenic cell death upon ionizing irradiation
as well as the extraction of parameters and/or scores
with quantitative explanatory power and direct biological
interpretation. Together with results from transcriptomic,
proteomic and other “big data” endeavors, these scores
might be utilized to identify candidate targets and/or
pathways formolecularmanipulation of cellular responses
towards ionizing irradiation as well as their functional
validation.
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